Тепловые свойства почвы кратко

Обновлено: 12.05.2024

Главным источником тепла, поступающего в почву, является лучистая энергия Солнца (солнечная радиация). Небольшое количество тепла почва получает из глубинных слоев Земли и за счет химических, биологических и радиоактивных процессов, протекающих в верхних слоях литосферы. Тепло, образующееся при разложении органических веществ (навоза, растительных остатков и др.), широко используют в овощеводстве закрытого грунта.

Часть поступающей к поверхности почвы лучистой солнечной энергии поглощается почвой и, преобразуюсь в тепло, нагревает почву; часть отражается поверхностью почвы и напочвенным покровом. Почва отдает тепло в атмосферу, если температура ее поверхности выше, чем температура приземного слоя воздуха.

В зависимости от соотношения количества поглощенной поверхностью почвы лучистой энергии и излучения почвой тепла в атмосферу почвенная поверхность будет или нагреваться, или охлаждаться. Наряду с поглощением тепла почвенной поверхностью идут процессы перемещения тепла от слоев, более нагретых к слоям с более низкой температурой. Это сказывается на тепловом состоянии различных слоев почвы. Чем больше разность температур поверхности почвы и ее глубоких слоев, тем больше тепла уходит из почвы или поступает в нее.

Приток лучистой солнечной энергии к поверхности почвы зависит от широты и рельефа местности, состояния поверхности почвы (покрытие растительностью), а также времени года и суток и состояния атмосферы (ясно, пасмурно и пр.). В Северном полушарии суммарный приток солнечной радиации увеличивается при движении с севера на юг. Наибольший приток солнечной радиации получают южные склоны, наименьший — северные.

Тепловые свойства почвы:тепло-поглотительная способность, теплоемкость и теплопроводность.

Теплопоглотительная способность — способность почвы поглощать лучистую энергию Солнца. Она характеризуется величиной альбедо (А). Альбедо — количество коротковолновой солнечной радиации, отраженной поверхностью почвы и выраженное в % общей величины солнечной радиации, достигающей поверхности почвы. Чем меньше альбедо, тем больше поглощает почва солнечной радиации. Оно зависит от цвета, влажности, структурного состояния, выравненности поверхности почвы и растительного покрова.

Теплоемкость — свойство почвы поглощать тепло. Характеризуется количеством тепла в джоулях (калориях), необходимого для нагревания единицы массы (1 г) на 1 °С — весовая (или удельная) теплоемкость или объемная — в 1 см 3 на 1 °С; зависит от минералогического, гранулометрического составов, содержания органического вещества, влажности, пористости почвы и содержания воздуха. Теплоемкость воды равна 1,000 кал, торфа – 0,477, глины – 0,233 и песка – 0,196 кал.

Из этих данных видно, что вода – наиболее теплоемкий компонент почвы по сравнению с минеральными и органическими ее частями. Поэтому для повышения температуры влажной почвы требуется больше тепла, чем для сухой. Влажные почвы медленнее нагреваются и медленнее охлаждаются, чем сухие. Глинистые почвы как более теплоемкие во влажном состоянии нагреваются весной медленнее по сравнению с песчаными. Осенью при большем увлажнении они медленнее охлаждаются и становятся теплее песчаных. В связи с этим, изменяя влажность и пористость почвы поливами и обработкой, можно в определенных пределах регулировать температуру почвы.

Теплопроводность — способность почвы проводить тепло. От нее зависит скорость передачи тепла от одного слоя к другому, а, следовательно, и способность почвы быстрее или медленнее нагреваться, или охлаждаться в определенной толще ее профиля. Она измеряется количеством тепла в джоулях (калориях), которое проходит за 1 с через 1 см 2 слоя почвы толщиной в 1 см. Отдельные составные части почвы имеют разную теплопроводность. Минимальной теплопроводностью обладает воздух (0,00006 кал), затем торф (0,00027 кал) и вода (0,00136 кал). Теплопроводность минеральной части почвы в среднем в 100 раз выше, чем воздуха, и в 28 раз, чем воды.

Поскольку в почве наряду с ее твердой (органической и минеральной) фазой в порах присутствуют воздух и вода, то теплопроводность сильно зависит от влажности почвы и содержания в ее порах воздуха. Поэтому чем влажнее почва, тем выше ее теплопроводность, а чем рыхлее, тем ниже.

Тепловой режим почв — совокупность процессов поступления и отдачи тепла почвой, его распространения и влияния на растения.

Относится к космическим факторам жизни растений. Основным источником тепла на Земле является лучистая энергия Солнца, преобразующаяся в тепло. К источникам тепловой энергия также относятся: тепло, передаваемое атмосферным воздухом, разложение органического вещества почвы, внутреннее тепло планеты, радиоактивные процессы почвы. Последние два источника тепла пренебрежимо малы. Доля тепла, получаемая от атмосферного воздуха также незначительна, хотя иногда оказывает некоторое влияние, например, при перемещении теплых воздушных масс.

Навигация

Роль тепла в жизни растений

Тепловая энергия является фактором протекания физиологических и биохимических процессов в растениях. При низких температурах некоторые процессы сильно затормаживаются, а в других случаях — не начинаются.

Потребность растений в тепле различна. Отличия проявляются не только у разных видов, но и у одной и той же культуры в разные фазы развития.

Таблица. Требования полевых культур к теплу 1 Основы технологии сельскохозяйственного производства. Земледелие и растениеводство. Под ред. В.С. Никляева. - М.: "Былина", 2000. - 555 с.

В зависимости от физиологической реакции растений различают:

  1. минимальную температуру — температура, ниже которой физиологические процессы не происходят;
  2. оптимальную температуру — температура, при которой рост и развитие растения протекают наиболее быстро;
  3. максимальную температуру — температура, выше которых растения резко снижают продуктивность, вплоть до гибели.

Каждая фаза роста и развития характеризуется своими минимальными, оптимальными и максимальными температурами.

Повышение температуры почвы прямо влияет на скорость роста растений. Например, семена ржи прорастают при температуре 4-5 °С в течение 4-х дней, при 16 °С — за сутки. Данное свойства должно учитываться при выборе сроков посева таким образом, чтобы не допустить посев в холодную почву, в которой семена будут долго лежать, не прорастая, с вероятностью загнивания.

Корневая система также реагирует на температуру почвы. Её рост протекает более энергично при относительно невысокой температуре. Так, корневая система овса при температуре почвы 12-14 °С была в 1,5 раза меньше, чем при 6-8 °С. Наибольшая масса клубней картофеля формируется при температуре не более 15-20 °С.

Для хорошего роста корней температура почвы должна быть немного ниже температуры воздуха надземной части растения. Для конопли при появлении всходов минимальная температура почвы равна 2-3 °С, для яровых зерновых и гороха — 4-5 °С.

Формирование репродуктивных органов происходит при минимальных температурах: у конопли, яровых зерновых и гороха — 10-12 °С, гречихи, подсолнечника, кукурузы, проса — 12-15 °С, риса, хлопчатника — 13-20 °С. Во время плодоношения для большинства культур достаточна температура 10-12 °С, для риса и хлопчатника 15-20 °С.

Для большинства культур оптимальная температура составляет 20-25 °С. При температуре выше 30 °С наблюдается торможение развития. Превышение оптимальных температур приводит к резкому увеличению интенсивности дыхания и расходу органического вещества, что сказывается сокращении нарастания зеленой массы. Температуры выше 50-52 °С приводят к гибели растений.

Тепловые свойства и тепловой режим почв

Тепло — необходимый фактор жизни и роста растения. С ним связаны важнейшие биологические и абиотические процессы, протекающие в почве и определяющие развитие почвообразования и плодородия:

  • интенсивность химических реакций,
  • процессы физического выветривания,
  • деятельность микроорганизмов и почвенной фауны,
  • прорастание семян и рост растений,
  • процессы обмена веществом и энергией.

Знание закономерностей формирования теплового режима почв необходимо для его направленного регулирования с целью создания наиболее благоприятных условий для продуктивности возделываемых растений.

Тепловые свойства и тепловой режим почв

Источники тепла в почве

Главным источником тепла, поступающего в почву, является лучистая энергия Солнца (солнечная радиация). Небольшое количество тепла почва получает из глубинных слоев Земли и за счет химических, биологических и радиоактивных процессов, протекающих в верхних слоях литосферы.

Тепло, образующееся при разложении органических веществ (навоза, растительных остатков и др.), широко используют в овощеводстве закрытого грунта.

Часть поступающей к поверхности почвы лучистой солнечной энергии поглощается почвой и, преобразуясь в тепло, нагревает почву; часть отражается поверхностью почвы и напочвенным покровом.

Почва отдает тепло в атмосферу, если температура ее поверхности выше, чем температура приземного слоя воздуха.

В зависимости от соотношения количества поглощенной поверхностью почвы лучистой энергии и излучения почвой тепла в атмосферу почвенная поверхность будет или нагреваться, или охлаждаться.

Наряду с поглощением тепла почвенной поверхностью идут процессы перемещения тепла от слоев более нагретых к слоям с более низкой температурой.

Это сказывается на тепловом состоянии различных слоев почвы. Чем больше разность температур поверхности почвы и ее глубоких слоев, тем больше тепла уходит из почвы или поступает в нее.

Тепловые свойства и тепловой режим почв

Тепловые свойства почвы

Приток лучистой солнечной энергии к поверхности почвы зависит от широты и рельефа местности, состояния поверхности почвы (покрытие растительностью), а также времени года и суток и состояния атмосферы (ясно, пасмурно и пр.).

В Северном полушарии суммарный приток солнечной радиации увеличивается при движении с севера на юг. Наибольший приток солнечной радиации получают южные склоны, наименьший — северные.

Наряду с условиями, определяющими приток солнечной энергии, важное значение в формировании теплового режима почвы (поглощение тепла, нагревание и охлаждение) имеют тепловые свойства почвы.

К тепловым свойствам почвы относятся тепло-поглотительная способность, теплоемкость и теплопроводность.

Тепловые свойства и тепловой режим почв

Теплопоглотительная способность

Способность почвы поглощать лучистую энергию Солнца. Она характеризуется величиной альбедо (А). Альбедо — количество коротковолновой солнечной радиации, отраженной поверхностью почвы и выраженное в % общей величины солнечной радиации, достигающей поверхности почвы.

Чем меньше альбедо, тем больше поглощает почва солнечной радиации. Оно зависит от цвета, влажности, структурного состояния, выравненности поверхности почвы и растительного покрова.

Приведем альбедо (%) различных почв, пород и растительных покровов (Чудновский, 1959):

  • чернозем сухой – 14,
  • чернозем влажный – 8,
  • серозем сухой – 25-30,
  • серозем влажный – 10-12,
  • глина сухая –23,
  • глина влажная – 16,
  • песок белый и желтый – 30-40,
  • пшеница яровая – 10-25,
  • пшеница озимая – 16-23,
  • травы зеленые – 26,
  • травы высохшие – 19,
  • хлопчатник – 20-22,
  • рис – 12, картофель – 19.

Темно-каштановая почва (черноземы и др.) поглощает больше солнечной радиации, чем светло-каштановые (подзолистые, сероземы и др.); влажная – больше, чем сухая.

Тепловые свойства и тепловой режим почв

Теплоемкость

Свойство почвы поглощать тепло. Характеризуется количеством тепла в джоулях (калориях), необходимого для нагревания единицы массы (1 г) на 1 °С — весовая (или удельная) теплоемкость или объемная — в 1 см 3 на 1 °С.

Зависит от минералогического, гранулометрического составов, содержания органического вещества, влажности, пористости почвы и содержания воздуха. Теплоемкость воды равна 1,000 кал, торфа – 0,477, глины – 0,233 и песка – 0,196 кал.

Из этих данных видно, что вода – наиболее теплоемкий компонент почвы по сравнению с минеральными и органическими ее частями. Поэтому для повышения температуры влажной почвы требуется больше тепла, чем для сухой.

Влажные почвы медленнее нагреваются и медленнее охлаждаются, чем сухие. Глинистые почвы как более теплоемкие во влажном состоянии нагреваются весной медленнее по сравнению с песчаными.

Осенью при большем увлажнении они медленнее охлаждаются и становятся теплее песчаных. В связи с этим, изменяя влажность и пористость почвы поливами и обработкой, можно в определенных пределах регулировать температуру почвы.

Тепловые свойства и тепловой режим почв

Теплопроводность

Способность почвы проводить тепло. От нее зависит скорость передачи тепла от одного слоя к другому, а следовательно, и способность почвы быстрее или медленнее нагреваться или охлаждаться в определенной толще ее профиля.

Она измеряется количеством тепла в джоулях (калориях), которое проходит за 1 с через 1 см 2 слоя почвы толщиной в 1 см. Отдельные составные части почвы имеют разную теплопроводность. Минимальной теплопроводностью обладает воздух (0,00006 кал), затем торф (0,00027 кал) и вода (0,00136 кал).

Теплопроводность минеральной части почвы в среднем в 100 раз выше, чем воздуха, и в 28 раз, чем воды.

Поскольку в почве наряду с ее твердой (органической и минеральной) фазой в порах присутствуют воздух и вода, то теплопроводность сильно зависит от влажности почвы и содержания в ее порах воздуха. Поэтому чем влажнее почва, тем выше ее теплопроводность, а чем рыхлее, тем ниже.

Тепловые свойства и тепловой режим почв

Тепловой режим почвы

Совокупность явлений поступления, переноса, аккумуляции и отдачи тепла называют тепловым режимом почвы. Основным показателем теплового режима почвы, который характеризует ее тепловое состояние, является температура генетических горизонтов почвенного профиля.

Поскольку приток лучистой солнечной энергии связан с его суточными и годовыми ритмами, то и для температуры почвы характерны суточные и годичные закономерности ее изменения (рис. 6 и 7).

Суточный ход температуры. Днем поверхность почвы нагревается и максимальная ее температура наблюдается около 13 ч. Затем происходит постепенное охлаждение почвенной поверхности, и минимум ее температуры отмечается перед восходом солнца.

По мере нагревания поверхности почвы происходит передача тепла и в более глубокие слои. При этом наиболее быстро изменяется температура на поверхности почвы. С глубиной скорость этих изменений заметно уменьшается в связи со слабой теплопроводностью почвы.

Поэтому максимум и минимум суточных температур на разных глубинах профиля почвы наступают в разное время, в среднем отмечено запаздывание на 2-3 ч на каждые 10 см глубины профиля.

Наибольшие суточные колебания температуры происходят на поверхности почвы, а с глубины 3—5 см они уже резко уменьшаются. На глубине 30 ния температуры затухают.

На фоне общих закономерностей каждому типу почвы свойствен свой суточный ход температуры, поскольку ее профильная суточная динамика зависит от свойств почвы (гранулометрического состава, плотности, окраски, влажности и др.), состояния атмосферы, растительного и снежного покровов.

Годовой ход температуры. Годовой ход температуры имеет два периода: летний — период нагревания почвы с потоком тепла от верхних горизонтов к нижним и зимний — период охлаждения почвы с потоком тепла от нижних слоев профиля к верхним.

Амплитуды колебаний температуры почвы между этими периодами определяются условиями атмосферного климата и свойствами почв. В умеренных широтах максимум среднесуточной температуры почвы наблюдается обычно в июле — августе, а минимум — в январе — феврале.

Летом самая высокая температура отмечается в верхних горизонтах, с глубиной она снижается. Зимой нижние слои профиля имеют более высокие температуры.

На годовые изменения температуры почвы большое влияние оказывает растительность, предохраняя поверхность почвы от резких колебаний температуры.

В регионах со снежными и холодными зимами сильное влияние на температурный режим оказывают промерзание, оттаивание почвы, мощность и продолжительность снежного покрова.

Почва начинает промерзать при температуре несколько ниже 0 °С, поскольку в почвенном растворе содержатся растворимые вещества, понижающие температуру замерзания.

На замерзание почвы влияют снежный и растительный покровы, рельеф местности, свойства почвы, ее влажность, а также хозяйственная деятельность человека.

Снежный покров предохраняет почву от промерзания: чем он меньше, рыхлее и длительнее сохраняется, тем больше утепляет почву и снижает глубину ее промерзания.

Сохранение и накопление снега имеет большое значение в предохранении от вымерзания посевов озимых, многолетних трав и посадок плодово-ягодных культур.

Растительный покров, задерживая и накапливая снег, ослабляет промерзание почвы.

Рельеф влияет на накопление снега и увлажнение почвы. Поэтому наибольшую глубину промерзания почвы наблюдают на выпуклых формах рельефа и наветренных склонах, где сдувается снег. Накопление снега в понижениях (лощинах, западинах) способствует меньшему промерзанию почвы.

Глубже промерзают склоны северной экспозиции, а на меньшую глубину — южной. Чем влажнее почва, тем меньше она промерзает. При промерзании почвы идет подток парообразной и жидкой влаги к фронту промерзания.

Замерзание почвы начинается до или после установления снежного покрова и продолжается до января — февраля. Затем она начинает постепенно оттаивать снизу за счет передачи тепла от нижних незамерзших слоев.

Влияние деятельности человека на промерзание почвы связано с применением растительного покрова (вырубка или посадка древесно-кустарниковой растительности, сохранение травянистой растительности и т. д.), что сказывается на накоплении снега или существенном изменении увлажнения (орошение, осушение).

Оттаивание почв происходит двумя способами. В первом оттаивание идет снизу и заканчивается до схода снега. При этом мерзлая прослойка исчезнет у поверхности почвы; талая вода в этом случае лучше проникает в почву.

Во втором оттаивание начинается снизу, а затем одновременно и сверху, и снизу. В этот период мерзлая прослойка почвы сохраняется на некоторой глубине, что приводит к значительной потере воды и смыву почвы за счет поверхностного стока.

Для оценки теплообеспеченности почв как важной обобщающей характеристики их температурного режима используют сумму активных температур (>10 °С) в почве на глубине 20 см.

Здесь расположена главная масса корней многих растений. Рост корневых систем растений активно происходит при температуре почвы выше 10 °С.

Тепловые свойства почв тесно связаны с физическими свойствами почвы, т.к. в почве тепло передается от одной твердой частички к другой. Поэтому, чем более плотная почва, тем скорее она нагревается. Когда в почве много пор с воздухом или водой, то такая почва нагревается длительное время. Приход и расход тепла почвы составляет баланс тепла. Когда больше поступает тепла, чем расходуется, то почва имеет положительный баланс тепла.

Тепловые свойства почв

Температура почвы является фактором, сильно влияющим на интенсивность ее химических, физико-химических и биологических процессов. Скорость химических реакций возрастает в 2–3 раза с повышением температуры на каждые 10° С.

Тепло – необходимый фактор жизнедеятельности растений. От температурных условий почвы зависит прорастание семян, развитие и распространение корневых систем, скорость прохождения отдельных стадий, интенсивность фотосинтеза. Температурный режим почв регулирует количество микроорганизмов и их активность.

Неудовлетворительное тепловое состояние почвы может привести к снижению продуктивности растений и даже к их гибели. Поэтому важно знать закономерности формирования температурного режима почвы и приемы его регулирования.

Совокупность явлений поступления, переноса, аккумуляции и отдачи тепловой энергии называется тепловым режимом почвы. Тепловое состояние почвы характеризуется показателями температуры ее генетических горизонтов и определяется теплообменом в системе: приземный слой воздуха – растения – почва – материнская порода. В самой почве также происходит теплообмен, обусловленный разностью температур поверхности почвы и ниже расположенных горизонтов.

Главным источником тепла в почве является лучистая энергия солнца. Количество солнечной радиации, поступающей на поверхность почвы, зависит от географического положения и характера рельефа местности, а также от поры года и суток, состояния атмосферы. В средних широтах в полуденные часы приток солнечной радиации на ровную поверхность составляет 0,8–1,5 кал/см2 в минуту. Дополнительным источником является тепло, выделяющееся при разложении органических остатков, и внутреннее тепло земного шара. Однако это дополнительное тепло очень незначительное.

Тепловой режим почвы зависит не только от количества лучистой энергии, поступающей в почву, но и от тепловых свойств самой почвы –теплопоглощение, теплоемкость, теплопроводность.

Теплопоглотительная способность – способность почвы поглощать лучистую энергию Солнца. Характеризуется величиной альбедо, представляющей собой отношение количества отраженной энергии к количеству поступившей. Чем меньше альбедо, тем больше поглощает почва солнечной радиации. Альбедо зависит от цвета, влажности структуры почвы, выровненности поверхности и наличия растительного покрова. Почвы темно-окрашенные, с южным склоном поглощают солнечного тепла больше, чем почвы светлые северного склона. Растительный покров несколько уменьшает поглощение почвой тепла.

Величина альбедо разных поверхностей колеблется в широких пределах: снежная – 70–80 %, песчаная – 40 %, черноземная – 8–14 %, водная – 10%, с растительным покровом – 12–20 %. Снежный покров, характеризующийся низкой теплопроводностью, ограничивает потерю тепла почвой, глубину ее промерзания, предупреждает гибель культурных растений от низких температур.

Теплоемкость – свойство почвы поглощать тепло. Характеризуется количеством тепла (которое может удерживать почва) в калориях, необходимого для нагрева единицы массы (1 г) или объема (1 см3) на 1°С. Составные части почвы имеют разные показатели теплоемкости. Так, удельная (массовая) теплоемкость составляет для песка кварцевого – 0,19; глины – 0,23; воды – 1,0; торфа – 0,47 кал.

Суглинистые и глинистые почвы, содержащие много воды и органического вещества, обладают большей теплоемкостью, чем песчаные и супесчаные почвы с малой влажностью. Почвы тяжелого механического состава, заболоченные медленно нагреваются – их называют холодными. Песчаные и супесчаные почвы быстро теряют воду, быстро прогреваются – их называют теплыми. Весной легкие почвы нужно обрабатывать раньше, чем тяжелые.

Теплопроводность – способность почвы проводить тепло от одного слоя к другому. Измеряется количеством тепла в калориях, которое проходит за 1с сквозь 1 см2 слоя почвы толщиной 1см при разности температур в 1°С. Теплопроводность может определяться временем, за которое почва нагревается на глубину 1 см. Теплопроводность почвы является функцией теплопроводности ее составных частей – твердой, жидкой, газовой. Наименьшей теплопроводностью характеризуется воздух, несколько большей – вода, наибольшая – в минеральной части почвы. Теплопроводность минеральной части в среднем в сто раз больше, чем воздуха, а воды – в 28 раз. Очень низкая теплопроводность в торфяных почвах.

Сухие бесструктурные, плотные почвы нагреваются быстро, но они и быстро теряют тепло. Влажные, рыхлые, богатые органическим веществом почвы нагреваются медленнее, но излучают тепло постепенно, что благоприятно для сельскохозяйственных культур.

Для регулирования теплового режима почвы применяют различные приемы – мульчирование, рыхление или прикатывание поверхности почвы, гребневые и грядовые посевы, снегозадержание, поливы, укрытие пленкой и др.

Читайте также: