Особенности генома человека кратко

Обновлено: 04.07.2024

1. Дайте определения понятий.
Ген – это структурная и функциональная единица наследственности живых организмов.
Генотип – это совокупность генов данного организма, которая, характеризует особь.
Геном – это совокупность наследственного материала, заключенного в клетке организма.

2. Охарактеризуйте особенности генома человека.
Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК. Двадцать две пары аутосом, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд. пар оснований. Человеческий геном содержит около 30 тыс. генов, что значительно меньше, чем ожидалось в начале проекта (порядка 100 тыс.).

3. Каковы особенности строения гена эукариот?
На 1 ген в среднем приходится 50 тыс. нуклеотидов. В ДНК есть участки, кодирующие белки – их 5% от всей длины хромосом. Остальная часть ДНК ранее считали избыточной, теперь же стало известно, что она выполняет регуляторные функции. В начале и в конце гена располагаются регуляторные участки, которые определяют, при каких обстоятельствах и в каких тканях будет работать данный ген. Есть другая часть гена структурная, которая содержит информацию о первичной структуре соответствующего белка.

10-11-3-14-4

Вывод: расщепление окрашенных к белым 9:7, вместо 9:3:3:1. Так как имеет место быть взаимодействие нескольких неаллельных генов.
Явление взаимодействия нескольких неаллельных генов, приводящее к развитию нового проявления признака, отсутствующего у родителей, называют комплементарным взаимодействием. Наряду с комплементарным взаимодействием существуют и другие варианты взаимодействия неаллельных генов, например эпистаз, полимерия.

5. Происхождение и общее значение слова (термина), опираясь на значение корней, его составляющих.

10-11-3-14-5

6. Сформулируйте и запишите основные идеи § 3.14.
Геном – совокупность наследственного материала, заключенного в клетке организма. Геном описывает набор генов, свойственных данному виду. Степень сходства геномов разных видов отражает их эволюционное родство.
Геном человека состоит из 23 пар хромосом и содержит около 30 тыс. генов.
Ген эукариот: регуляторные участки, которые определяют, когда, при каких обстоятельствах и в каких типах тканей будет работать этот ген; структурная часть, которая содержит информацию о первичной структуре кодируемого белка.
Явление взаимодействия нескольких неаллельных генов приводит иногда к развитию нового проявления признака. Варианты взаимодействия неаллельных генов: комплементарное, эпистаз, полимерия, плейотропия.


Геном человека – термин, используемый при описании всей генетической информации, закодированной в виде ДНК клеток человека. Клетка человека имеет два генома: сложный ядерный геном (хромосомная ДНК), содержащей более 99,9995 % всей генетической информации, и простой митохондриальный геном, в составе которого находится менее 0,0005 % ДНК. Ядерный геном распределен между 24-мя различными двуспиральными молекулами ДНК, которые в комплексе с различными гистоновыми и негистоновыми белками формируют хромосомы человека. С молекулярной точки зрения каждая хромосома клетки является сложно организованной структурой. Диплоидная клетка человека с интерфазным ядром при диаметре 5–10 мкм содержит около двух метров молекул ДНК, которые образуют 23 пары хромосом. Гаплоидный геном человека, который характеризуют половые клетки с хромосомами Х или Y, включает 23 различные хромосомы – 22 аутосомы и одну половую хромосому (гоносому) в зависимости от пола: Х – женский или Y – мужской пол. Индивидуальные хромосомы различаются своими морфологическими характеристиками. В среднем, хромосома человека содержит около 130 млн пар нуклеотидов (пн), однако содержание ДНК в разных хромосомах варьирует от 40 до 260 млн пн.

Данные о структуре, размерах и количестве митотических хромосом в клеточном ядре определяются как кариотип. Морфологическое строение хромосом на всех уровнях организации (молекулярном, микроскопическом и субмикроскопическом) определяется упаковкой нитей ДНК, организующих хромосому. На микроскопическом уровне нити ДНК формируют спирализованные хромонемы митотических хромосом. Упаковка хромонем по длине хромосом неравномерна. В них закономерно дифференцируются участки с резко выраженной и резко сниженной степенью спирализации хромонем. Последние формируют хромосомные перетяжки. Важным элементом структуры хромосом является первичная перетяжка, в участке которой расположена центромера. Она делит хромосому на два плеча – короткое (р) и длинное (q).

Структура хромосом претерпевает значительные изменения в ходе клеточного деления (клеточного цикла) и, следовательно, не является постоянной. Хромосомы интерфазных ядер (интерфазные хромосомы) в отличие от метафазных хромосом (см раздел, посвященный делению клетки) представляют собой более расправленные и диффузные клеточные структуры. Интерфазные хромосомы содержат одну хроматиду, в составе которой имеется одна двуспиральная молекула ДНК, в то время как метафазные хромосомы образованы двумя хроматидами и двумя молекулами ДНК. Хромосома как функционирующая клеточная органелла должна содержать минимум три типа последовательностей ДНК, формирующих её структурные компоненты: центромеру, теломеры и участок начала репликации ДНК.

Другими структурными элементами хромосом являются теломеры. Это специализированные структуры, содержащие особые типы ДНК и белки, которые образуют концевые участки хромосом. Теломеры выполняют несколько функций:

1) поддержание структурной целостности хромосомы;

2) обеспечение полной репликации концевых участков хромосомы;

3) поддержание организации хромосом в интерфазном ядре.

Рис. 4. Организация ДНК

Теломеры хромосом человека представляют собой повторы нуклеотидной последовательности ТТАГГГ, общий размер которой варьирует от 3 до 20 тыс. пн. Стабильность теломер поддерживается с помощью фермента теломеразы, нарушение функциональной активности которой приводит к нарушению структуры хромосом и, как следствие, к клеточной гибели. Укорочение последовательностей теломер, которому противодействует теломераза, связано с процессами старения и малигнизации.

Рис. 5. Метафазные хромосомы:
1 – метацентрическая хромосома; 2 – субметацентрическая хромосома; 3 – акроцентрическая хромосома. Видны:
а – центромеры; б – длинные плечи (q), в – короткие плечи (p);г – теломерные участки; д – спутники; е – спутничные нити

ДНК хромосом реплицируется в ходе периода синтеза ДНК клеточного цикла. Каждая хромосома содержит множество элементарных единиц репликации – репликонов, представляющих собой участки автономной репликации. Каждый репликон имеет одну точку инициации репликации, с которой начинается двунаправленный синтез ДНК (см предыдущий раздел, посвященный синтезу ДНК). Размеры репликонов могут различаться друг от друга. Репликоны у человека могут быть очень большими, достигая более чем 1 млн пн.


Геном человека — совокупность наследственного материала, заключенного в клетке человека. Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК. Двадцать две аутосомные хромосомы, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд пар оснований [1] .

Содержание

Особенности

Хромосомы



Геном человека состоит из 23 пар хромосом (в сумме 46 хромосом), где каждая хромосома содержит сотни генов, разделённых межгенным пространством. Межгенное пространство содержит регуляторные участки и ничего не кодирующую ДНК.

В геноме присутствует 23 пары хромосом: 22 пары аутосомных хромосом, а также пара половых хромосомы X и Y. У человека мужской пол является гетерогаметным и определяется наличием Y хромосомы. Нормальные диплоидные соматические клетки имеют 46 хромосом.

По результатам проекта Геном человека, количество генов в геноме человека составляет около 28000 генов. Начальная оценка была более чем 100 тысяч генов. В связи с усовершенствованием методов поиска генов (предсказание генов) предполагается дальнейшее уменьшение числа генов.

Число генов человека не намного превосходит число генов у более простых организмов, например, круглого червя Caenorhabditis elegans или мухи Drosophila melanogaster. Так происходит из-за того, что в человеческом геноме широко представлен альтернативный сплайсинг. Альтернативный сплайсинг позволяет получить несколько различных белковых цепочек с одного гена. В результате человеческий протеом оказывается значительно больше протеома рассмотренных организмов. Большинство человеческих генов имеют множественные экзоны, и интроны часто оказываются значительно более длинными, чем граничные экзоны в гене.

Гены неравномерно распределены по хромосомам. Каждая хромосома содержит богатые и бедные генами участки. Эти участки коррелируют с хромосомными бандами (полосы поперёк хромосомы, которые видно в микроскоп) и с CG-богатыми участками. В настоящий момент значимость такого неравномерного распределения генов не вполне изучена.

Кроме кодирующих белок генов человеческий геном содержит тысячи РНК-генов, включая транспортную РНК (tRNA), рибосомную РНК, микро РНК (microRNA) и прочие не кодирующие белок РНК последовательности.

Регуляторные последовательности

В человеческом геноме найдено множество различных последовательностей, отвечающих за регуляцию гена. Под регуляцией понимается контроль экспрессии гена (процесс построения матричной РНК по участку молекулы ДНК). Обычно это короткие последовательности, находящиеся либо рядом с геном, либо внутри гена. Иногда они находятся на значительном расстоянии от гена (энхансеры). Систематизация этих последовательностей, понимание механизмов работы, а также вопросы взаимной регуляции группы генов группой соответствующих ферментов на текущий момент находятся только на начальной стадии изучения. Взаимная регуляция групп генов описывается с помощью сетей регуляции генов. Изучение этих вопросов находится на стыке нескольких дисциплин: прикладной математики, высокопроизводительных вычислений и молекулярной биологии. Знания появляются из сравнений геномов различных организмов и благодаря достижениям в области организации искусственной транскрипции гена в лабораторных условиях.

Идентификация регуляторных последовательностей в человеческом геноме частично была произведена на основе эволюционной консервативности (свойства сохранения важных фрагментов хромосомной последовательности, которые отвечают примерно одной и той же функции). Согласно некоторой гипотезе, в эволюционном дереве ветвь разделяющая человека и мышь появилась приблизительно 70-90 миллионов лет назад [4] . Для двух геномов компьютерными методами были выявлены консервативные последовательности (последовательности идентичные или очень слабо отличающиеся в сравниваемых геномах) в не кодирующей части и оказалось, что они активно участвуют в механизмах регуляции генов для обоих организмов [5] .

Прочие объекты в геноме

Кодирующие белок последовательности (множество последовательностей составляющих экзоны) составляют менее чем 1,5 % генома [3] . Не учитывая известные регуляторные последовательности, в человеческом геноме содержится масса объектов, которые выглядят как нечто важное, но функция которых, если она вообще существует, на текущий момент не выяснена. Фактически эти объекты занимают до 97 % всего объёма человеческого генома. К таким объектам относятся:

  • повторы
      • сателлитная ДНК
      • SINE-ы (short interspersed nuclear element)
      • LINE-ы (long interspersed nuclear element)
      • Ретротранспозоны
        • LTR-ы (long terminal repeat)
          • Ty1-copia
          • Ty3-gypsy

          Представленная классификация не является исчерпывающей. Большая часть объектов вообще не классифицирована мировой научной общественностью на текущий момент.

          Псевдогены

          Эксперименты с ДНК-микрочипами показали, что много участков генома, не являющихся генами, вовлечены в процесс транскрипции [7] .

          Вирусы

          Около 1 % в геноме человека занимают встроенные гены ретровирусов (эндогенные ретровирусы). Эти гены обычно не приносят пользы хозяину, но существуют и исключения. Так, около 43 млн. лет назад в геном предков обезьян и человека попали ретровирусные гены, служившие для построения оболочки вируса. У человека и обезьян эти гены участвуют в работе плаценты.

          Большинство ретровирусов встроились в геном предков человека свыше 25 млн. лет назад. Среди более молодых человеческих эндогенных ретровирусов полезных на настоящий момент не обнаружено [8] , [9] .


          Обзор

          Автор
          Редакторы

          Изучение человеческого генома имеет одну конечную цель — оно затевается исключительно ради того, чтобы, взглянув на последовательность ДНК конкретного индивида, можно было бы получить о нем максимум информации. О том, какими болезнями он может заболеть, какие способности в себе развить, и какие опасности его могут поджидать при выборе того или иного жизненного пути. История изучения этого вопроса довольно продолжительна, однако заветная цель приближается к нам далеко не так быстро, как хотелось бы.

          История вопроса

          В начале прошлого столетия казалось, что до выяснения природы наследственности рукой подать, ведь были заново открыты законы Менделя, сформулирована Хромосомная теория наследственности Моргана. Согласно представлениям того времени, наследственные факторы — гены — являлись белковыми молекулами, последовательно соединенными между собой в хромосомах. Казалось, что вот-вот эти белки будут выделены из хромосом и все встанет на свои места. При этом, естественно, ни у кого и в мыслях не было, что в генетическом материале организма могут присутствовать элементы, напрямую не определяющие каких-либо его свойств. Была уверенность в том, что каждый ген-белок отвечает за определенную функцию. Однако все оказалось куда сложнее.

          Во-первых, к середине 40-х годов XX века, благодаря опытам Эйвери, Маклеода и Маккарти становится понятно, что функции хранения и передачи наследственной информации могут выполнять вовсе не белки. Внимание ученых начинает концентрироваться на изучении ДНК — полимерной молекулы, состоящей из дезоксирибонуклеотидов. К тому моменту было хорошо известно, что ДНК входит в состав хромосом, однако полагали, что эта молекула выполняет структурные функции, являясь своего рода хромосомным каркасом. Окончательно обосновали ключевую роль ДНК в наследственности Альфред Херши и Марта Чейз, только в начале 50-х годов показав, что бактериофаги способны размножаться без собственных белков — в инфицируемой ими бактериальной клетке оказывается и реплицируется только молекула ДНК.

          Структуру ДНК впервые описывают Джеймс Уотсон и Френсис Крик в своей работе 1953 года [1]. В последующие 20 лет накапливаются знания о природе генетического кода (М. Ниренберг и Дж. Маттеи), работе генов и регуляторных элементов (Ф. Жакоб и Ж. Моно), тонкой структуре гена (С. Бензер), об укладке ДНК на нуклеосомах (А. Корнберг). Также становится понятно, что в геномах организмов содержатся не только уникальные последовательности структурных генов — в них присутствует огромное количество часто повторяющихся и вовсе не кодирующих белки последовательностей.

          Своя и чужая ДНК

          В середине прошлого века тезис о том, что генетический материал организма содержит исключительно структуры, необходимые для формирования фенотипических признаков, было странно подвергать сомнению. Любую особенность организма пытались объяснить с позиций целесообразности, и поэтому считалось, что лишних и нефункциональных структур быть просто не должно.


          Рисунок 1. Барбара МакКлинток.

          Примерно одновременно с работами по изучению роли ДНК в наследственности подвергается первой критике хромосомная теория Моргана в хрестоматийном ее понимании. Это связано с тем, что Барбара МакКлинток обнаруживает генетические элементы, которые, по ее мнению, способны менять свою локализацию на хромосоме [2]. Эти революционные исследования поначалу не находят понимания, поскольку противоречат принятому тогда постулату о том, что каждый ген имеет свой постоянный хромосомный локус. Сама МакКлинток даже получает обидное прозвище crazy Barbara (сумасшедшая Барбара). Однако позднее выясняется, что подобные мобильные генетические элементы присутствуют у всех живых организмов (стоит также упомянуть, что МакКлинток спустя 30 лет после своего открытия удостаивается Нобелевской премии в области физиологии и медицины [3]).

          У животных, а конкретно, у дрозофилы, мобильные элементы впервые обнаруживают в лабораториях Хогнесса в США и Георгиева в СССР. Причем очень быстро становится ясно, что таких элементов огромное множество, в геномах они представлены очень широко, а по своим структурным и функциональным особенностям могут отличаться очень сильно. Изучение структуры различных классов мобильных элементов генома (МГЭ) приводит ученых к выводу об их родстве с вирусами. Жизненные циклы вирусов и многих МГЭ очень похожи, да и белки, кодируемые их генами, выполняют одни и те же функции, что отчетливо указывает на общность происхождения этих примитивных живых систем.

          Экология генома: молекулярные паразиты и эндосимбионты

          Разумеется, помимо пользы от мобильных генетических элементов можно вполне ожидать и проблем. В частности, они могут провоцировать хромосомные аберрации, вызывать своими перемещениями мутации и изменения в активности генов, приводить к дестабилизации структуры всего генома. Взаимодействие между МГЭ и хозяйским геномом могут приводить к самым разнообразным и любопытным последствиям: от возникновения наследственных заболеваний до провоцирования процессов видообразования и образования новых генов.

          Запутанная молекулярная инструкция


          Рисунок 2. Классы повторов в геноме человека.

          LINE — Long interspersed nuclear repeats. Одни из самых древних элементов. Содержат ген обратной транскриптазы и способны вносить разрывы в геномную ДНК при транспозиции. Часто образуют несовершенные копии.

          SINE — Short interspersed nuclear repeats. Короткие последовательности, содержащие промотор полимеразы III. Их транспозиции происходят за счет белков, кодируемых генами LINE-элементов.

          LTR (long terminal repeat) retrotransposons — группа элементов, по своей организации больше всего напоминающая вирусы (если точнее — ретровирусы). Считается, что часть ретротранспозонов произошла от вирусов, когда-то проникнувших в геном. Некоторые LTR-элементы сохраняют возможность покидать клетку-хозяина и инфицировать другие клетки. Включают от одного до нескольких генов.

          DNA transposons — мобильные элементы, не требующие стадии образования РНК-копии для транспозиций. Кодируют фермент транспозазу, необходимую для перемещения.

          Читайте также: