Опыт пристли фотосинтез кратко

Обновлено: 05.07.2024

Оглянитесь вокруг! Пожалуй, в каждом доме есть хотя бы одно зеленое растение, а за окном несколько деревьев или кустарников. Благодаря сложному химическом процессу происходящего в них фотосинтеза стало возможно зарождение жизни на Земле и существование человека. Разберем историю его открытия, суть процесса и реакции, которые протекают в разных фазах.

История открытия фотосинтеза

В настоящее время школьники впервые знакомятся со сложными процессами фотосинтеза уже в 6 классе.

Первым и очевидным ответом было предположение, что из земли. Однако, в далеком 1600 году фламандский ученый Ян Батист ван Гельмонт решил проверить влияние почвы на рост растений и провел уникальный в своей простоте опыт. Естествоиспытатель взял веточку ивы и бочку с почвой. Предварительно их взвесил. А затем посадил отросток ивы в бочку с почвой.

Долгие пять лет ван Гельмонт поливал молодое деревце лишь дождевой водой. А через пять лет выкопал деревце, и вновь взвесил отдельно деревце и отдельно почву. Каково же было его удивление, когда весы показали, что деревце увеличило свой вес практически в тридцать раз, и совсем не походило на тот скромный прутик, что был посажен в кадку. А вес почвы уменьшился всего на 56 граммов.

Ученый сделал вывод. что почва практически не дает строительного материала растениям, а все необходимые вещества растение получает из воды.

Одним из тех, кто попытался возразить этой теории был М.В. Ломоносов. И строил он свои возражения на том, что на пустых, скудных северных землях с редкими дождями растут высокие, мощные деревья. Михаил Васильевич предположил, что часть питательных веществ растения впитывают через листья, но доказать свою теорию экспериментально он не смог.

И как часто бывает в науке, помог его величество случай.

Однажды нерадивая мышь, решившая поживиться церковными запасами, случайно перевернула банку и оказалась в ловушке. И через некоторое время погибла. К нашей удаче, эту мышь в банке обнаружил Джозеф Пристли, который был не просто священником, а по совместительству ученым-химиком, и очень интересовался химией газов и способами очистки испорченного воздуха. И тут церковным мышам не повезло. Они стали участницами различных опытов английского ученого.

Джозеф Пристли ставил под одну банку горящую свечу, а в другую сажал мышь. Свеча тухла, грызун погибал.

В наше время его самого зоозащитники посадили бы в банку, но в далеком 1771 году ученому никто не помешал продолжить свои опыты. Пристли посадил мышь в банку, где до этого потухла свеча. Животное погибло еще быстрее.

И тогда Пристли сделал вывод, что раз все живое на Земле до сих пор не погибло, Бог (мы же помним, что Пристли был священником), придумал некий процесс, чтобы воздух вновь был пригоден для жизни. И скорее всего, основная роль в нем принадлежит растениям.

Чтобы доказать это, ученый взял воздух из банки где погибла мышь, и разделил его на две части. В одну банку он поставил мяту в горшочке. А другая банка ждала своего часа. Через 8 дней растение не только не погибло, а даже выпустило несколько новых побегов. И он опять посадил грызунов в банки. В той, где росла мята — мышь была бодра и закусывала листиками. А в той, где мяты не было — практически моментально лежала дохлая мышиная тушка.

Рисунок 1

Опыты Пристли вдохновили ученых, и во всем мире начали отлавливать мелких грызунов и пытаться повторить его эксперименты.

Но мы же помним, что Пристли был священником и весь день, до вечерней службы мог заниматься исследованиями.

А Карл Шееле, аптекарь из Швейцарии, экспериментировал в домашней лаборатории в свободное от работы время, т.е. по ночам, и мыши дохли у него независимо от присутствия мяты в банке. В результате его экспериментов получалось, что растения не улучшают воздух, а делают его непригодным для жизни. И Шееле обвинил Пристли в обмане научной общественности. Пристли не уступил, и в результате противостояния ученых было установлено, что для восстановления воздуха растениям необходим солнечный свет.

Именно эти опыты положили начало изучению фотосинтеза.

Исследование фотосинтеза стремительно продолжалось. Уже в 1782 году, спустя всего лишь 11 лет после исследований Пристли, швейцарский ботаник Жан Сенебье доказал, что органоиды растений разлагают углекислый газ в присутствии солнечного света. И практически еще сто лет провальных и удачных экспериментов понадобилась ученым разных специальностей, чтобы в 1864 году немецкий ученый Юлиус Сакс смог доказать, что растения потребляют углекислый газ и выделяют кислород в соотношении 1:1.

Биология. 6 класс. Рабочая тетрадь №1.

Значение фотосинтеза для жизни на Земле

И теперь становится понятна важность процесса фотосинтеза для жизни на земле. Именно благодаря этому сложному химическом процессу стало возможно зарождение жизни на земле и существование человека.

Кто-то может возразить, что на Земле есть места, где не растут ни деревья ни кустарники, например, пустыни или Арктические льды. Ученые доказали, что доля кислорода, выделяемого зеленой массой лесов, кустарников и трав — т. е. растений, что обитают на поверхности суши, составляет всего около 20% газообмена, а 80% кислорода приходится на мельчайшие морские и океанские водоросли, которые потоками воздуха переносятся по всей планете, позволяя дышать животным в экстремальных, практически лишенных растительности регионах нашей удивительной планеты.

Благодаря фотосинтезу вокруг нашей планеты сформировался защитный озоновый экран, защищающий все живое на земле от космической и солнечной радиации, и живые организмы смогли выйти на сушу из глубин океана.

К сожалению, в настоящее время кислород потребляют не только живые существа, но и промышленность. Уничтожаются тропические леса, загрязняются океаны, что приводит к снижению газообмена и увеличению дефицита кислорода.

Определение и формула фотосинтеза

Определение и формула фотосинтеза

Схема фотосинтеза, на первый взгляд, проста:

Вода + квант света + углекислый газ → кислород + углевод

или (на языке формул):

Если копнуть поглубже и посмотреть на лист в электронный микроскоп, выяснится удивительная вещь: вода и углекислый газ ни в одной из структурных частей листа непосредственно друг с другом не взаимодействуют.

Фазы фотосинтеза

К фотосинтезу способны не только растения, но и многие одноклеточные животные благодаря специальным органоидам, которые называются хлоропласты.

Хлоропласты — это пластиды зеленого цвета фотосинтезирующих эукариот. В состав хлоропластов входят:

  1. две мембраны;
  2. стопки гранов;
  3. диски тилакоидов;
  4. строма — внутреннее вещество хлоропласта;
  5. люмен — внутреннее вещество тилакоида.

Сложный процесс фотосинтеза состоит из двух фаз: световой и темновой. Как понятно из названия, световая (светозависимая) фаза происходит с участием квантов света. Название темновая фаза вовсе не означает, что процесс происходит в темноте. Более точное определение — светонезависимая. Т.е. для реакций, происходящих в этой этой фазе, свет не нужен, а протекает она одновременно со световой, только в других отделах хлоропласта.

Многие делают ошибку, говоря, что в процессе фотосинтеза происходит производство растениями такого необходимого человечеству кислорода. На самом деле фотосинтез — это синтез углеводов (например, глюкозы), а кислород — лишь побочный продукт реакции.

Световая фаза фотосинтеза

Световая фаза фотосинтеза происходит на мембранах тилакоидов. Фотон света, попадая на хлорофилл, возбуждает его и происходит выделение электронов и скопление отрицательно заряженных электронов на мембране. После того, как хлорофилл потерял все свои электроны, квант света продолжает воздействовать на воду, вызывая фотолиз Н2О.

Положительно заряженные протоны водорода накапливаются на внутренней мембране тилакоида.

Получается такой бутерброд: с одной стороны отрицательно заряженные электроны хлорофилла, с другой – положительно заряженные протоны водорода, а между ними – внутренняя мембрана тилакоида.

Гидроксильные ионы идут на производство кислорода:

Когда количество протонов водорода и электронов достигает максимума, запускается специальный переносчик — АТФ-синтаза. АТФ-синтаза выталкивает протоны водорода в строму, где их подхватывает специальный переносчик никотинамиддинуклеотидфосфат или сокращенно НАДФ. НАДФ — специфический переносчик протонов водорода в реакциях углеводов.

Прохождение протонов водорода через АТФ-синтазу сопровождается синтезом молекул АТФ из АДФ и фосфата или фотофосфорилированием, в отличие от окислительного фосфорилирования.

На этом световая фаза фотосинтеза заканчивается, а НАДФН+ и АТФ переходят в темновую фазу.

Повторим ключевые процессы световой фазы фотосинтеза:

  1. Фотон попадает на хлорофилл с выделением электронов.
  2. Фотолиз воды.
  3. Выделение кислорода.
  4. Накопление НАДФН+.
  5. Накопление АТФ.

Одним из первых ученых, использовавших мышей в подлинно научных опытах, был английский химик и философ-материалист Джозеф Пристли (1733-1804). Многие годы своей работы он посвятил поискам способов очистки воздуха, испорченного горением и дыханием.

То, что чистый воздух нужен для дыхания человеку и животным, он хорошо знал. Знали это и до него.

А что будет с организмом, если его поместить в пространство, куда нет притока свежего воздуха?

Чтобы выяснить это, Пристли взял мышь, накрыл ее стеклянным колпаком и стал наблюдать. Вначале мышь вела себя спокойно. Спустя некоторое время она начала часто дышать, задыхаться и через несколько минут погибла. При повторных опытах происходило то же самое.

Продолжая опыты, Пристли помещал под колпак зажженную свечу.

Погорев немного, пламя ее тускнело, и она гасла. Летом 1771 года ученый поместил под стеклянный колпак горшочек с растущим в нем стебельком мяты. К его удивлению, мята не увядала, а жила и росла много дней не хуже, чем на свежем воздухе. В присутствии мяты свеча под колпаком не гасла, а продолжала гореть ровным спокойным пламенем.

А что будет с мышью, если ее поместить под колпак с растущей мятой? Мышка без вреда жила под колпаком, бегала, поедала корм, принюхивалась к мяте, издававшей пряный запах. Проходили дни, а мышка жила! Опыты повторялись, видоизменялись, но воздух оставался пригодным для дыхания и жизни мышей, если под колпаком были зеленые растения.

Опыты и наблюдения Пристли позволили ему сделать вывод:

- Человек отравляет воздух своим дыханием, а растения исправляют его, делая вновь подходящим для дыхания.

Спустя три года Джозеф Пристли, нагревая красный оксид ртути, получил какой-то новый газ. Горение свечи в нем было необычайно ярко. Тогда ученый решил посмотреть, как будет действовать газ на мышей. Он взял двух мышей и посадил их под колпак, в котором содержался загадочный газ. Зверьки ощущали себя прекрасно, лучше, чем в обычном чистом воздухе.

После этого Пристли решился сам подышать этим газом. Дышалось необычайно легко, газ бодрил и улучшал самочувствие.
Так Джозеф Пристли открыл кислород . Независимо от него кислород получил молодой шведский химик Карл Вильгельм Шееле. И у него мыши также были своеобразными экспертами-газоконтролерами.

Если статья была вам интересна и полезна, ставьте палец вверх и подписывайтесь на наш канал - у нас еще много историй из жизни лабораторных животных!

Информацию о приобретении лабораторных животных можно найти на сайте компании БиоПитомник СТЕЗАР

Джозеф Пристли (англ. Joseph Priestley, 13 марта 1733—6 февраля 1804)

Слово фотосинтез имеет греческое происхождение. Это химический процесс, когда энергия видимого света превращается в энергию химических связей органических веществ с помощью фотосинтетических пигментов: у растений, например, это хлорофилл, а у бактерий бактериохлорофилл.

Опыты Пристли

Конечно, сейчас нам известно, что такое кислород или углекислый газ, что зеленые растения поглощают углекислый газ и выделяют кислород. Но в XVIII веке наука находилась лишь на пороге таких химических открытий. Кислород Джозеф Пристли открыл через три года. А 17 августа 1771 года навсегда было вписано в историю как день открытия грандиозного явления, благодаря которому возможна жизнь на Земле.

Фазы фотосинтеза

Фотосинтез происходит в фотосистемах. Так называются системы со сложной структурой: пигментными светособирающими системами, белками-ферментами и молекулами небелковой природы (кофакторами). В них расщепляется вода с выделением О2 под действием солнечного света.

У растений и фотосинтезирующих бактерий таких фотосинтезирующих систем две – фотосистема I и фотосистема II.

Несколько десятилетий наука стремилась понять, как устроена эта загадочная фотосистема II, чтобы выяснить, как происходит фотосинтетическое расщепление воды. Известно было лишь то, что реакция происходит в каталитическом центре системы – кислород-выделяющим комплексе (КВК), внутри которого четыре иона марганца. Они способны концентрировать энергию, необходимую для разрыва прочных химических связей в молекулах воды.

Будучи скромным священником, Джозеф Пристли, сам того не понимая, делал яркие открытия в области газовой химии. Он впервые получил хлористый водород, аммиак, фтористый кремний и сернистый газ. Именно он принес в мир газированную воду и необходимый для всех школьников предмет — ластик. О том, как обычный церковный служащий стал великим ученым.

соц.сети и ФОТО1.jpg

Джозеф Пристли сочетал в себе разнообразные таланты. С юности он активно интересовался литературой, философией, языкознанием, наукой и религией. А после того, как с отличием закончил школу и духовную академию, сделал свой выбор в пользу богослужения, став священником.

ФОТО2.jpg

Позже Пристли случайно обнаружил, что сырой натуральный каучук способен стирать следы графита, другими словами карандаша, лучше, чем частицы хлеба, которые использовались в то время с этой же целью. Так появился на свет всем хорошо знакомый ластик.

ФОТО3.jpg

В 1780 году Джозеф Пристли стал почетным членом Санкт-Петербургской Академии наук.

История изучения фотосинтеза берет свое начало с середины ХVIII ст..

Понятие о фотосинтезе

Фотосинтезом называется первичный синтез органических веществ из углекислого газа и воды, протекающий в тканях зеленых растений с использованием энергии света, которая при этом превращается в потенциальную химическую энергию органических веществ. Этот процесс выражают суммарным уравнением: 6СО2+6Н2 О + (энергия света (686 ккал)/хлорофилл) = С6Н12О6+6О2

Процесс фотосинтеза очень сложен и состоит из целого ряда биофизических и биохимических процессов.

Фотосинтез

На основе поглощаемой хлорофиллом солнечной энергии растения перестраивают молекулы СО2 и Н2О, восстанавливая углерод и превращая его из соединения неорганического в органическое, и выделяют кислород. Использование солнечной энергии как элемент процесса фотосинтеза

Синтезируемые зелеными растениями органические вещества и сосредоточенная в них энергия являются основными источниками материи и энергии, используемыми другими организмами в процессе их жизнедеятельности, (подробнее: Чем полезен лес).

Сухое вещество растений почти наполовину состоит из углерода. При исключении углекислого газа из атмосферы растения прекращают накопление органических веществ и вскоре погибают. Следовательно, для нормального роста растений необходим углекислый газ, который они получают из воздуха.

По объему углекислый газ в воздухе составляет 0,03%.

М. В. Ломоносов о воздушном питании растений

М.В. Ломоносов

М. В. Ломоносов (1761 г.) первый высказал мысль о воздушном питании растений, но экспериментальных данных у него не было. М.В. Ломоносов - первый высказал мысль о воздушном питании растений

Опыты Д. Пристли

Ж. Сенебье о процессе углеродного питания

Ж. Сенебье

Ж. Сенебье (1782 г.) доказал, что усвоение растениями углекислого газа и выделение кислорода на свету — это процесс углеродного питания, в результате которого углерод накапливается в растениях. Сенебье впервые дал правильное объяснение сущности газообмена растений. Ж. Сенебье - изучал процесс углеродного питания

Опыты Н. Соссюра

Серия этих открытий в области фотосинтеза завершилась опытами Н. Соссюра (1804 г.), который количественно показал, что объемы обмениваемых газов — кислорода и углекислого газа — в этом процессе равны и что одновременно с углекислотой используется и вода, так как прибыль в весе сухой массы растения значительно превосходила вес углерода в углекислоте.

Н. Соссюр

Так было установлено происхождение углерода, кислорода и водорода в растениях. Н. Соссюр - на основе опытов установлено происхождение углерода, кислорода и водорода в растениях

Таким образом, на протяжении XVIII и в начале XIX столетия были выяснены основные положения воздушного питания растений: поглощение углекислого газа, выделение кислорода, необходимость света и хлорофилла и характер конечных продуктов. Однако в чем заключалась роль света, оставалось неясным.

К. А. Тимирязевым продолжена история изучения фотосинтеза

К. А. Тимирязев

Следующим этапом в познании природы фотосинтеза является изучение К. А. Тимирязевым энергетической стороны этого процесса и роли света. К. А. Тимирязев показал, что свет, поглощаемый хлорофиллом, необходим как источник энергии, и доказал приложимость к процессу фотосинтеза закона о сохранении энергии. К. А. Тимирязев - изучал энергетическую сторону фотосинтеза и роль света в этом процессе

Читайте также: