Накопители на жестких магнитных дисках кратко

Обновлено: 02.07.2024

Долгое время основным устройством хранения данных в компьютерном мире были перфокарты. И только в 1949 году группа инженеров и исследователей компании IBM приступила к разработке нового устройства хранения данных. Именно это и стало точкой отсчета в истории развития устройств магнитного хранения данных, которые буквально взорвали компьютерный мир. 21 мая 1952 года IBM анонсировала модуль ленточного накопителя IBM 726 для вычислительной машины IBM 701. Четыре года спустя, 13 сентября 1956 года, небольшая команда разработчиков все той же IBM объявила о создании первой дисковой системы хранения данных — 305 RAMAC (Random Access Method of Accounting and Control). Эта система могла хранить 5 млн символов (5 Мбайт!) на 50 дисках диаметром 24 дюйма (около 61 см). В отличие от ленточных устройств хранения данных, в системе RAMAC запись осуществлялась с помощью головки в произвольное место поверхности диска. Такой способ заметно повысил производительность компьютера, поскольку данные записывались и извлекались намного быстрее, чем при использовании ленточных устройств.
Накопители на жестких магнитных дисках (НЖМД)

Накопитель на жестких магнитных дисках - это устройство, предназначенное для долговременного хранения операционных систем, ежедневно используемых программ и данных. По способу записи и чтения информации винчестеры относятся к магнитным накопителям. Другие названия: жесткий диск, винчестер, HDD (Hard Disk Drive).Накопитель содержит один или несколько дисков (Platters), т.е. это носитель, который смонтирован на оси - шпинделе, приводимом в движение специальным двигателем (часть привода).


  • информационная ёмкость;

  • скорость обмена информацией;

  • надёжность хранения информации;

  • не высокая стоимость.

Мультимедийная революция привела к тому, что на рынок хлынул поток дешевых и мощных цифровых видеокамер, сканеров и видеорекордеров, благодаря которым можно создавать и хранить изображения, занимающие тысячи мегабайт дискового пространства. На диск можно переписать особо важную или конфиденциальную информацию и убрать его подальше от посторонних глаз. Создавая резервную копию редко используемых данных, можно смело удалить исходные данные, освободив тем самым занятое ими рабочее пространство жесткого диска. При необходимости нужные файлы данных всегда можно восстановить из резервной копии. Кроме того, копирование данных позволяет совместно использовать большие объемы информации.

Вопрос№ 2

Сетевые и иерархические модели данных. Структуры данных в моделях. Особенности и сравнение моделей .

Сетевая модель.

В 1971 группа DTBG (Database Task Group) представила в американский национальный институт стандартов отчет, который послужил в дальнейшем основой для разработки сетевых систем управления базами данных. Стандарт сетевой модели впервые был определен в 1975 году организацией CODASYL (Conference of Data System Languages), которая определила базовые понятия модели и формальный язык описания.

Рис.1.Набор в сетевой модели данных.

Резюмируя выше сказанное, будем говорить, что структура базы данных в сетевой модели задается типами записей и типами наборов.

Отметим некоторые особенности построения сетевой модели .

- База данных может состоять из произвольного количества записей и наборов различных типов.

- Связь между двумя записями может выражаться произвольным количеством наборов.

- В любом наборе может быть только один владелец.

- Тип записи может быть владельцем в одних типах наборов и членом в других типах наборов.

- Тип записи может не входить ни в какой тип наборов.

Для управления сетевой базой данных используется специальный язык , который можно разбить на следующие разделы.

-Язык описания данных в сетевой модели.

· Описание базы данных (размещение).

· Описание элементов, агрегатов и записей.

-Язык манипулирования данными.

· Навигационные операции. С помощью операций навигации (группа операций FIND) двигаясь по связям можно переходить от одной текущей записи к другой. Соответственно операции модификации осуществляются над текущей записью.

· Операции модификации. Операции модификации осуществляют:

· Добавление новых экземпляров отдельных типов записей.

· Экземпляров новых наборов.

· Удаление экземпляров записей и наборов.

· Модификацию отдельных составляющих внутри конкретных экземпляров записей.

Иерархическая модель.

Основными информационными единицами в иерархической модели являются: база данных (БД), сегмент и поле. Поле данных определяется как минимальная, неделимая единица данных, доступная пользователю с помощью СУБД. Выделяют также тип поля, представляющий собой совокупность полей одного типа. Сегмент состоит из конкретных экземпляров полей. Тип сегмента - совокупность входящих в него типов полей. Иерархическая модель представляет собой неориентированный граф, в вершинах которого располагаются сегменты (или типы сегмента). Особенностью такой модели является то, что каждый сегмент может иметь не более одного предка, произвольное количество потомков и, по крайней мере, одно поле. Сегмент, который не имеет потомков, называют листовым сегментом. Иерархическое дерево начинается с одного сегмента, называемого корневым сегментом. Очень важно, что каждый сегмент должен иметь свое уникальное имя или идентификатор.

На рисунке 1.1 схематически представлена иерархическая структура. Узлы (сегменты) соединены друг с другом связующими дугами. Сегмент A является корневым сегментом. Сегменты B, E, H, J, I являются листовыми сегментами. Каждый сегмент, при этом, может содержать произвольное количество полей.

Для иерархической модели данных выделяют два языковых средства:

· язык описания данных

· язык модификации данных

Описание базы данных предполагает описание всех ее сегментов и установление связей между ними.

Рис.1.1.Иерархическая структура

Основной единицей обработки в иерархической модели является сегмент . К сегментам могут применяться такие операции как запомнить, модифицировать, удалить, извлечь, найти. Операция поиска сводится к одной из возможных процедур обхода дерева. Иерархические СУБД поддерживают, обычно, правило: никакой сегмент не может существовать без своего родителя (исключая корневой сегмент). Подобные правила, поддерживаемые СУБД, называют ограничениями целостности .

Особенности и сравнение моделей.

Сетевая модель данных

Отличие сетевой структуры от иерархической заключается в том, что каждый элемент в сетевой структуре может быть связан с любым другим элементом (см. рис. 2.3). Пример простой сетевой структуры показан на рис. 2.4.

Достоинством сетевой модели данных является возможность эффективной реализации по показателям затрат памяти и оперативности.

Недостатком сетевой модели данных являются высокая сложность и жесткость схемы БД, построенной на ее основе.

Иерархическая модель данных.

Иерархическая структура представляет совокупность элементов, связанных между собой по определенным правилам. Графическим способом представления иерархической структуры является дерево (см. рис. 2.1).

К достоинствам иерархической модели данных относятся эффективное использование памяти ЭВМ и неплохие показатели времени выполнения операций над данными.

Недостатком иерархической модели является ее громоздкость для обработки информации с достаточно сложными логическими связями.

Компьютерные вирусы. Вирусы в сети. Способы проникновения. Механизмы обнаружения вирусов.

Компьютерный вирус - это небольшая программа, написанная программистом высокой квалификации, способная к саморазмножению и выполнению разных деструктивных действий. На сегодняшний день известно свыше 50 тыс. компьютерных вирусов.


  • по поражаемым объектам (файловые вирусы, загрузочные вирусы, скриптовые вирусы, макровирусы, вирусы, поражающие исходный код, сетевые черви);

  • по поражаемым операционным системам и платформам (DOS, Microsoft Windows, Unix, Linux);

  • по технологиям, используемым вирусом (полиморфные вирусы, стелс-вирусы, руткиты);

  • по языку, на котором написан вирус (ассемблер, высокоуровневый язык программирования, скриптовый язык и др.);

  • по дополнительной вредоносной функциональности (бэкдоры, кейлоггеры, шпионы, ботнеты и др.).

Флеш - накопители ( флешки )

В настоящее время USB-флешки заменяют дискеты и повторяют их судьбу — большое количество вирусов распространяется через съёмные накопители, включая цифровые фотоаппараты, цифровые видеокамеры, цифровые плееры (MP3-плееры), сотовые телефоны. Использование этого канала ранее было преимущественно обусловлено возможностью создания на накопителе специального файла autorun.inf, в котором можно указать программу, запускаемую Проводником Windows при открытии такого накопителя. В последней версии MS Windows под торговым названием Windows 7 возможность автозапуска файлов с переносных носителей была устранена. Флешки — основной источник заражения для компьютеров, не подключённых к Интернету.

Электронная почта

Сейчас один из основных каналов распространения вирусов. Обычно вирусы в письмах электронной почты маскируются под безобидные вложения: картинки, документы, музыку, ссылки на сайты. В некоторых письмах могут содержаться действительно только ссылки, то есть в самих письмах может и не быть вредоносного кода, но если открыть такую ссылку, то можно попасть на специально созданный веб-сайт, содержащий вирусный код. Многие почтовые вирусы, попав на компьютер пользователя, затем используют адресную книгу из установленных почтовых клиентов типа Outlook для рассылки самого себя дальше.

Веб - страницы

Интернет и локальные сети (черви)

Вирусы действуют только программным путем. Они, как правило, присоединяются к файлу или проникают в тело файла. В этом случае говорят, что файл заражен вирусом. Вирус попадает в компьютер только вместе с зараженным файлом. Для активизации вируса нужно загрузить зараженный файл, и только после этого, вирус начинает действовать самостоятельно.

Механизмы обнаружения вируса.

Программы обнаружения и защиты от вирусов

Для обнаружения, удаления и защиты от компьютерных вирусов разработано несколько видов специальных программ, которые позволяют обнаруживать и уничтожать вирусы. Такие программы называются антивирусными. Различают следующие виды антивирусных программ:

· программы-доктора или фаги

· программы-вакцины или иммунизаторы

Программы - ревизоры относятся к самым надежным средствам защиты от вирусов. Ревизоры запоминают исходное состояние программ, каталогов и системных областей диска тогда, когда компьютер не заражен вирусом, а затем периодически или по желанию пользователя сравнивают текущее состояние с исходным. Обнаруженные изменения выводятся на экран монитора. Как правило, сравнение состояний производят сразу после загрузки операционной системы. При сравнении проверяются длина файла, код циклического контроля (контрольная сумма файла), дата и время модификации, другие параметры. Программы-ревизоры имеют достаточно развитые алгоритмы, обнаруживают стелс-вирусы и могут даже очистить изменения версии проверяемой программы от изменений, внесенных вирусом. К числу программ-ревизоров относится широко распространенная в России программа Adinf.

Вакцины или иммунизаторы - это резидентные программы, предотвращающие заражение файлов. Вакцины применяют, если отсутствуют программы-доктора, "лечащие" этот вирус. Вакцинация возможна только от известных вирусов. Вакцина модифицирует программу или диск таким образом, чтобы это не отражалось на их работе, а вирус будет воспринимать их зараженными и поэтому не внедрится. В настоящее время программы-вакцины имеют ограниченное применение.

Своевременное обнаружение зараженных вирусами файлов и дисков, полное уничтожение обнаруженных вирусов на каждом компьютере позволяют избежать распространения вирусной эпидемии на другие компьютеры.

Средства мультимедиа. Назначение. Дисковод для компакт дисков. Колонки.

Мультимедиа (multimedia) - это современная компьютерная информационная

технология, позволяющая объединить в компьютерной системе текст, звук,

видеоизображение, графическое изображение и анимацию(мультипликацию).

Мультимедиа-это сумма технологий, позволяющих компьютеру вводить,

обрабатывать, хранить, передавать и отображать (выводить) такие типы

данных, как текст, графика, анимация, оцифрованные неподвижные изображения, видео, звук, речь.

Функции мультимедиа.

- возможность хранения большого объема самой разной информации на одном носителе (до 20 томов авторского текста, около 2000 и более

высококачественных изображений, 30-45 минут видеозаписи, до 7 часов звука);

- возможность увеличения (детализации) на экране изображения или его наиболее интересных фрагментов, иногда в двадцатикратном увеличении (режим "лупа") при сохранении качества изображения. Это особенно важно

для презентации произведений искусства и уникальных исторических документов;

- возможность сравнения изображения и обработки его разнообразными программными средствами с научно- исследовательскими или познавательными целями;

- возможность выделения в сопровождающем изображение текстовом или другом визуальном материале "горячих слов (областей)", по которым

осуществляется немедленное получение справочной или любой другой пояснительной (в том числе визуальной) информации (технологии гипертекста и гипермедиа);

- возможность осуществления непрерывного музыкального или любого другого аудиосопровождения, соответствующего статичному или динамичному визуальному ряду;

- возможность использования видеофрагментов из фильмов, видеозаписей и т.д., функции "стоп-кадра", покадрового "пролистывания" видеозаписи; возможность включения в содержание диска баз данных, методик обработки образов, анимации (к примеру, сопровождение рассказа о композиции картины графической анимационной демонстрацией геометрически построений ее композиции) и т.д.;

- возможность подключения к глобальной сети Internet;

возможность работы с различными приложениями (текстовыми, графическими и звуковыми редакторами, картографической информацией);

- возможность создания собственных "галерей" (выборок) из представляемой в продукте информации (режим "карман" или "мои пометки");

- возможность "запоминания пройденного пути" и создания "закладок" заинтересовавшей экранной "странице";

- возможность автоматического просмотра всего содержания продукта ("слайд-шоу") или создания анимированного и озвученного "путеводителя-гида" по продукту ("говорящей и показывающей инструкции пользователя"); включение в состав продукта игровых компонентов с информационными составляющими;

- возможность "свободной" навигации по информации и выхода в основное меню (укрупненное содержание), на полное оглавление или вовсе из программы в любой точке продукта.

Дисковод для компакт - дисков.

Лазерные дисководы используют оптический принцип чтения информации. На лазерных дисках CD (CD — Compact Disk, компакт диск) и DVD (DVD — Digital Video Disk, цифровой видеодиск) информация записана на одну спиралевидную дорожку (как на грампластинке), содержащую чередующиеся участки с различной отражающей способностью. Лазерный луч падает на поверхность вращающегося диска, а интенсивность отраженного луча зависит от отражающей способности участка дорожки и приобретает значения 0 или 1.


  • привод CD-ROM (CD-привод)

  • привод DVD-ROM (DVD-привод)

  • привод HD DVD

  • привод BD-ROM

  • привод GD-ROM

- многодисковые с планарным расположением дис­ков (чейнджеры)

Для сохранности информации лазерные диски надо предохранять от механических повреждений (царапин), а также от загрязнения.

Технические характеристики различных устройств хранения информации: информационная емкость, скорость обмена информацией, надежность ее хранения (табл. 2).

ответы на экзамен 2004

Колонки для компьютера.

Компьютерные колонки не имеют принципиальных отличий от обычных.

Все их особенности сводятся к следующему: меньшая площадь, занимаемая на столе; изоляция магнитного поля; разъемы того же стандарта, что и в звуковой карте (то есть, мини-джеки); совместимость со звуковой картой по уровню сигнала и по сопротивлению; встроенный усилитель (в активных колонках); дизайн более или менее сочетающийся с тоном компьютера (то есть, как правило, серого цвета). Первые две особенности из приведенного списка на качестве звука сказываются негативно.

Существует два типа колонок для компьютера: активные и пассивные. Активные имеют хороший усилитель и отдельное питание. Пассивные качество звука хуже, но намного дешевле.

Список используемой литературы.

1) (Учебник) Могилев А . В ., Пак Н . И ., Хённер Е . К . (2004, 3-е изд., 848с.)

2) Информатика Терехов А.В, Чернышев А.В, Чернышев В.Н Уч. пос_ТГТУ_2007 -128с

Накопи́тель на жёстких магни́тных ди́сках, НЖМД, жёсткий диск, винче́стер (англ. Hard (Magnetic) Disk Drive, HDD, HMDD ; в просторечии винт, хард, харддиск) — энергонезависимое перезаписываемое компьютерное запоминающее устройство. Является основным накопителем данных практически во всех современных компьютерах.

Содержание

Характеристики


Интерфейс (англ. interface ) — набор, состоящий из линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии, и правил обмена. Современные накопители могут использовать интерфейсы Serial ATA, SAS, FireWire, Fibre Channel.

Физический размер (форм-фактор) (англ. dimension ) — почти все современные (2001—2008 года) накопители для персональных компьютеров и серверов имеют размер либо 3,5, либо 2,5 дюйма. Последние чаще применяются в ноутбуках. Так же получили распространение форматы — 1,8 дюйма, 1,3 дюйма, 1 дюйм и 0,85 дюйма. Прекращено производство накопителей в формфакторах 8 и 5,25 дюймов.

Время произвольного доступа (англ. random access time ) — время, за которое винчестер гарантированно выполнит операцию чтения или записи на любом участке магнитного диска. Диапазон этого параметра невелик от 2,5 до 16 мс, как правило, минимальным временем обладают серверные диски (например, у Hitachi Ultrastar 15K147 — 3,7 мс [4] ), самым большим из актуальных — диски для портативных устройств (Seagate Momentus 5400.3 — 12,5 [5] ).

Скорость вращения шпинделя (англ. spindle speed ) — количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции).

Надёжность (англ. reliability ) — определяется как среднее время наработки на отказ (Mean Time Between Failures, MTBF). См. также: Технология SMART (S.M.A.R.T. (англ. Self Monitoring Analysing and Reporting Technology ) — технология оценки состояния жёсткого диска встроенной аппаратурой самодиагностики, а также механизм предсказания времени выхода его из строя).

Количество операций ввода-вывода в секунду — у современных дисков это около 50 оп./сек при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.

Потребление энергии — важный фактор для мобильных устройств.

Уровень шума — шум, который производит механика накопителя при его работе. Указывается в децибелах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.

Сопротивляемость ударам (англ. G-shock rating ) — сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.

Скорость передачи данных (англ. Transfer Rate ):

  • Внутренняя зона диска: от 44,2 до 74,5 Мб/с
  • Внешняя зона диска: от 60,0 до 111,4 Мб/с

Объём буфера — буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В современных (2008 год) HDD он обычно варьируется от 8 до 32 Мб.

Производители

Большая часть всех винчестеров производятся всего несколькими компаниями: Seagate, Western Digital, Samsung, а также ранее принадлежавшим Hitachi. Fujitsu продолжает выпускать жёсткие диски для ноутбуков и 2001 году. Maxtor. В 2006 году состоялось слияние Seagate и Maxtor. В середине 1990-х годов существовала компания Conner, которую купила Seagate. В первой половине 1990-х существовала ещё фирма Micropolice, производившая очень дорогие диски premium-класса. Но при выпуске первых в отрасли винчестеров на 7200 об/мин ею были использованы некачественные подшипники главного вала, поставленные фирмой Nidek, и Micropolice понесла фатальные убытки на возвратах, разорилась и была на корню куплена той же Seagate.

Устройство

Жёсткий диск состоит из гермозоны и блока электроники.

Гермозона

Гермозона включает в себя корпус из прочного сплава, собственно диски (пластины) с магнитным покрытием, блок головок с устройством позиционирования, электропривод шпинделя.

Блок головок — пакет рычагов из пружинистой стали (по паре на каждый диск). Одним концом они закреплены на оси рядом с краем диска. На других концах (над дисками) закреплены головки.

Диски (пластины), как правило, изготовлены из металлического сплава. Хотя были попытки делать их из пластика и даже стекла, но такие пластины оказались хрупкими и недолговечными. Обе плоскости пластин, подобно магнитофонной ленте, покрыты тончайшей пылью ферромагнетика — окислов железа, марганца и других металлов. Точный состав и технология нанесения держатся в секрете. Большинство бюджетных устройств содержит 1 или 2 пластины, но существуют модели с большим числом пластин.

Устройство позиционирования головок состоит из неподвижной пары сильных, как правило неодимовых, постоянных магнитов и катушки на подвижном блоке головок.

Вопреки расхожему мнению, внутри гермозоны нет вакуума. Одни производители делают её герметичной (отсюда и название) и заполняют очищенным и осушенным воздухом или нейтральными газами, в частности, азотом; а для выравнивания давления устанавливают тонкую металлическую или пластиковую мембрану. (В таком случае внутри корпуса жёсткого диска предусматривается маленький карман для пакетика силикагеля, который абсорбирует водяные пары, оставшиеся внутри корпуса после его герметизации). Другие производители выравнивают давление через небольшое отверстие с фильтром, способным задерживать очень мелкие (несколько микрометров) частицы. Однако в этом случае выравнивается и влажность, а также могут проникнуть вредные газы. Выравнивание давления необходимо, чтобы предотвратить деформацию корпуса гермозоны при перепадах атмосферного давления и температуры, а так же при прогреве устройства во время работы.

Пылинки, оказавшиеся при сборке в гермозоне и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр — пылеуловитель.

Низкоуровневое форматирование

На заключительном этапе сборки устройства поверхности пластин форматируются — на них формируются дорожки и секторы.

Границы зон и количество секторов на дорожку для каждой зоны хранятся в ПЗУ блока электроники.

Кроме того, в действительности на каждой дорожке есть дополнительные резервные секторы. Если в каком либо секторе возникает неисправимая ошибка, то этот сектор может быть подменён резервным (англ. remaping ). Конечно, данные, хранившиеся в нём, скорее всего, будут потеряны, но ёмкость диска не уменьшится. Существует две таблицы переназначения: одна заполняется на заводе, другая в процессе эксплуатации.

Таблицы переназначения секторов также хранятся в ПЗУ блока электроники.

В связи с вышеизложенным существует очень живучая легенда о том, что корректировка таблиц переназначения и зон может увеличить ёмкость жёсткого диска. Для этого существует масса утилит, но на практике оказывается, что если прироста и удаётся добиться, то незначительного. Современные диски настолько дёшевы, что подобная корректировка не стоит потраченных на это ни сил, ни времени.

Блок электроники

В ранних жёстких дисках управляющая логика была вынесена на MFM или RLL контроллер компьютера, а плата электроники содержала только модули аналоговой обработки и управление шпиндельным двигателем, позиционером и коммутатором головок. Увеличение скоростей передачи данных вынудило разработчиков уменьшить до предела длину аналогового тракта, и в современных жёстких дисках блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала.

Интерфейсный блок обеспечивает сопряжение электроники жёсткого диска с остальной системой.

Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера.

Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя.

Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации). Для цифровой обработки применяются различные методы, например метод PRML (Partial Response Maximum Likelihood — максимальное правдоподобие при неполном отклике). Осуществляется сравнении принятого сигнала с образцами. При этом выбирается образец наиболее похожий по форме и временным характеристикам с декодируемым сигналом.

Технологии записи данных

Принцип работы жёстких дисков похож на работу магнитофонов. Рабочая поверхность диска движется относительно считывающей головки (например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки, возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке из-за эффекта электромагнитной индукции.

В последнее время для считывания применяют магниторезистивный эффект и используют в дисках магниторезистивные головки. В них, изменение магнитного поля приводит к изменению сопротивления, в зависимости от изменения напряженности магнитного поля. Подобные головки позволяют увеличить вероятность достоверности считывания информации (особенно при больших плотностях записи информации).

Метод параллельной записи

На данный момент это всё ещё самая распространенная технология записи информации на НЖМД. Биты информации записываются с помощью маленькой головки, которая проходя над поверхностью вращающегося диска намагничивает миллиарды горизонтальных дискретных областей — доменов. Каждая из этих областей является логическим нулём или единицей, в зависимости от намагниченности.

Максимально достижимая при использовании данного метода плотность записи составляет около 23 Гбит/см². В настоящее время происходит постепенное вытеснение данного метода методом перпендикулярной записи.

Метод перпендикулярной записи

Метод перпендикулярной записи — это технология, при которой биты информации сохраняются в вертикальных доменах. Это позволяет использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Плотность записи у современных образцов — 15-23 Гбит/см², в дальнейшем планируется довести плотность до 60—75 Гбит/см².

Жёсткие диски с перпендикулярной записью доступны на рынке с 2005 года.

Метод тепловой магнитной записи

HDD (Hard Disk Drive – устройство управления жесткими дисками, винчестер, жесткий диск, дисковод жестких дисков, накопитель на жестком магнитном диске (НМЖД), Hard Magmetic Disk Drive (HMDD)) используется для хранения больших объемов информации пользователя.

Разобранный жесткий диск

Рисунок 1. Разобранный жесткий диск

Назначение

НЖМД является наиболее совершенным и сложным устройством современного ПК. Его диски способны вместить много мегабайт информации, которая передается с большой скоростью. Основные принципы работы жесткого диска за время его существования остались практически неизменными. НЖМД помещен в герметичный металлический корпус, который защищает дисковод от частичек пыли и защищает накопитель от электромагнитных помех.

НЖМД служит для длительного хранения информации, при этом в процессе работы данные могут удаляться и записываться. Жесткий диск используется для хранения больших объемов информации. Емкость жестких дисков современных ПК составляет несколько терабайт.

История

НЖМД объёмом $44$ Мб ($1980$-е гг.)

Рисунок 2. НЖМД объёмом $44$ Мб ($1980$-е гг.)

Строение и принцип работы НЖМД

Жесткий диск помещен в герметичную железную коробку, в которой размещены магнитные диски, блок головок для чтения и записи и электродвигатель.

Готовые работы на аналогичную тему


При включении ПК электродвигатель раскручивает магнитный диск до скорости в несколько тысяч об/мин и диск вращается в течении всего времени, пока ПК включен.

Устройство и принцип работы НЖМД

Рисунок 4. Устройство и принцип работы НЖМД

Логическая структура магнитного диска

  • загрузочный сектор (boot record) – сектор с номером $0$, в котором содержится небольшая программа, с помощью которой ПК определяет возможность загрузки операционной системы с данного диска;
  • таблица размещения файлов, в которой хранятся сведения о размещении файлов на диске;
  • область данных (data area), которая служит для непосредственного хранения данных и занимает основную часть дискового пространства.

Основные параметры жесткого диска

Емкость – для настольных ПК от $40$ Гб до нескольких Тб.

Скорость чтения данных. $IDE$ ($ATA$) имеет максимальную скорость передачи данных $2,1–8,3$ Мб/сек, $EIDE$ ($ATA-2$) – $11,1–33,3$ Мб/сек. Эта скорость зависит от того, куда передаются данные: в регистры ЦП или непосредственно в оперативную память (более производительный режим).

Скорость вращения диска достигает $15 \ 000$ об/мин. Скорость вращения жесткого диска в основном влияет на сокращение среднего времени доступа (поиска). Жесткие диски вращаются непрерывно даже тогда, когда к ним нет обращений, что увеличивает скорость передачи данных, т.к. при обращении не тратится время на разгон диска.

Стандартные скорости для настольных ПК $5 \ 400$, $5 \ 900$, $7 \ 200$ и $10 \ 000$ об/мин. В ноутбуках скорость вращения меньше – $4 \ 200$, $5 \ 400$ и $7 \ 200$ об/мин.

Размер кэш-памяти, в которую ПК помещает данные, наиболее часто используемые.

Фирма-производитель. Производством жестких дисков занимаются $7$ компаний: Fujitsu, Hitachi, Maxtor, Samsung, Seagate, Toshiba и Western Digital. При этом каждая модель одного производителя имеет свои, только ей присущие, особенности.

Интерфейсы подключения НЖМД

В современных ПК существуют НЖМД с различными интерфейсами подключения:

$IDE$ (или $ATA$) – интерфейс подключения жесткого диска к контроллеру с помощью $40-$ или $80$-жильного шлейфа. К одному шлейфу можно подключить сразу $2$ устройства, для чего необходимо произвести некоторые дополнительные настройки.

Serial $ATA$ ($SATA$) – интерфейс с более высокой скоростью, поддерживаемый всеми современными системными платами. Данные передаются по семижильному кабелю, накопители конфигурируются автоматически без дополнительных настроек.

$SCSI$ – производительный параллельный интерфейс, который применяется в системах на основе сервера. Системные платы с поддержкой $SCSI$ встречаются редко, поэтому для подключения $SCSI$-дисков необходимо установить дополнительный $SCSI$-контроллер. В некоторых современных системах встречается интерфейс – $SAS$ (Serial Attached SCSI).

С тех беспечальных времен утекло уже немало воды. Многие современные пользователи не знают даже о всех возможностях постоянно используемых ими приложений. Чего уж там говорить об устройстве операционной системы или особенностях упрятанной в системный блок аппаратуры! С одной стороны, это не может не радовать — не знают, поскольку нет необходимости это знать. Люди сейчас просто играют в игры, смотрят фильмы, слушают музыку, переписываются с друзьями по всему земному шару, причем сразу после покупки и установки компьютера на рабочий стол, а не после того, как изучат программирование и архитектуру ЭВМ и сами напишут все необходимые программы.

НЖМД с точки зрения механики

Магнитный слой

Возвращаемся к аббревиатуре и вспоминаем, что у нас вращаются не просто какие-то там абстрактные диски, а магнитные, т. е. имеющие покрытие с определенными магнитными свойствами. Именно благодаря ему диски и способны хранить информацию. На первом уровне абстракции можно принять, что каждый микроскопический участок определенной площади (о чем чуть позже) хранит ровно один бит данных. Соответственно, его можно считать или записать.

Магнитное покрытие также имеет свои характеристики. Во-первых, это его площадь нанесения, которая несколько меньше, нежели весь диск. Использовать области у самых краев обычно чревато последствиями из-за особенностей технологии изготовления — не получается в этих областях нанести покрытие идеально. То же самое можно сказать и о центре. Соответственно, вся рабочая область заключена между двумя числами — минимальным и максимальным радиусом, первый из которых строго больше нуля, а второй — строго меньше радиуса самого диска. И вторым важнейшим параметром является плотность записи, т. е. величина, обратная площади, потребной на хранение единицы информации. На практике же этим значением пользуются не часто, оперируя величинами продольной и поперечной плотностей записи, что связано с механикой работы самого накопителя. Изучим этот вопрос поподробнее.

Головки, дорожки, сектора

Несмотря на то что для хранения информации используется почти вся поверхность диска, в каждый момент времени мы можем работать лишь с небольшой ее частью (иначе не нужно было бы и с вращением огород городить). Для чтения или записи данных используется магнитная головка (по одной на каждую используемую сторону дисков в пакете), летящая над поверхностью диска на небольшой высоте. Соответственно, за один оборот диска под ней проходит целая концентрическая дорожка, а для доступа к соседним областям головку необходимо смещать к центру или в обратном направлении. Совокупность всех дорожек, расположенных на равном расстоянии от центра на разных дисках, кстати, именуется цилиндром. Каждая дорожка имеет отличную от нуля ширину, так что на диске помещается конечное их количество. Сколько? Зависит от ширины рабочего слоя (которая, в свою очередь, определяется в основном диаметром диска) и от поперечной плотности записи. Ну или наоборот: поперечная плотность записи — это показатель того, сколько дорожек мы можем разместить в одном дюйме при текущем уровне технологии производства дисков и головок. Обычно определяющим является второе — резкое увеличение поперечной плотности связано с внедрением новых технологий производства магнитных головок, позволяющих им оперировать с дорожками меньшей ширины. Происходит такое, к сожалению, достаточно редко, зато сразу же существенно увеличивает емкость дисков.

Продольная же плотность записи показывает, сколько бит информации можно вместить на один дюйм длины окружности, которую собой представляет дорожка, рассматриваемая в качестве математической абстракции. Эта характеристика тоже зависит от уровня технологии производства дисков и головок, однако менее подвержена скачкообразным изменениям, поскольку при одной и той же технологии производства головок может быть увеличена за счет улучшения характеристик магнитного покрытия (либо переход на новую технологию, либо улучшение текущей). Правда, несмотря на то что продольная плотность измеряется в битах на дюйм, на самом деле с отдельными битами на дисках не работают — слишком уж мелкая величина. И с байтами, обычно, тоже. Разве что в очень-очень старых компьютерах емкость запоминающих устройств была столь небольшой, что процессору удавалось адресовать не только каждый байт оперативной памяти, но и каждый байт на магнитных барабанах (диски тогда еще не применялись), поэтому иерархическая система памяти не требовалась — она вся могла считаться оперативной.

Однако к моменту появления первых персональных компьютеров емкость дисковых накопителей стала уже слишком большой, чтобы адресовать напрямую каждый байт, так что они окончательно стали устройствами с так называемым блочным доступом: минимальной единицей информации, которую можно считать с диска или записать на него, является блок или сектор. Типичный его размер для IBM PC и последователей составляет, кстати, 512 байт. Хотя изначально допустимы были и другие значения, но стандартными они не стали, так что масса программного обеспечения просто неспособна работать с секторами, отличными от указанного выше размера. Только сейчас некоторые производители жестких дисков начали применять увеличенные в восемь раз секторы (по 4К байт, соответственно), однако этот процесс находится лишь в начальной стадии.

В любом случае, на дорожке должно помещаться целое количество секторов. Причем крайне желательно, чтобы на соседних дорожках количество секторов было одинаковым. В случае дискет или первых винчестеров так и вовсе — считалось, что все дорожки содержат одинаковое количество секторов. Так что фактическая продольная плотность записи весьма быстро возрастала от окраин к центру, вместе с уменьшением длины дорожек. Причем максимальное ее значение ограничивалось технологией, так что, по сути, бо́льшая часть площади внешних дорожек расходовалась нерационально. Впрочем, пока дорожек было мало (на дискетах, например, их количество равно 40 или 80), с этим можно было мириться, а вот с ростом поперечной плотности записи такие потери становились все более и более существенными. Некоторое время с ними ничего не могли поделать, поскольку системное программное обеспечение было рассчитано на постоянное количество секторов на дорожке, однако по мере совершенствования дисковых интерфейсов и переноса большей части электроники непосредственно в накопитель реальную физическую структуру последнего от программ удалось спрятать.

В общем, к чему все это? К тому, что из-за блочной организации дискового пространства с точки зрения операционных систем и прочего программного обеспечения теоретическая продольная плотность записи (обычно указываемая для всего жесткого диска) на практике недостижима. Точнее, достижима она лишь для нескольких дорожек — внутренних в каждой зоне, а на внешних реальная плотность записи ниже теоретической. Впрочем, благодаря зонной организации, отличается она не так уж и сильно, так что для наших целей можно считать и продольную, и поперечную плотность записи постоянными характеристиками НЖМД. Но очень слабо зависящими от производителя — как мы увидим далее, для всех потребительских характеристик накопителя желательно, чтобы плотность записи (в обоих направлениях) была бы максимальной. Именно поэтому о плотности записи вспоминают лишь тогда, когда при смене линеек накопителей производителю удается ее увеличить. А искусственно ее занижать (по сравнению с технологически возможной) просто невыгодно. Вот и не занижают.

Теперь же, разобравшись более-менее с низкоуровневыми характеристиками винчестеров, поднимемся на уровень выше — к тем параметрам, которые нужны нам, как пользователям, на практике.

Емкость

Начнем с самого простого, а для многих — основного и чуть ли не единственного параметра. Действительно: приступая к выбору винчестера, большинство сначала определяется с его емкостью, а потом уже (если есть желание) начинает выбирать конкретную модель из нескольких равных по объему. Кроме того, начинать с этого параметра удобно потому, что он достаточно прост :)

Действительно, чему равна емкость НЖМД? Количеству жестких дисков (точнее, рабочих поверхностей — не у каждого диска используются обе стороны из-за ограничений по высоте накопителя, но нам сейчас это не совсем важно), умноженному на емкость каждого из них. А емкость одной рабочей поверхности (одной стороны диска) равна его площади, умноженной на плотность записи. Площадь же круга (опять же — мы помним, что у нас, скорее, кольцо, поскольку внутренние и внешние области не используются, однако их размеры обычно постоянны, так что можно и упростить картину для ясности) пропорциональна квадрату его диаметра. Таким образом, увеличивая диаметр дисков и их количество в пакете при сохранении плотности записи, мы очень быстро увеличиваем емкость накопителя, причем диаметр более важен: количество дисков дает лишь линейный рост емкости, а диаметр — квадратичный. А при равных количестве и диаметре дисков подобный же эффект дает увеличение плотности записи. В общем, для получения максимальной емкости увеличивать нужно все, кроме скорости вращения — она ни малейшего влияния не оказывает.

Энергопотребление

Почему мы ставим эту характеристику на второе место — выше производительности? Мода сейчас такая — на энергоэффективность. Во-первых. Во-вторых же, в фаворе ныне и портативные компьютеры, которые по объемам продаж уже обогнали стационарных, а там экономия энергии не прихоть, а насущная необходимость — многие готовы ради лишнего часа автономной работы пожертвовать и половиной производительности.

Итак, что же влияет на потребление энергии? Очевидно, что плотность записи на нее не влияет. А вот все механические характеристики дисков влияют, причем отрицательным образом. Действительно — работа силы трения тем выше, чем выше скорость вращения, следовательно, низкооборотистые диски будут всегда экономичнее высокооборотистых. Причем при одинаковой скорости вращения требуется тем более мощный электродвигатель, чем тяжелее пакет дисков. А последний тем тяжелее (при прочих равных), чем больше в нем дисков и чем больше их диаметр. Таким образом, для максимальной экономии энергии нужно уменьшать диаметр дисков, их количество и скорость их вращения.

Заметим, что выше описан, так сказать, экстенсивный (т. е. чисто количественный) способ экономии энергии. Кроме него есть и интенсивный — развивать технологии. Например, если мы освоим новый материал для производства дисков, который позволит сделать их более легкими, то при том же диаметре и количестве дисков уменьшится масса всего пакета, а следовательно, и сила трения, и потребляемая на ее преодоление мощность. Аналогичного эффекта можно добиться, применив улучшенные подшипники в системе подвеса дисков. Улучшение технологии магнитных головок позволяет им работать с меньшими областями намагничивания и обходиться в работе меньшими токами, а это тоже благотворно влияет на энергопотребление. В общем, есть масса безусловно полезных способов борьбы с излишним потреблением энергии, которыми пользуются все производители. Но очень часто бывает так, что все технологические ухищрения уже применены, а достигнутого уровня экономии все равно недостаточно. В этом случае не остается ничего иного, кроме как использовать экстенсивные методы.

Скорость выполнения последовательных операций

И вот, наконец-то, мы добрались и до производительности. Начнем с линейных операций, благо многие до сих пор считают скорость копирования файлов мерилом производительности винчестеров. В общем случае это абсолютно неправильно, хотя… если основная и единственная задача накопителя — служить хранилищем видеотеки, то, действительно, последовательные операции наиболее важны: мы работаем с большими файлами, причем читаем или записываем их исключительно последовательно от начала к концу.

В общем, подводя итоги, для увеличения скоростей линейных чтения и записи производителям необходимо увеличивать плотность записи, скорость вращения дисков и их диаметр (последнее никак не повлияет на внутренние дорожки, зато повысит скорость на внешних и, соответственно, увеличит ее и в среднем).

Скорость выполнения случайных операций

Итак, нам необходим определенный блок с данными (мы помним, что именно он является наименьшей единицей). Мы не можем просто взять его и получить (что легко делается в носителях на базе флэш-памяти — там по номеру блока нужный выдается сразу, где бы он ни располагался, что и обеспечивает этим накопителям превосходное время доступа как минимум на операциях чтения) — сначала нужно переместить головку на нужную дорожку, а потом дождаться прохождения под ней нужного сектора. Сумма же времени выполнения этих операций и будет давать нам время доступа.

После того, как сектор окажется в нужном месте, его требуется прочитать или записать, так что теоретически на полную скорость выполнения случайных операций влияют и все те факторы, что важны для последовательных операций. Однако на самом деле ими вполне можно пренебречь — блоки данных настолько невелики, что само физическое их чтение занимает много меньше времени, чем позиционирование головки и ожидание. Таким образом, для получения минимального времени доступа к данным (и, следовательно, максимальной производительности на случайных операциях) необходимо уменьшать диаметр диска и увеличивать его скорость вращения.

Некоторые практические примеры

Несложно заметить, что все требования к физическим параметрам жестких дисков весьма противоречивы — например, для увеличения скорости последовательных операций диаметр диска нужно увеличивать, а вот для лучшего поведения на случайных запросах требуется поступать в точности наоборот. Именно поэтому конструкторам постоянно приходится идти на компромиссы, а диски для разных сегментов рынка абсолютно разные. Посмотрим — какие. Для лучшего закрепления материала :)

Диски массовых серий

Требуется: высокая емкость при низкой стоимости.

Желательно: высокая производительность на линейных и случайных операциях.

Нежелательно: высокое энергопотребление.

Высокоскоростные накопители

Требуется: высокая скорость выполнения случайных операций.

Желательна: высокая производительность на линейных шаблонах.

Энергоэффективные НЖМД

Требуется: высокая емкость при низкой стоимости и энергопотреблении.

Мобильные винчестеры

Требуется: компактность, низкое энергопотребление.

Желательна: высокая емкость.

Итого

В целом, как видим, все достаточно просто и легко объяснимо. Правда у особо дотошных читателей уже наверняка на языке вертится вопрос — а почему же тогда диски разных производителей (и даже разных семейств одного производителя) даже при примерно равных низкоуровневых характеристиках нередко сильно различаются по производительности? Самый простой, но на деле ничего не объясняющий ответ — а потому, что у них разная электроника. В чем там бывают различия и как они сказываются на производительности и других характеристиках — все это будет темой следующих статей.

image

Он магнитный. Он электрический. Он фотонный. Нет, это не новое супергеройское трио из вселенной Marvel. Речь идёт о хранении наших драгоценных цифровых данных. Нам нужно где-то их хранить, надёжно и стабильно, чтобы мы могли иметь к ним доступ и изменять за мгновение ока. Забудьте о Железном человеке и Торе — мы говорим о жёстких дисках!

Итак, давайте погрузимся в изучении анатомии устройств, которые мы сегодня используем для хранения миллиардов битов данных.

You spin me right round, baby

Механический накопитель на жёстких дисках (hard disk drive, HDD) был стандартом систем хранения для компьютеров по всему миру в течение более 30 лет, но лежащие в его основе технологии намного старше.

Первый коммерческий HDD компания IBM выпустила в 1956 году, его ёмкость составляла аж 3,75 МБ. И в целом, за все эти годы общая структура накопителя не сильно изменилась. В нём по-прежнему есть диски, которые используют для хранения данных намагниченность, и есть устройства для чтения/записи этих данных. Изменился же, и очень сильно, объём данных, который можно на них хранить.

В 1987 году можно было купить HDD на 20 МБ примерно за 350 долларов; сегодня за такие же деньги можно купить 14 ТБ: в 700 000 раз больший объём.

Мы рассмотрим устройство не совсем такого размера, но тоже достойное по современным меркам: 3,5-дюймовый HDD Seagate Barracuda 3 TB, в частности, модель ST3000DM001, печально известную своим высоким процентом сбоев и вызванных этим юридических процессов. Изучаемый нами накопитель уже мёртв, поэтому это будет больше похоже на аутопсию, чем на урок анатомии.



Перевернув накопитель, мы видим печатную плату и несколько разъёмов. Разъём в верхней части платы используется для двигателя, вращающего диски, а нижние три (слева направо) — это контакты под перемычки, позволяющие настраивать накопитель под определённые конфигурации, разъём данных SATA (Serial ATA) и разъём питания SATA.

Serial ATA впервые появился в 2000 году. В настольных компьютерах это стандартная система, используемая для подключения приводов к остальной части компьютера. Спецификация формата претерпела множество ревизий, и сейчас мы пользуемся версией 3.4. Наш труп жёсткого диска имеет более старую версию, но различие заключается только в одном контакте в разъёме питания.

В подключениях передачи данных для приёма и получения данных используется дифференцированный сигнал: контакты A+ и A- используются для передачи инструкций и данных в жёсткий диск, а контакты B — для получения этих сигналов. Подобное использование спаренных проводников значительно снижает влияние на сигнал электрического шума, то есть устройство может работать быстрее.

Если говорить о питании, то мы видим, что в разъёме есть по паре контактов каждого напряжения (+3.3, +5 и +12V); однако большинство из них не используется, потому что HDD не требуется много питания. Эта конкретная модель Seagate при активной нагрузке использует менее 10 Вт. Контакты, помеченные как PC, используются для precharge: эта функция позволяет вытаскивать и подключать жёсткий диск, пока компьютер продолжает работать (это называется горячей заменой (hot swapping)).

Контакт с меткой PWDIS позволяет удалённо перезагружать (remote reset) жёсткий диск, но эта функция поддерживается только с версии SATA 3.3, поэтому в моём диске это просто ещё одна линия питания +3.3V. А последний контакт, помеченный как SSU, просто сообщает компьютеру, поддерживает ли жёсткий диск технологию последовательной раскрутки шпинделей staggered spin up.

Перед тем, как компьютер сможет их использовать, диски внутри устройства (которые мы скоро увидим), должны раскрутиться до полной скорости. Но если в машине установлено много жёстких дисков, то внезапный одновременный запрос питания может навредить системе. Постепенная раскрутка шпинделей полностью устраняет возможность таких проблем, но при этом перед получением полного доступа к HDD придётся подождать несколько секунд.


Сняв печатную плату, можно увидеть, как она соединяется с компонентами внутри устройства. HDD не герметичны, за исключением устройств с очень большими ёмкостями — в них вместо воздуха используется гелий, потому что он намного менее плотный и создаёт меньше проблем в накопителях с большим количеством дисков. С другой стороны, не стоит и подвергать обычные накопители открытому воздействию окружающей среды.

Благодаря использованию таких разъёмов минимизируется количество входных точек, через которые внутрь накопителя могут попасть грязь и пыль; в металлическом корпусе есть отверстие (большая белая точка в левом нижнем углу изображения), позволяющее сохранять внутри давление окружающей среды.


Теперь, когда печатная плата снята, давайте посмотрим, что находится внутри. Тут есть четыре основных чипа:

  • LSI B64002: чип основного контроллера, обрабатывающий инструкции, передающий потоки данных внутрь и наружу, корректирующий ошибки и т.п.
  • Samsung K4T51163QJ: 64 МБ DDR2 SDRAM с тактовой частотой 800 МГц, используемые для кэширования данных
  • Smooth MCKXL: управляет двигателем, крутящим диски
  • Winbond 25Q40BWS05: 500 КБ последовательной флеш-памяти, используемой для хранения встроенного ПО накопителя (немного похожего на BIOS компьютера)

Открыть накопитель просто, достаточно открутить несколько болтов Torx и вуаля! Мы внутри…


Учитывая, что он занимает основную часть устройства, наше внимание сразу привлекает большой металлический круг; несложно понять, почему накопители называются дисковыми. Правильно их называть пластинами; они изготавливаются из стекла или алюминия и покрываются несколькими слоями различных материалов. Этот накопитель на 3 ТБ имеет три пластины, то есть на каждой стороне одной пластины должно храниться 500 ГБ.


Изображение довольно пыльное, такие грязные пластины не соответствуют точности проектирования и производства, необходимого для их изготовления. В нашем примере HDD сам алюминиевый диск имеет толщину 0,04 дюйма (1 мм), но отполирован до такой степени, что средняя высота отклонений на поверхности меньше 0,000001 дюйма (примерно 30 нм).

Базовый слой имеет глубину всего 0,0004 дюйма (10 микронов) и состоит из нескольких слоёв материалов, нанесённых на металл. Нанесение выполняется при помощи химического никелирования с последующим вакуумным напылением, подготавливающих диск для основных магнитных материалов, используемых для хранения цифровых данных.

Этот материал обычно является сложным кобальтовым сплавом и составлен из концентрических кругов, каждый из которых примерно 0,00001 дюйма (примерно 250 нм) в ширину и 0,000001 дюйма (25 нм) в глубину. На микроуровне сплавы металлов образуют зёрна, похожие на мыльные пузыри на поверхности воды.

Каждое зерно обладает собственным магнитным полем, но его можно преобразовать в заданном направлении. Группирование таких полей приводит к возникновению битов данных (0 и 1). Если вы хотите подробнее узнать об этой теме, то прочитайте этот документ Йельского университета. Последними покрытиями становятся слой углерода для защиты, а потом полимер для снижения контактного трения. Вместе их толщина составляет не больше 0,0000005 дюйма (12 нм).

Скоро мы увидим, почему пластины должны изготавливаться с такими строгими допусками, но всё-таки удивительно осознавать, что всего за 15 долларов можно стать гордым владельцем устройства, изготовленного с нанометровой точностью!

Однако давайте снова вернёмся к самому HDD и посмотрим, что же в нём есть ещё.


Жёлтым цветом показана металлическая крышка, надёжно крепящая пластину к электродвигателю привода шпинделя — электроприводу, вращающему диски. В этом HDD они вращаются с частотой 7200 rpm (оборотов/мин), но в других моделях могут работать медленнее. Медленные накопители имеют пониженный шум и энергопотребление, но и меньшую скорость, а более быстрые накопители могут достигать скорости 15 000 rpm.

Чтобы снизить урон, наносимый пылью и влагой воздуха, используется фильтр рециркуляции (зелёный квадрат), собирающий мелкие частицы и удерживающий их внутри. Воздух, перемещаемый вращением пластин, обеспечивает постоянный поток через фильтр. Над дисками и рядом с фильтром есть один из трёх разделителей пластин: помогающих снижать вибрации и поддерживать как можно более равномерный поток воздуха.

В левой верхней части изображения синим квадратом указан один из двух постоянных стержневых магнитов. Они обеспечивают магнитное поле, необходимое для перемещения компонента, указанного красным цветом. Давайте отделим эти детали, чтобы видеть их лучше.


То, что выглядит как белый пластырь — это ещё один фильтр, только он очищает частицы и газы, попадающие снаружи через отверстие, которое мы видели выше. Металлические шипы — это рычаги перемещения головок, на которых находятся головки чтения-записи жёсткого диска. Они с огромной скоростью движутся по поверхности пластин (верхней и нижней).

Посмотрите это видео, созданное The Slow Mo Guys, чтобы увидеть, насколько они быстрые:

В конструкции не используется чего-то вроде шагового электродвигателя; для перемещения рычагов по соленоиду в основании рычагов проводится электрический ток.


Обобщённо их называют звуковыми катушками, потому что они используют тот же принцип, который применяется в динамиках и микрофонах для перемещения мембран. Ток генерирует вокруг них магнитное поле, которое реагирует на поле, созданное стержневыми постоянными магнитами.

Не забывайте, что дорожки данных крошечны, поэтому позиционирование рычагов должно быть чрезвычайно точным, как и всё остальное в накопителе. У некоторых жёстких дисков есть многоступенчатые рычаги, которые вносят небольшие изменения в направление только одной части целого рычага.

В некоторых жёстких дисках дорожки данных накладываются друг на друга. Эта технология называется черепичной магнитной записью (shingled magnetic recording), и её требования к точности и позиционированию (то есть к попаданию постоянно в одну точку) ещё строже.


На самом конце рычагов есть очень чувствительные головки чтения-записи. В нашем HDD содержится 3 пластины и 6 головок, и каждая из них плавает над диском при его вращении. Для этого головки подвешены на сверхтонких полосках металла.

И здесь мы можем увидеть, почему умер наш анатомический образец — по крайней мере одна из головок разболталась, и что бы ни вызвало изначальный повреждение, оно также погнуло один из рычагов. Весь компонент головки настолько мал, что, как видно ниже, очень сложно получить её качественный снимок обычной камерой.


Чуть дальше, и головки не смогут распознавать изменения магнитных полей дорожки; если бы головки лежали на поверхности, то просто поцарапали бы покрытие. Именно поэтому нужно фильтровать воздух внутри корпуса накопителя: пыль и влага на поверхности диска просто сломают головки.


На этом изображении другого жёсткого диска устройства чтения и записи находятся под всеми электрическими соединениями. Запись выполняется системой тонкоплёночной индуктивности (thin film induction, TFI), а чтение — туннельным магнеторезистивным устройством (tunneling magnetoresistive device, TMR).

Создаваемые TMR сигналы очень слабы и перед отправкой должны проходить через усилитель для повышения уровней. Отвечающий за это чип находится рядом с основанием рычагов на изображении ниже.


Как сказано во введении к статье, механические компоненты и принцип работы жёсткого диска почти не изменились за многие годы. Больше всего совершенствовалась технология магнитных дорожек и головок чтения-записи, создавая всё более узкие и плотные дорожки, что в конечном итоге приводило к увеличению объёма хранимой информации.

Однако механические жёсткие диски имеют очевидные ограничения скорости. На перемещение рычагов в нужное положение требуется время, а если данные разбросаны по разным дорожкам на различных пластинах, то на поиски битов накопитель будет тратить довольно много микросекунд.

Прежде чем переходить к другому типу накопителей, давайте укажем ориентировочные показатели скорости типичного HDD. Мы использовали бенчмарк CrystalDiskMark для оценки жёсткого диска WD 3.5" 5400 RPM 2 TB:


В первых двух строчках указано количество МБ в секунду при выполнении последовательных (длинный, непрерывный список) и случайных (переходы по всему накопителю) чтения и записи. В следующей строке показано значение IOPS, то есть количество операций ввода-вывода, выполняемых каждую секунду. В последней строке показана средняя задержка (время в микросекундах) между передачей операции чтения или записи и получением значений данных.

В общем случае мы стремимся к тому, чтобы значения в первых трёх строчках были как можно больше, а в последней строчке — как можно меньше. Не беспокойтесь о самих числах, мы просто используем их для сравнения, когда будем рассматривать другой тип накопителя: твердотельный накопитель.

Читайте также: