Медианы биссектрисы и высоты треугольника доказательство кратко

Обновлено: 02.07.2024

Треугольником будем называть такую геометрическую фигуру, которая состоит из трех точек, не имеющих общей прямой, соединенных отрезками.

Точки в рамках определения 1 называются вершинами треугольника.

Отрезки в рамках определения 1 называются сторонами треугольника.

Треугольник будем обозначать тремя точками его вершин (рис. 1)

Медиана

Введем такое понятие, связанное с треугольниками как медиана.

Медианой будем называть отрезок, который соединяет вершину с серединой противоположной стороны.

Готовые работы на аналогичную тему

Очевидно, что треугольник имеет три медианы. Для них справедлива следующая теорема (её доказательство в этой статье рассматривать не будем):

Все три медианы в треугольнике пересекаются в единственной точке, которая будет называться центроидом треугольника.

Биссектриса

Введем такое понятие, связанное с треугольниками как биссектриса.

Биссектрисой будем называть луч, который проведен из вершины так, что делит угол в этой вершине на две равные части.

Очевидно, что треугольник имеет три биссектрисы. Для них справедлива следующая теорема (её доказательство в этой статье рассматривать не будем):

Все три биссектрисы в треугольнике пересекаются в единственной точке, которая будет называться инцентром треугольника.

Высота

Введем такое понятие, связанное с треугольниками как высота.

Высотой будем называть отрезок, который проведен из вершины так, что падает на противоположную сторону под прямым углом.

Очевидно, что треугольник имеет три высоты. Для них справедлива следующая теорема (её доказательство в этой статье рассматривать не будем):

Все три высоты в треугольнике пересекаются в единственной точке, которая будет называться ортоцентром треугольника.

Пример задач

Пусть дан треугольник $ABC$. Доказать, что если в нем $BD$ будет и высотой и медианой, то $AB=BC$.

Изобразим рисунок по условию задачи (рис. 5).

Так как $BD$ является медианой, то по определению 4 будет верно равенство $AD=DC$

Так как $BD$ является высотой, то по определению 6 будет верно равенство $∠ADB=∠BDC=90^0$

У треугольников $ADB$ и $BDC$ сторона $BD$ будет общей, следовательно, по всему сказанному выше эти треугольники равняются по первому признаку. Но тогда и стороны $AB$ и $BC$ равны.

Пусть нам даны равные треугольники $ABC$ и $A'B'C'$. В них проведены высоты $BH$ и $B'H'$, соответственно. Доказать, что эти высоты в треугольниках будут равны между собой.

Изобразим рисунок по условию задачи (рис. 6).

Так как данные треугольники равны, то будет верно равенство $∠A=∠A'$

Так как $BH$ и $B'H'$ являются высотами, то по определению 6 будет верно равенство $∠AHB=∠A'H'B'=90^0$

Из треугольника $ABC$, имеем

Из треугольника $A'B'C'$ и равенства углов $∠A$ и $∠A'$, получим

По всему сказанному выше, треугольники $AHB$ и $A'B'H'$ равняются по первому признаку. Но тогда и стороны $BH$ и $B'H'$ равны.

Отрезок \(AC\) называется перпендикуляром, проведённым из точки \(A\) прямой \(a\), если прямые \(AC\) и \(a\) перпендикулярны.

пер3.jpg

Докажем, что от точки \(A\), не лежащей на прямой \(BC\), можно провести перпендикуляр к этой прямой.

Отложим от луча \(BC\) угол, равный данному, и совместим эти углы накладыванием (представим, что сложим лист бумаги с равными углами по стороне \(BC\)).

Прямая AA 1 перпендикулярна прямой \(BC\), а отрезок \(AC\) является перпендикуляром от точки \(A\) к прямой \(BC\).

Если допустить, что через точку \(A\) можно провести ещё один перпендикуляр к прямой \(BC\), то он бы находился на прямой, пересекающейся с AA 1 . Но две к одной и той же прямой перпендикулярные прямые должны быть параллельны и не могут пересекаться.

Это противоречие, что означает: через данную точку к прямой можно провести только один перпендикуляр.

Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

Поэтому для построения медианы необходимо выполнить следующие действия:
1. найти середину стороны;
2. соединить точку, являющуюся серединой стороны треугольника, с противолежащей вершиной отрезком — это и будет медиана.

Биссектриса треугольника — это отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противоположной стороне.

Поэтому для построения биссектрисы необходимо выполнить следующие действия:
1. построить биссектрису какого-либо угла треугольника (биссектриса угла — это луч, выходящий из вершины угла и делящий его на две равные части );
2. найти точку пересечения биссектрисы угла треугольника с противоположной стороной;
3. соединить вершину треугольника с точкой пересечения на противоположной стороне отрезком — это и будет биссектриса треугольника.

Bisektrise1.jpg

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противоположную сторону.

Поэтому для построения высоты необходимо выполнить следующие действия:
1. провести прямую, содержащую одну из сторон треугольника ( в случае, если проводится высота из вершины острого угла в тупоугольном треугольнике );
2. из вершины, лежащей напротив проведённой прямой, опустить перпендикуляр к ней ( перпендикуляр — это отрезок, проведённый из точки к прямой, составляющей с ней угол 90 ° ) — это и будет высота.

Augstums.jpg

Augstums1.jpg

Но, как выше упомянуто, для некоторых видов треугольников построение высот и точки их пересечения отличаются.

Если треугольник с прямым углом, то стороны, образующие прямой угол, можно назвать высотами, так как они перпендикулярны одна к другой. Точкой пересечения высот является общая вершина перпендикулярных сторон.

Augstums2.jpg

Если треугольник с тупым углом, то высоты, опущенные с вершин острых углов, выходят вне треугольника к продолжениям сторон. Прямые, на которых расположены высоты, пересекаются вне треугольника.

Augstums3.jpg

Если из одной и той же вершины провести медиану, биссектрису и высоту, то медиана окажется самым длинным отрезком, а высота — самым коротким отрезком.

Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.

Высота треугольника – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

Теорема

В любом треугольнике высоты (или их продолжения) пересекаются в одной точке (рис. 1 и 2), биссектрисы пересекаются в одной точке (рис. 3), медианы пересекаются в одной точке (рис. 4).


Теорема

В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой.


Верны и другие утверждения:
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Теорема

В любом треугольнике медианы точкой пересечения делятся в отношении \(2:1\) , считая от вершины.

Доказательство

Пусть \(AD\) и \(BE\) – медианы в треугольнике \(ABC\) , \(O\) – точка пересечения \(AD\) и \(BE\) .



\(DE\) – средняя линия в треугольнике \(ABC\) , тогда \(DE\parallel AB\) , значит \(\angle ADE = \angle BAD\) , \(\angle BED = \angle ABE\) , следовательно, треугольники \(ABO\) и \(DOE\) подобны (по двум углам).

Из подобия треугольников \(ABO\) и \(DOE\) : \(\dfrac = \dfrac = \dfrac\) .

Для других медиан треугольника \(ABC\) требуемое свойство доказывается аналогично.

Теорема

Медиана треугольника делит его на два равновеликих треугольника (равновеликие треугольники – это треугольники, у которых площади равны).

Доказательство

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию: \(S_ = 0,5\cdot AC\cdot h\) .



Пусть \(BD\) – медиана в треугольнике \(ABC\) , тогда \(AD = DC\) .

\(S_ = 0,5\cdot AD\cdot h\) ,

\(S_ = 0,5\cdot DC\cdot h\) .

Так как \(AD = DC\) , то \(S_ = S_\) , что и требовалось доказать.

Теорема

В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.

Верно и обратное: если медиана равна половине стороны, к которой она проведена, то она проведена из вершины прямого угла.

Доказательство

1) Докажем, что если \(\triangle ABC\) – прямоугольный, то \(BM=\frac12AC\) , где \(M\) – середина гипотенузы \(AC\) .



Достроим треугольник \(ABC\) до прямоугольника \(ABCD\) и проведем диагональ \(BD\) . Т.к. в прямоугольнике диагонали делятся точкой пересечения пополам и равны, то \(AC\cap BD=M\) , причем \(AM=MC=BM=MD\) , чтд.

2) Докажем, что если в треугольнике \(ABC\) медиана \(BM=AM=MC\) , то \(\angle B=90^\circ\) .



Треугольники \(AMB\) и \(CMB\) – равнобедренные, следовательно, \(\angle BAM=\angle ABM=\alpha, \quad \angle MBC=\angle MCB=\beta\) .

Т.к. сумма углов в треугольнике равна \(180^\circ\) , то для \(\triangle ABC\) :

\(\alpha+(\alpha+\beta)+\beta=180^\circ \Rightarrow \alpha+\beta=90^\circ \Rightarrow \angle B=90^\circ\) , чтд.

Теорема

Биссектриса треугольника делит его сторону на части, пропорциональные прилежащим сторонам:



Верно и обратное: если отрезок, проведенный из вершины треугольника к стороне, делит эту сторону на отрезки, пропорциональные прилежащим сторонам, то это биссектриса.

Доказательство

Площади треугольников, у которых есть равные углы, относятся как произведения сторон, образующих эти углы, то есть \[\dfrac>> = \dfrac = \dfrac\]

В итоге \(\dfrac = \dfrac>> = \dfrac\) , откуда \(\dfrac = \dfrac\) , что и требовалось доказать.

Теорема

Если точка равноудалена от сторон угла, то она лежит на его биссектрисе.

Верно и обратное: если точка лежит на биссектрисе угла, то она равноудалена от его сторон.



Доказательство

1) Докажем, что если \(KA=KB\) , то \(OK\) – биссектриса.
Рассмотрим треугольники \(AOK\) и \(BOK\) : они равны по катету и гипотенузе, следовательно, \(\angle AOK=\angle BOK\) , чтд.

2) Докажем, что если \(OK\) – биссектриса, то \(KA=KB\) .
Аналогично треугольники \(AOK\) и \(BOK\) равны по гипотенузе и острому углу, следовательно, \(KA=KB\) , чтд.

Высоты, медианы и биссектрисы треугольника постоянно встречаются нам в задачах по геометрии. Мы начнем с таблицы, в которой показано, что такое высоты, медианы и биссектрисы, и какими свойствами они обладают. Затем — подробные объяснения и решение задач.

Высоты, медианы, биссектрисы треугольника

Напомним, что высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.

Высота в треугольнике

Три высоты треугольника всегда пересекаются в одной точке. Вот как это выглядит в случае остроугольного треугольника.

Высоты в остроугольном треугольнике

Попробуйте провести три высоты в тупоугольном треугольнике. Получилось? Да, редкий выпускник справляется с этим заданием. Действительно, мы не можем опустить перпендикуляр из точки на отрезок , зато можем опустить его на прямую — то есть на продолжение стороны .

Высота в тупоугольном треугольнике

В этом случае в одной точке пересекаются не сами высоты, а их продолжения.

Высоты в тупоугольном треугольнике

А как выглядят три высоты в прямоугольном треугольнике? В какой точке они пересекаются?

Медиана треугольника — отрезок, соединяющий его вершину с серединой противоположной стороны.

Три медианы треугольника пересекаются в одной точке и делятся в ней в отношении , считая от вершины.

Свойство медианы

Биссектриса треугольника — отрезок, соединяющий вершину треугольника с точкой на противоположной стороне и делящий угол треугольника пополам.

У биссектрисы угла есть замечательное свойство — точки, принадлежащие ей, равноудалены от сторон угла. Поэтому три биссектрисы треугольника пересекаются в одной точке, равноудаленной от всех сторон треугольника. Эта точка является центром окружности, вписанной в треугольник.

Еще одно свойство биссектрисы пригодится тем, кто собирается решать задачу . Биссектриса треугольника делит противоположную сторону в отношении длин прилежащих сторон.

Свойство биссектрисы

Ты нашел то, что искал? Поделись с друзьями!

Разберем несколько задач, в которых речь идет о высотах, медианах и биссектрисах треугольника. Все задачи взяты из Банка заданий ФИПИ.

1. Найдите острый угол между биссектрисами острых углов прямоугольного треугольника. Ответ дайте в градусах.

Рисунок к задаче 1

Пусть биссектрисы треугольника (в котором угол равен ) пересекаются в точке .

Острый угол между биссектрисами на рисунке обозначен .

Угол смежный с углом , следовательно, .

Поскольку треугольник — прямоугольный, то .

2. Острые углы прямоугольного треугольника равны и . Найдите угол между высотой и биссектрисой, проведенными из вершины прямого угла. Ответ дайте в градусах.

Рисунок к задаче 2

Пусть — высота, проведенная из вершины прямого угла , — биссектриса угла .

Угол между высотой и биссектрисой — это угол .

3. Два угла треугольника равны и . Найдите тупой угол, который образуют высоты треугольника, выходящие из вершин этих углов. Ответ дайте в градусах.

Рисунок к задаче 3

Из треугольника (угол — прямой) найдем угол . Он равен .

Из треугольника ( — прямой) найдем угол . Он равен .

В треугольнике известны два угла. Найдем третий, то есть угол , который и является тупым углом между высотами треугольника :

4. В треугольнике угол равен , и — биссектрисы, пересекающиеся в точке . Найдите угол . Ответ дайте в градусах.

Рисунок к задаче 4

Пусть в треугольнике угол равен , угол равен .

Из треугольника получим, что .

5. В треугольнике угол равен , угол равен . , и — биссектрисы, пересекающиеся в точке . Найдите угол . Ответ дайте в градусах.

Рисунок к задаче 5

Найдем угол . Он равен .

Из треугольника найдем угол . Он равен .

6. В треугольнике , — медиана, угол равен , угол равен . Найдите угол . Ответ дайте в градусах.

Подсказка: Сделайте чертеж, найдите на нем равнобедренные треугольники и докажите, что они равнобедренные.

Биссектриса угла – это луч, исходящий из вершины угла и делящий его на два равных угла.

Биссектриса угла треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.

Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Высота треугольника – это перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону.

Основная литература:

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.

Дополнительная литература:

  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Вы уже знакомы с такими понятиями как треугольник, угол, биссектриса угла.

Разберем, как построить биссектрису треугольника, а также узнаем, что такое медиана и высота треугольника.


Начнём с понятия биссектриса угла треугольника. Это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны. AF – биссектриса ∠A треугольника ABC.


В любом треугольнике биссектрисы пересекаются в одной точке.

Введём понятие медианы треугольника.

Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника.


BM – медиана треугольника ABC.

В любом треугольнике медианы пересекаются в одной точке.


Введём понятие высоты треугольника.

Перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника.

AH – высота треугольника ABC.

В любом треугольнике высоты или их продолжения пересекаются в одной точке.

Итак, сегодня мы узнали, какие отрезки называются медианой, биссектрисой, высотой треугольника, и научились их изображать с помощью чертёжных инструментов.

На рисунке изображён треугольник ABC, при этом AD – медиана ∆ABC продолжена за сторону BC, так что AD = DE.

Докажем, что треугольники ABD и CED равны.

По условию в треугольниках ABD и CED: сторона AD равна стороне DE. Т. к. АD – медиана ∆ABC, то, по определению медианы, BD = DC.

∠ADB = ∠CDE (по свойству вертикальных углов).

Следовательно, ∆ABD = ∆CED (по первому признаку равенства треугольников: если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны).

Что и требовалось доказать.

Разбор решения заданий тренировочного модуля.

В треугольнике ABC проведены биссектрисы AD и BM, которые пересекаются в точке O. Найдите углы треугольника ABO, если ∠BAC = 50°, ∠ABC = 80°, а сумма углов треугольника ABO равна 180°.

1.Нарисуем рисунок по условию задачи.

2.По условию AD и BM – биссектрисы ∆ABC.

∠BAC = 50°, ∠BAC = 2∠BAO =50° → ∠BAO = 25°

∠ABC = 80°, ∠ABC= 2∠ABO = 80°→∠ABO = 40°

3.Т. к. сумма углов треугольника ABO равна 180°, то ∠ABO + ∠BAO + ∠AOB = 180°.

5.∠AOB = 180° – (25° + 40°) = 115°.

Ответ: ∠BAO = 25°, ∠ABO = 40°, ∠AOB = 115°.

В треугольнике COD: ∠O = 90°. Найдите ∠МОВ, если ОА – биссектриса угла ∠СОM, при этом ∠COА = 20°, а ВО– биссектриса ∠МОD.


1.По условию ∠СОD = 90°.

Кроме того, ОА – биссектриса угла ∠СОM → ∠МОА = ∠СОА = 20°.

2.ВО – биссектриса ∠МОD→∠ВОD = ∠МОВ.

3. ∠СОD = ∠МОА + ∠СОА + ∠ВОD + ∠МОВ = 20° + 20° + 2∠МОВ = 40° + 2∠МОВ = 90°.

Читайте также: