Опыт сакса по фотосинтезу кратко

Обновлено: 04.07.2024

Тип урока: лекция с элементами проблемного обучения.

Цели урока:

Обучающие цели: изучить процессы фотосинтеза, дыхания, транспирации; показать взаимосвязь и различие этих процессов, продолжить развитие представлений об обмене веществ.

Развивающие цели: продолжить развитие логического мышления, экспериментально-наблюдательских навыков, умения обобщать и делать выводы, систематизировать материал, работать с учебником.

Воспитательные цели: формировать у учащихся культуру биологической речи, осознанное бережное отношение к природе, формирование экологического мышления, развитие коммуникативных учебных действий.

Предварительная подготовка к уроку: за неделю до урока группа учащихся закладывает два опыта, а именно: 1. Проба Сакса.

2. Доказательство выделения кислорода в процессе фотосинтеза.

Для опыта используются растения – примула, герань или традесканция. Одно растение обильно поливают и для оттока крахмала помещают в темное место на двое суток. Другое растение оставляют на свету. Затем первое растение извлекают из шкафа, и на его листья прикрепляют фигурки, вырезанные из плотной черной бумаги. Оба растения выдерживают на свету в течении трех, четырех дней, осуществляя полив. Затем с каждого растения срезают по листу, выдерживают их две, три минуты в кипящей воде и помещают в стакан с горячим спиртом для получения вытяжки хлорофилла. Обесцвеченные листья обрабатывают раствором йода. На листе растения, которое побывало в шкафу, проявится конфигурация фигурки, которая была прикреплена к нему. Лист, который был всегда на свету, равномерно окрасится в синий цвет.

Инструкция № 2 для проведения опыта, демонстрирующего

выделения кислорода в процессе фотосинтеза.

Для опыта берут две банки из светлого стекла. В каждую помещают по 2-3 веточки растения, чтобы растения не завяли, в банки налить немного воды. Свечи, укрепленные на проволоке, зажигают и опускают в банки, закрыв их пробками. Свечи гаснут, что указывает на отсутствие кислорода и наличие углекислого газа, образующегося при горении. Свечи вынимают. Банки с растениями закрывают крышками, одну ставят в темное место, а другую – на свет. На следующий день банки открывают и опять опускают зажженные свечи. В банке, стоящей на свету, свеча горит, а в банке, находившейся в темноте, - гаснет.

3. Учитель закладывает опыты по доказательству выделения углекислого газа в процессе дыхания разными органами растения (веточками растения, корнеплодами моркови).

Оборудование:

Дидактический материал: презентация к уроку.

Практический материал: результаты опытов №1, №2, №3, лучинка, спички, пробирка с известковой водой, газоотводная трубка.

ТСО: мультимедиа проектор, компьютер, экран.

Тип урока: лекция с элементами проблемного обучения.

Методы работы: словесные, наглядные, практические, создание проблемных ситуаций.

I . Организационный момент:

1.1. Приветствие, проверка готовности класса к уроку, проверка посещаемости.

Воду и минеральные вещества растения получают с помощью корней. Листья обеспечивают органическое питание растений. В отличие от корней они находятся не в почве, а в воздушной среде, поэтому осуществляют не почвенное, а воздушное питание.

Из истории изучения воздушного питания растений

Знания о питании растений накапливались постепенно. Около 350 лет назад голландский ученый Ян Гельмонт впервые поставил опыт по изучению питания растений. В глиняном горшке с почвой он выращивал иву, добавляя туда только воду. Опадавшие листья ученый тщательно взвешивал. Через пять лет масса ивы вместе с опавшими листьями увеличилась на 74,5 кг, а масса почвы уменьшилась всего на 57 г. На основании этого Гельмонт пришел к выводу, что все вещества в растении образуются не из почвы, а из воды. Мнение о том, что растение увеличивается в размерах только за счет воды, сохранялось до конца XVIII века.

Опыт Д.Пристли

В 1862 г. немецкий ботаник Юлиус Сакс с помощью опытов доказал, что зеленые растения не только выделяют кислород, но и создают органические вещества, служащие пищей всем другим организмам.

Фотосинтез

Главное отличие зеленых растений от других живых организмов — наличие в их клетках хлоропластов, содержащих хлорофилл. Хлорофилл обладает свойством улавливать солнечные лучи, энергия которых необходима для создания органических вещсств. Процесс образования органического вещества из углекислого газа и воды с помощью солнечной энергии называется фотосинтезом (греч. рЬо1оз свет). В процессе фотосинтеза образуются не только органические вещества — сахара, но и выделяется кислород.

Схематически процесс фотосинтеза можно изобразить так:

процесс фотосинтез

Вода поглощается корнями и по проводящей системе корней и стебля передвигается к листьям. Углекислый газ — составная часть воздуха. Он поступает в листья через открытые устьица. Поглощению углекислого газа способствует строение листа: плоская поверхность листовых пластинок, увеличивающая площадь соприкосновения с воздухом, и наличие большого числа устьиц в кожице.

Образующиеся в результате фотосинтеза сахара превращаются в крахмал. Крахмал это органическое вещество, которое не растворяется в воде. Кго легко обнаружить с помощью раствора йода.

Доказательства образования крахмала в листьях на свету

Докажем, что в зеленых листьях растений из углекислого газа и воды образуется крахмал. Для этого рассмотрим опыт, который в свое время был поставлен Юлиусом Саксом.

Комнатное растение (герань или примулу) выдерживают двое суток в темноте, чтобы весь крахмал израсходовался на процессы жизнедеятельности. Затем несколько листьев закрывают с двух сторон черной бумагой так, чтобы была прикрыта только их часть. Днем растение выставляют на свет, а ночью его дополнительно освещают с помощью настольной лампы.

Через сутки исследуемые листья срезают. Чтобы выяснить, в какой части листа образовался крахмал, листья кипятят в воле (чтобы набухли крахмальные зерна), а затем выдерживают в горячем спирте (хлорофилл при этом растворяется, и лист обесцвечивается). Затем листья промывают в воде и действуют на них слабым раствором йода. Тс участки листьев, которые были на свету, приобретают от действия йода синюю окраску. Это означает, что крахмал образовался в клетках освещенной части листа. Следовательно, фотосинтез происходит только на свету.

Опыт, доказывающий образование крахмала в зеленых листьях на свету

Доказательства необходимости углекислого газа для фотосинтеза

Чтобы доказать, что для образования крахмала в листьях необходим углекислый газ, комнатное растение также предварительно выдерживают в темноте. Затем один из листьев помещают в колбу с небольшим количеством известковой воды. Колбу закрывают ватным тампоном. Растение выставляют на свет. Углекислый газ поглощается известковой водой, поэтому его в колбе не будет. Лист срезается, и так же, как в предыдущем опыте, исследуется на наличие крахмала. Он выдерживается в горячей воде и спирте, обрабатывается раствором йода. Однако в этом случае результат опыта будет иным: лист не окрашивается в синий цвет, т.к. крахмал в нем не содержится. Следовательно, для образования крахмала, кроме света и воды, необходим углекислый газ.

Таким образом, мы ответили на вопрос, какую пищу получает растение из воздуха. Опыт показал, что это углекислый газ. Он необходим для образования органического вещества.

Организмы, самостоятельно создающие органические вещества для построения своего тела, называются автотрофамн (греч. autos — сам, trofe — пища).

Опыт, доказывающий необходимость углекислого газа для фотосинтеза

Доказательства образования кислорода в процессе фотосинтеза

Чтобы доказать, что при фотосинтезе растения во внешнюю среду выделяют кислород, рассмотрим опыт с водным растением элодеей. Побеги элодеи опускают в сосуд с водой и сверху накрывают воронкой. На конец воронки надевают пробирку с водой. Растение выставляют на свет на двое-трое суток. На свету элодея выделяет пузырьки газа. Они скапливаются в верхней части пробирки, вытесняя воду. Для того чтобы выяснить, какой это газ, пробирку аккуратно снимают и вносят в нее тлеющую лучинку. Лучинка ярко вспыхивает. Это значит, что в колбе накопился газ, поддерживающий горение кислород.

Опыт, доказывающий выделение зелеными растениями кислорода на свету

Космическая роль растений

Растения, содержащие хлорофилл, способны усваивать солнечную энергию. Поэтому К.А. Тимирязев назвал их роль на Земле космической. Часть энергии Солнца, запасенная в органическом веществе, может долго сохраняться. Каменный уголь, торф, нефть образованы веществами, которые в далекие геологические времена были созданы зелеными растениями и вобрали в себя энергию Солнца. Сжигая природные горючие материалы, человек освобождает энергию, запасенную миллионы лет назад зелеными растениями.

растения он закрыл с двух сторон одну половину листа ______бумагой, другую оставил открытой. Растение выставил на ______. Спустя некоторое время Ю. Сакс обесцветил этот лист кипячением в спирте и нанес на него иодный раствор. Половина листа, которая была накрыта бумагой, цветной реакции на дала. Другая окрасилась в ____цвет. Это показало наличие в нем ______. Данный опыт доказал, что процесс______происходит при наличнии в нем _____. Слова для вставки: свет, фотосинтез, крахмал, фиолетовый, темный.

Ответ или решение 1

В 1862 году немецкий ботаник Юлиус Сакс провел следущий опыт. У комнатного растения
он закрыл с двух сторон одну половину листа темной бумагой, другую оставил открытой.
Растение выставил на свет. Спустя некоторое время Ю. Сакс обесцветил этот лист
кипячением в спирте и нанес на него иодный раствор. Половина листа, которая была накрыта
бумагой, цветной реакции на дала. Другая окрасилась в фиолетовый цвет. Это показало
наличие в нем крахмала. Данный опыт доказал, что процесс фотосинтеза происходит при наличнии
в нем света.

Однако и Ингенгуз, и Пристли рассматривали вопрос об изменении состава воздуха в результате жизнедеятельности растений, главным образом, с гигиенической точки зрения. Научное разъяснение сущности этого процесса принадлежит поэтому не им, а швейцарскому ученому Сенебье. Он первый попытался разобраться в физической и химической стороне явлений, открытых Пристли.

Сенебье начал свои работы с повторения опытов Бонне, но только применил к выделявшимся при этих опытах пузырькам воздуха приемы химического анализа газов. Он погружал листья в воду в сосуде, имевшем форму опрокинутой воронки с глухой узкой частью: в этой глухой, т.е. закрытой сверху, трубочке и собирался газ, выделявшийся с поверхности листьев.

Из работ Лавуазье было известно, что углекислый газ образуется при горении и тлении за счет соединения горючего вещества с кислородом воздуха. Отсюда легко было сделать вывод, что при обратном процессе, когда углекислота деятельностью растения перерабатывается опять в кислород, горючее начало должно оставаться, отлагаться в растении. Но это горючее вещество ведь и есть то самое вещество, из которого состоит растение, следовательно, процесс этот должен быть и процессом питания растения.

Наблюдения, проведенные Сенебье, встретили возражения со стороны аббата Фонтаны, который утверждал, что громадное большинство растений своими листьями приходит в соприкосновение с атмосферой, а не с водой, как то было в опытах Сенебье. А между тем, как утверждал Фонтана, ему при исследовании около 700 растений никогда не удавалось обнаружить поглощение листьями углекислоты из воздуха.

Преемник Сенебье в его исследованиях, тоже уроженец Женевы, Теодор Соссюр постарался разъяснить это недоразумение путем точного количественного учета прихода и расхода газообразных и твердых веществ в процессе воздушного питания растений.

В то время как Сенебье проводил свои исследования над листьями в сосудах с водой, т.е. в самой наглядной форме (по методу Бонне), Соссюр поставил своей задачей исследовать процесс воздушного питания растений в замкнутых объемах воздуха. Для этого он избрал более сложный и трудоемкий, но зато и несравненно более точный, так называемый эвдиометрический, метод (эвдиометр – прибор для измерения объема газа).

Дополнив результаты объемного анализа газов данными о массах обугленных остатков растений до и после опыта, Соссюр показал, что:

1) поглощение растениями углекислоты из воздуха и ее разложение с выделением кислорода не только имеет место, но и сопровождается увеличением сухого веса растений;

2) увеличение веса растений после опыта происходит благодаря отложению углерода, удерживаемого растением при разложении углекислоты воздуха;

3) привес сухой массы растений всегда превышает привес углерода, из чего Соссюр сделал заключение, что отложение углерода в растении всегда сопровождается присоединением элементов воды в процессе образования органического вещества.

Особую заслугу Соссюра составляет первое в истории науки определение концентрации углекислоты в воздухе. Хотя оно и не было точным, однако показало ничтожно малое содержание этого газа в обычном атмосферном воздухе, окружающем растение. Это обстоятельство вызвало новые сомнения у ученых-скептиков – может ли растение улавливать и разлагать углекислый газ, так скупо рассеянный в природе? Это еще предстояло доказать.

Эту задачу, требовавшую методов еще более тонких и точных, через 30 с лишним лет после Соссюра, (в 1840 г.), решил Жан-Батист Буссенго. Для доказательства способности растений улавливать углекислоту из воздуха и разлагать ее он поставил следующий опыт.

В большой стеклянный шар с тремя отверстиями через нижнее отверстие он просовывал молодой побег виноградной лозы с зелеными листьями. Побег сохранял свою связь с растением и, следовательно, находился в нормальных условиях минерального питания. При помощи особого засасывающего прибора через стеклянный шар и соединенную с ним систему изогнутых трубок постоянно и медленно прокачивался атмосферный воздух. Буссенго измерял, сколько было пропущено воздуха через шар в течение всего опыта.

Зная, сколько воздуха было пропущено через шар с растением и сколько этот воздух содержал углекислоты до входа в шар и после выхода из него, Буссенго легко определил, сколько углекислоты, было поглощено и разложено листьями. Для определения содержания углекислоты в выходящем из шара воздухе Буссенго использовал систему коленчатых трубок. Часть этих трубок содержала сухую едкую щелочь, способную поглощать углекислоту. Взвесив ее до и после опыта, по прибыли в весе легко узнать, сколько не поглощенной растением углекислоты осталось в токе воздуха.

Оказалось, что при благоприятных условиях освещения из шара выходил воздух, почти лишенный углекислоты. Ничтожного, казалось бы, содержания углекислоты в атмосферном воздухе достаточно, чтобы покрыть довольно значительную потребность растения в углероде.

До какой степени точны были измерения Буссенго, можно уяснить из его рассказа об этих опытах.

«Мы предприняли исследование вместе с Дюма, но так, что каждый производил взвешивания и вел журнал опытов отдельно, не сообщая другому, для того, чтобы лучше контролировать полученные результаты. Сначала все шло хорошо: растение, как и следовало ожидать, разлагало углекислоту. Вдруг картина изменилась. Несмотря на ясные солнечные дни, оно закапризничало и вместо того, чтобы разлагать углекислоту, стало ее выделять.

С недоумением подводили мы в своих записных книжках вечерние итоги, бросая друг на друга немые вопросительные взгляды. Обоим невольно приходила на память неудача, испытанная Пристли, когда он хотел повторить свой знаменитый опыт. Так продолжалось несколько дней.

Таким образом, в результате ряда блестящих опытов Пристли, Соссюра, Сенебье и Буссенго было установлено явление воздушного питания растений с усвоением ими углерода из углекислоты воздуха.

Задачей последующих исследований было выяснение дальнейшей судьбы углерода, удержанного растением. Мы знаем уже о гениальных догадках Соссюра и Буссенго, указывавших, что удержанный растениями в процессе воздушного питания углерод входит затем в состав органического вещества, образующегося в растении. Соссюр и Буссенго указывали, что это первичное органическое вещество, образующееся в растении в результате процесса фотосинтеза, должно быть соединением трех элементов: углерода, заимствуемого растением из углекислоты воздуха, кислорода и водорода, получаемых с водой. Иначе говоря, это соединение должно быть углеводом типа крахмала или сахара.

Однако этим ученым не удалось проследить процесс образования крахмала или сахара в растении. Это открытие пришло с развитием метода микроскопических исследований в ботанике.

Несколько позже Артюр Гри констатировал, что при перенесении растений в темное помещение наблюдавшиеся в их хлорофилловых зернах частицы крахмала исчезают. Связь процессов образования и исчезновения частиц крахмала в зернах хлорофилла с наличием или отсутствием света была тщательно исследована Саксом.

Предметом его наблюдений были листья табака, настурции и герани. У этих растений, выращиваемых в обычных условиях на солнечном свете, Сакс отрезал от листовой пластинки каждого из этих растений маленькие кусочки, которые и исследовал под микроскопом.

В зеленых клетках хлорофилла он всегда находил частицы крахмала. Затем он переносил свои растения в темное помещение, где через определенные промежутки времени снова отрезал от тех же листовых пластинок маленькие кусочки.

Сакс пришел к совершенно верному выводу о зависимости образования и исчезновения крахмала в зернах хлорофилла от воздействия на них света и указал на крахмал как на один из первых продуктов ассимиляции.

Саксу же принадлежит идея чрезвычайно наглядного приема демонстрации зависимости образования в листьях крахмала от воздействия на них света. Прием этот, вошедший теперь в школьную демонстрационную практику, заключается в частичном закрытии листовой пластинки светонепроницаемым материалом (фольгой, черной бумагой и т.п.) и экспозиции такого полузакрытого листа на солнце. Невидимые в начале скопления крахмальных зерен в незатененной части листа затем проявлялись под воздействием слабых растворов йода на предварительно убитые горячей водой и обесцвеченные спиртом клетки листа. Получались так называемые амилограммы. По степени посинения или почернения можно было приблизительно судить о количестве образовавшегося крахмала. Эта так называемая йодная проба была впервые предложена Саксом.

Вскоре после первых опытов Сакса русский ученый А.С. Фаминцын (1835–1918) произвел ряд опытов, имевших целью выяснить влияние искусственного света на образование крахмала в зеленой растительной ткани. В качестве объекта своих наблюдений он избрал пресноводную нитчатую водоросль спирогиру. Каждая тончайшая нить этой водоросли состоит, как известно, из одного ряда клеток, сросшихся своими концами. Характерную особенность внутреннего строения этих клеток составляют зеленые спирали, или ленты, хлорофилла. Каждая из клеток вполне самостоятельна и может при отделении от соседних клеток легко разрастись в новую длинную нить.

Опыты Фаминцына дали два важных результата. Во-первых, способность растений образовывать крахмал связана с наличием в их клетках хлорофилла и не зависит от формы тех телец, в которые он включен. Во-вторых, рост и размножение клеток зависят от образования крахмала.

Особую задачу представляло собой выяснение деталей процесса синтеза углеводов при воздушном питании растений. Утверждение Сакса, что крахмал является первичным продуктом ассимиляционной деятельности растений, с самого начала вызвало сомнения и возражения у целого ряда ученых. Начиная с 70-х гг. XIX в. этот вопрос был одним из основных и наиболее спорных в области изучения процессов обмена веществ у растений.

В 1874 г. Бем обнаружил, что проростки высших растений могут образовывать крахмал и в отсутствие света за счет органических соединений, отложенных в семени. Далее выяснилось, что обескрахмаленные листья, положенные в раствор сахара, также могут накапливать крахмал в хлоропластах при полном отсутствии света. Поэтому Бем сделал заключение, что первым продуктом фотосинтеза должен быть не крахмал, а сахар, из которого крахмал образуется в качестве вторичного продукта.

Последующие исследования А.Мейера показали, что среди однодольных существует ряд растений, которые в нормальных условиях накапливают в своих листьях не крахмал, а сахар. На основании этих фактов некоторые ботаники стали делить растения на две физиологические группы: крахмалистые и сахаристые. Крахмал – полисахарид, т.е. полимер, состоящий из моносахаридов, которые естественно считать начальными продуктами фотосинтеза.

Новый вклад в решение этого вопроса внесли знаменитые исследования по органическому синтезу, произведенные русским химиком Бутлеровым. В 1861 г. ему удалось при кипячении растворов формальдегида, смешанных с известковой и баритовой водой, получить сладкий сироп, который он назвал метиленитаном. Повторяя опыты Бутлерова в 1886 г., химик Лёв обнаружил в сладком сиропе Бутлерова формозу – настоящий, но не поддерживающий брожения сахар. На основании опытов Бутлерова Бейер в 1870 г. построил свою знаменитую теорию, согласно которой первичным продуктом фотосинтеза в листьях растений является именно формальдегид, а не сахар. В этом его убеждали опубликованные в 1869 г. опыты химика Гофмана, которому удалось синтезировать и сам формальдегид из простых неорганических соединений. Гофман получал формальдегид из окиси углерода или из углекислоты воздействием на них едкого или металлического калия. Продолжая опыты Гофмана и Бутлерова, в 1890 г. известный германский химик Эмиль Фишер получил, наконец, искусственным (синтетическим) путем настоящий виноградный сахар, взяв исходными материалами воду и углекислоту.

Открытие Крофт-Гиля придало ферментам совершенно новое и весьма существенное значение. До этого за ферментами была признана лишь роль факторов разрушающих, теперь же они приобрели значение и факторов, созидающих сложные соединения. Данные Крофт-Гиля были затем подтверждены выдающимся английским ученым Бейлисом и известным французским химиком Е.Буркло.

Теория Крофт-Гиля прошла широкую проверку в лабораториях крупнейших научных учреждений Европы. Она оказалась верной не только по отношению к ферментам, расщепляющим углеводы, но и к ферментам, вызывающим разложение жиров. Наконец и в третьей (физиологически самой важной) группе белковых веществ рядом исследователей описаны явления, истолкованные как синтетические ферментные процессы. Поэтому в современной науке укрепилось представление о том, что все основные превращения веществ в организмах совершаются с помощью ферментов.

Дальнейшей задачей науки стало раскрытие всей сложной цепи химических превращений простых неорганических соединений в органическое вещество, совершающихся в клетках зеленого листа. Наиболее близко к разрешению поставленной задачи современной науке удалось подойти в связи с изучением хлорофилла. Это изучение было начато еще в первой половине XIX в. французскими химиками Пельтье и Каванту.

Читайте также: