Логическое выражение это кратко

Обновлено: 02.07.2024

Эта лицензия позволяет другим редактировать, поправлять и брать за основу ваше произведение в некоммерческих целях до тех пор пока они указывают вас в качестве автора и лицензируют их новые творения на идентичных условиях.

Основы логики. Логические операции и таблицы истинности

На данной странице будут рассмотрены 6 логических операций: конъюнкция, дизъюнкция, инверсия, импликация, эквивалентность и исключающие или, которых вам будет достаточно для решения сложных логических выражений. Также мы рассмотрим порядок выполнения данных логических операций в сложных логических выражениях и представим таблицы истинности для каждой логической операции.

Высказывание - это повествовательное предложение, про которое можно определенно сказать истинно оно или ложно (истина (логическая 1), ложь (логический 0)).

Логические операции - мыслительные действия, результатом которых является изменение содержания или объема понятий, а также образование новых понятий.

Логическое выражение - устное утверждение или запись, в которое, наряду с постоянными величинами, обязательно входят переменные величины (объекты). В зависимости от значений этих переменных величин (объектов) логическое выражение может принимать одно из двух возможных значений: истина (логическая 1) или ложь (логический 0).

Сложное логическое выражение - логическое выражение, состоящее из одного или нескольких простых логических выражений (или сложных логических выражений), соединенных с помощью логических операций.

Конъюнкция - это сложное логическое выражение, которое считается истинным в том и только том случае, когда оба простых выражения являются истинными, во всех остальных случаях данное сложенное выражение ложно.

ABF
111
100
010
000

2) Логическое сложение или дизъюнкция:

Дизъюнкция - это сложное логическое выражение, которое истинно, если хотя бы одно из простых логических выражений истинно и ложно тогда и только тогда, когда оба простых логических выраженbя ложны.
Обозначение: F = A v B.

Таблица истинности для дизъюнкции

ABF
111
101
011
000

3) Логическое отрицание или инверсия:

Инверсия - это сложное логическое выражение, если исходное логическое выражение истинно, то результат отрицания будет ложным, и наоборот, если исходное логическое выражение ложно, то результат отрицания будет истинным. Другими простыми слова, данная операция означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО.

Обозначение: F = ¬ A.

Таблица истинности для инверсии

A ¬ А
10
01

4) Логическое следование или импликация:

Импликация - это сложное логическое выражение, которое истинно во всех случаях, кроме как из истины следует ложь. То есть данная логическая операция связывает два простых логических выражения, из которых первое является условием (А), а второе (В) является следствием.

Обозначение: F = A → B.

Таблица истинности для импликации


ABF
111
100
011
001

5) Логическая равнозначность или эквивалентность:

Эквивалентность - это сложное логическое выражение, которое является истинным тогда и только тогда, когда оба простых логических выражения имеют одинаковую истинность.

ABF
111
100
010
001



6) Операция XOR (исключающие или)

Обозначение: F = A ⊕ B .

AB F
110
101
011
000

Порядок выполнения логических операций в сложном логическом выражении

1. Инверсия;
2. Конъюнкция;
3. Дизъюнкция;
4. Импликация;
5. Эквивалентность.

Для изменения указанного порядка выполнения логических операций используются скобки.

Таблицы истинности можно составить и для произвольной логической функции F(a, b, c…).

В общем случае таблицы истинности имеют размер 2 N строк комбинаций для N независимых логических переменных.


Поскольку таблица истинности выражения состоит из строк со всеми возможными комбинациями значений переменных, она полностью определяет значение выражения.

Законы алгебры логики

Те, кому лень учить эти законы, должны вспомнить алгебру, где знание нескольких способов преобразования позволяет решать очень сложные уравнения.

Строго говоря, это не законы, а теоремы. Но их доказательство не входит в программу изучения. Впрочем, доказательство обычно основывается на построении полной таблицы истинности.

Замечание. Знаки алгебры логики намеренно заменены на сложение и умножение.


Замена операций импликации и эквивалентности

Операций импликации и эквивалентности иногда нет среди логических операций конкретного компьютера или транслятора с языка программирования. Однако для решения многих задач эти операции необходимы. Существуют правила замены данных операций на последовательности операций отрицания, дизъюнкции и конъюнкции.

Так, заменить операцию импликации можно в соответствии со следующим правилом:

A → B = ¬ A \/ B


Для замены операции эквивалентности существует два правила:


В справедливости данных формул легко убедиться, построив таблицы истинности для правой и левой частей обоих тождеств.

Алгебра логики (англ. algebra of logic) — один из основных разделов математической логики, в котором методы алгебры используются в логических преобразованиях.

Современная алгебра логики является разделом математической логики и изучает логические операции над высказываниями с точки зрения их истинностного значения (истина, ложь). Высказывания могут быть истинными, ложными или содержать истину и ложь в разных соотношениях.

Логическое высказывание — это любое повествовательное предложение, в отношении которого можно однозначно утверждать, что его содержание истинно или ложно.

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение.

Логических значений всего два: истина (TRUE) и ложь (FALSE). Это соответствует цифровому представлению — 1 и 0. Результаты каждой логической операции можно записать в виде таблицы. Такие таблицы называют таблицами истинности.

Основные операции алгебры логики

Операция, используемая относительно одной величины, называется унарной. Таблица значений данной операции имеет вид

A ¬A
истина ложь
ложь истина

A ¬A
1 0
0 1

Высказывание $A↖$ ложно, когда А истинно, и истинно, когда А ложно.

Геометрически отрицание можно представить следующим образом: если А — это некоторое множество точек, то $A↖$ — это дополнение множества А, т. е. все точки, которые не принадлежат множеству А.


Таблица истинности операции имеет вид

A B A ∧ B
истина ложь ложь
ложь истина ложь
ложь ложь ложь
истина истина истина

A B A ∧ B
1 0 0
0 1 0
0 0 0
1 1 1

Высказывание А ∧ В истинно только тогда, когда оба высказывания — А и В истинны.

Геометрически конъюнкцию можно представить следующим образом: если А, В — это некоторые множества точек, то А ∧ В есть пересечение множеств А и В.


Таблица истинности операции имеет вид

A B A ∨ B
истина ложь истина
ложь истина истина
ложь ложь ложь
истина истина истина

A B A ∨ B
1 0 1
0 1 1
0 0 0
1 1 1

Высказывание А ∨ В ложно только тогда, когда оба высказывания — А и В ложны.

Геометрически логическое сложение можно представить следующим образом: если А, В — это некоторые множества точек, то А ∨ В — это объединение множеств А и В, т. е. фигура, объединяющая и квадрат, и круг.


Таблица истинности операции имеет вид

А В А ⊕ B
истина ложь истина
ложь истина истина
ложь ложь ложь
истина истина ложь

А В А ⊕ B
1 0 1
0 1 1
0 0 0
1 1 0

Высказывание А ⊕ В истинно только тогда, когда высказывания А и В имеют различные значения.

Таблица истинности операции имеет вид

А В А → В
истина ложь ложь
ложь истина истина
ложь ложь истина
истина истина истина

А В А → В
1 0 0
0 1 1
0 0 1
1 1 1

Для операции импликации справедливо утверждение, что из лжи может следовать все что угодно, а из истины — только истина.

Таблица истинности операции эквивалентности имеет вид

А В А ∼ В
истина ложь ложь
ложь истина ложь
ложь ложь истина
истина истина истина

А В А ∼ В
1 0 0
0 1 0
0 0 1
1 1 1

Зная значения простых высказываний, можно на основании таблиц истинности определить значения сложных высказываний. При этом важно знать, что для представления любой функции алгебры логики достаточно трех операций: конъюнкции, дизъюнкции и отрицания.

Сложение по модулю два А ⊕ В $(A↖ ∧B) ∧ (A ∧ B↖)$
Импликация А → В $A↖ ∨ B$
Эквивалентность А ∼ В $(A↖ ∧ B↖) ∨ (A ∧ B)$

Примеры решения задач

Пример 1. Определить для указанных значений X значение логического высказывания ((X > 3) ∨ (X 3) ∨ (1 3) ∨ (12 3) ∨ (3 2) → (X > 5)) .

Пример 3. Для каких из приведенных слов ложно высказывание ¬(первая буква гласная ∧ третья буква гласная) ⇔ строка из 4 символов? 1) асса; 2) куку; 3) кукуруза; 4) ошибка; 5) силач.

Решение. Рассмотрим последовательно все предложенные слова:

1) для слова асса получим: ¬(1 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;

2) для слова куку получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;

3) для слова кукуруза получим: ¬ (0 ∧ 0) ⇔ 0, 1 ⇔ 0 — высказывание ложно;

4) для слова ошибка получим: ¬ (1 ∧ 1) ⇔ 0, 0 ⇔ 0 — высказывание истинно;

5) для слова силач получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 0 — высказывание ложно.

Логические выражения и их преобразование

Логические выражения могут включать в себя функции, алгебраические операции, операции сравнения и логические операции. В этом случае приоритет выполнения действий следующий:

  1. вычисление существующих функциональных зависимостей;
  2. выполнение алгебраических операций (вначале умножение и деление, затем вычитание и сложение);
  3. выполнение операций сравнения (в произвольном порядке);
  4. выполнение логических операций (вначале операции отрицания, затем операции логического умножения, логического сложения, последними выполняются операции импликации и эквивалентности).

В логическом выражении могут использоваться скобки, которые изменяют порядок выполнения операций.

Пример. Найти значение выражения:

$1 ≤ a ∨ A ∨ sin(π/a - π/b) a + b ∨ A ∧ B)$ для а = 2, b = 3, A = истина, В = ложь.

Решение. Порядок подсчета значений:

1) b a + a b > a + b, после подстановки получим: 3 2 + 2 3 > 2 + 3, т. е. 17 > 2 + 3 = истина;

2) A ∧ B = истина ∧ ложь = ложь.

Следовательно, выражение в скобках равно (b a + a b > a + b ∨ A ∧ B) = истина ∨ ложь = истина;

3) 1≤ a = 1 ≤ 2 = истина;

Из логических элементов составляются электронные логические схемы, выполняющие более сложные логические операции. Набор логических элементов, состоящий из элементов НЕ, ИЛИ, И, с помощью которых можно построить логическую структуру любой сложности, называется функционально полным.

Построение таблиц истинности логических выражений

Для логической формулы всегда можно записать таблицу истинности, т. е. представить заданную логическую функцию в табличном виде. В этом случае таблица должна содержать все возможные комбинации аргументов функции (формулы) и соответствующие значения функции (результаты формулы на заданном наборе значений).

Удобной формой записи при нахождении значений функции является таблица, содержащая, кроме значений переменных и значений функции, также значения промежуточных вычислений. Рассмотрим пример построения таблицы истинности для формулы $↖ ∧ X2 ∨ ↖ ∨ X1$.

X1 X2 $↖$ $↖$ \ X2 X1 ∧ X2 $↖$ $↖$ ∧ X2 ∨ $↖$ $↖$ ∧ X2 ∨ $↖$ ∨ X1
1 1 0 0 1 0 0 1
1 0 0 0 1 0 0 1
0 1 1 1 1 0 1 1
0 0 1 0 0 1 1 1

Если функция принимает значение 1 при всех наборах значений переменных, она является тождественно-истинной; если при всех наборах входных значений функция принимает значение 0, она является тождественно-ложной; если набор выходных значений содержит как 0, так и 1, функция называется выполнимой. Приведенный выше пример является примером тождественно-истинной функции.

Зная аналитическую форму логической функции, всегда можно перейти к табличной форме логических функций. С помощью заданной таблицы истинности можно решить обратную задачу, а именно: для заданной таблицы построить аналитическую формулу логической функции. Различают две формы построения аналитической зависимости логической функции по таблично заданной функции.

1. Дизъюнктивно нормальная форма (ДНФ) — сумма произведений, образованных из переменных и их отрицаний для ложных значений.

Алгоритм построения ДНФ следующий:

Пример. Построить функцию, определяющую, что первое число равно второму, используя метод ДНФ. Таблица истинности функции имеет вид

X1 X2 F(X1, X2)
1 1 1
0 1 0
1 0 0
0 0 1

Решение. Выбираем наборы значений аргументов, в которых функция равна 1. Это первая и четвертая строки таблицы (строку заголовка при нумерации не учитываем).

Записываем логические произведения аргументов этих наборов, объединив их логической суммой: X1 ∧ X2 ∨ X1 ∧ X2 .

Записываем отрицание относительно аргументов выбранных наборов, имеющих ложное значение (четвертая строка таблицы; второй набор в формуле; первый и второй элементы): X1 ∧ X2 ∨ $↖$ ∧ $↖$.

2. Конъюнктивно нормальная форма (КНФ) — произведение сумм, образованных из переменных и их отрицаний для истинных значений.

Алгоритм построения КНФ следующий:

Примеры решения задач

Пример 1. Рассмотрим предыдущий пример, т. е. построим функцию, определяющую, что первое число равно второму, используя метод КНФ. Для заданной функции ее таблица истинности имеет вид

X1 X2 F(X1, X2)
1 1 1
0 1 0
1 0 0
0 0 1

Решение. Выбираем наборы значений аргументов, в которых функция равна 0. Это вторая и третья строки (строку заголовка при нумерации не учитываем).

Записываем логические суммы аргументов этих наборов, объединив их логическим произведением: X1 ∨ X2 ∧ X1 ∨ X2 .

Записываем отрицание относительно аргументов выбранных наборов, имеющих истинное значение (вторая строка таблицы, первый набор формулы, второй элемент; для третьей строки, а это второй набор формулы, первый элемент): X1 ∨ $↖$ ∧ $↖$ ∨ X2.

Таким образом, получена запись логической функции в КНФ.

Полученные двумя методами значения функций являются эквивалентными. Для доказательства этого утверждения используем правила логики: F(X1, X2) = X1 ∨ $↖$ ∧ $↖$ ∨ X2 = X1 ∧ $↖$ ∨ X1 ∧ X2 ∨ $↖$ ∧ $↖$ ∨ $↖$ ∧ X2 = 0 ∨ X1 ∨ X2 ∨ $↖$ ∧ $↖$ ∨ 0 = X1 ∧ X2 ∨ $↖$ ∧ $↖$.

Пример 2. Построить логическую функцию для заданной таблицы истинности:

X1 X2 F(X1, X2)
1 1 1
1 0 0
0 1 1
0 0 0

Решение. Используем алгоритм ДНФ для построения исходной функции:

X1 X2 F(X1, X2)
1 1 1 X1 ∧ X2
1 0 0
0 1 1 $↖$ ∧ X2
0 0 0

Искомая формула: X1 ∧ X2 ∨ $↖$ ∧ X2 .

Ее можно упростить: X1 ∧ X2 ∨ $↖$ ∧ X2 = X2 ∧ (X1 ∨ $↖$) = X2 ∧ 1 = X2.

Пример 3. Для приведенной таблицы истинности построить логическую функцию, используя метод ДНФ.

X1 X2 X3 F(X1, X2, X3)
1 1 1 1 X1 ∧ X2 ∧ X3
1 0 1 0
0 1 1 1 $↖$ ∧ X2 ∧ X3
0 0 1 0
1 1 0 1 X1 ∧ X2 ∧ $↖$
1 0 0 1 X1 ∧ $↖$ ∧ $↖$
0 1 0 0
0 0 0 0

Искомая формула: X1 ∧ X2 ∧ X ∨ $↖$ ∧ X2 ∧ X3 ∨ X1 ∧ X2 ∧ $↖$ ∪ X1 ∧ $↖$ ∧ $↖$.

Формула достаточно громоздка, и ее следует упростить:

X1 ∧ X2 ∧ X3 ∨ $↖$ ∧ X2 ∧ X3 ∨ X1 ∧ X2 ∧ $↖$ ∨ X1 ∧ $↖$ ∧ $↖$ = X2 ∧ X3 ∧ (X1 ∨ $↖$) ∨ X1 ∧ $↖$ ∧ (X2 ∨ $↖$) = X2 ∧ X3 ∨ X1 ∧ $↖$.

Таблицы истинности для решения логических задач

Составление таблиц истинности — один из способов решения логических задач. При использовании такого способа решения, условия, которые содержит задача, фиксируются с помощью специально составленных таблиц.

Примеры решения задач

Пример 1. Составить таблицу истинности для охранного устройства, которое использует три датчика и срабатывает при замыкании только двух из них.

X1 X2 X3 Y(X1, X2, X3)
1 1 1 0
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

Пример 2. Составить расписание уроков на день, учитывая, что урок информатики может быть только первым или вторым, урок математики — первым или третьим, а физики — вторым или третьим. Возможно ли составить расписание, удовлетворив всем требованиям? Сколько существует вариантов расписания?

Решение. Задача легко решается, если составить соответствующую таблицу:

1-й урок 2-й урок 3-й урок
Информатика 1 1 0
Математика 1 0 1
Физика 0 1 1

Из таблицы видно, что существуют два варианта искомого расписания:

  1. математика, информатика, физика;
  2. информатика, физика, математика.

Пример 3. В спортивный лагерь приехали трое друзей — Петр, Борис и Алексей. Каждый из них увлекается двумя видами спорта. Известно, что таких видов спорта шесть: футбол, хоккей, лыжи, плавание, теннис, бадминтон. Также известно, что:

  1. Борис — самый старший;
  2. играющий в футбол младше играющего в хоккей;
  3. играющие в футбол и хоккей и Петр живут в одном доме;
  4. когда между лыжником и теннисистом возникает ссора, Борис мирит их;
  5. Петр не умеет играть ни в теннис, ни в бадминтон.

Какими видами спорта увлекается каждый из мальчиков?

Решение. Составим таблицу и отразим в ней условия задачи, заполнив соответствующие клетки цифрами 0 и 1 в зависимости от того, ложно или истинно соответствующее высказывание.

Так как видов спорта шесть, получается, что все мальчики увлекаются разными видами спорта.

Футбол Хоккей Лыжи Плавание Бадминтон Теннис
Петр 0 0 1 1 0 0
Борис 0 0 0
Алексей 0 0

Из таблицы видно, что в теннис может играть только Алексей.

Футбол Хоккей Лыжи Плавание Бадминтон Теннис
Петр 0 0 1 1 0 0
Борис 0 0 0 0
Алексей 1 0 0 0 0 1

Окончательно получаем, что Борис увлекается хоккеем и бадминтоном. Итоговая таблица будет выглядеть следующим образом:

Футбол Хоккей Лыжи Плавание Бадминтон Теннис
Петр 0 0 1 1 0 0
Борис 0 1 0 0 1 0
Алексей 1 0 0 0 0 1

Ответ: Петр увлекается лыжами и плаванием, Борис играет в хоккей и бадминтон, а Алексей занимается футболом и теннисом.

Содержание

Операторы

Операции

Операция Си Паскаль
Или (дизъюнкция) || or
И (конъюнкция) && and
Отрицание ! not

Примеры

Примеры сложных логических выражений:

Ссылки

  • Булева алгебра
  • Концепции языков программирования

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Логическое выражение" в других словарях:

Логическое выражение — выражение, в котором операндами являются объекты, над которыми выполняются логические операции. Результатом выполнения логического выражения является одно из двух логических значений: либо Истина, либо Ложь. Синонимы: Булевское выражение См.… … Финансовый словарь

логическое выражение — loginis reiškinys statusas T sritis automatika atitikmenys: angl. Boolean expression; logical expression vok. logischer Ausdruck, m rus. логическое выражение, n pranc. expression booléenne, f; expression logique, f … Automatikos terminų žodynas

логическое выражение блокировочной зависимости — [Интент] Параллельные тексты EN RU The check of bay or station interlock equations can be cancelled for all electrically controllable switchgear units within a bay. [Schneider Electric] Проверку логических выражений блокировочных зависимостей… … Справочник технического переводчика

ЛОГИЧЕСКОЕ И ИСТОРИЧЕСКОЕ — см. Историческое и логическое. Философский энциклопедический словарь. М.: Советская энциклопедия. Гл. редакция: Л. Ф. Ильичёв, П. Н. Федосеев, С. М. Ковалёв, В. Г. Панов. 1983. ЛОГИЧЕСКОЕ И ИСТОРИЧЕСКОЕ … Философская энциклопедия

Логическое и историческое — существенные моменты развития объективного мира и методы его познания. Различают объективную логику и историю развития объекта и методы познания этого объекта. Объективно логическое это общая линия, закономерность развития объекта… … Большая советская энциклопедия

предметно-логическое значение слова — выражение словом общего понятия о предмете или явлении через один из его признаков, который в силу исторического развития значений, стал на данном этапе основным для всего понятия. Оно закреплено в языковой системе в результате коммуникативной… … Толковый переводоведческий словарь

СЛЕДОВАНИЕ ЛОГИЧЕСКОЕ — СЛЕДОВАНИЕ ЛОГИЧЕСКОЕ отношение между некоторым множеством высказываний Г (гипотез) и высказыванием В (заключением), отображающее тот факт, что, в силу только логической структуры названных высказываний и, значит, независимо от их содержания… … Философская энциклопедия

ИСЧИСЛЕНИЕ ЛОГИЧЕСКОЕ — исчисление, символы и правила которого могут быть интерпретированы в терминах логики. Любое исчисление представляет собой знаковую систему, которая, как чисто синтаксическая структура, однозначно определяется двумя порождающими процедурами: 1)… … Современный философский словарь

логико-семантический признак — логическое выражение семантического значения … Толковый переводоведческий словарь

Таблица истинности — таблица, показывающая, какие значения принимает составное высказывание при всех сочетаниях (наборах) значений входящих в него простых высказываний.

Логическое выражение — составные высказывания в виде формулы.

Алгоритм построения таблицы истинности:

1. подсчитать количество переменных n в логическом выражении;

2. определить число строк в таблице по формуле m=2 n , где n — количество переменных;

3. подсчитать количество логических операций в формуле;

4. установить последовательность выполнения логических операций с учетом скобок и приоритетов;

5. определить количество столбцов: число переменных + число операций;

6. выписать наборы входных переменных;

7. провести заполнение таблицы истинности по столбцам, выполняя логические операции в соответствии с установленной в пункте 4 последовательностью.

Заполнение таблицы:

Пример 1. Для формулы A/\ (B \/ ¬B /\¬C) постройте таблицу истинности.

Количество логических переменных 3, следовательно, количество строк — 2 3 = 8.

Количество логических операций в формуле 5, количество логических переменных 3, следовательно количество столбцов — 3 + 5 = 8.

Логические выражения и таблица истинности

Пример 2. Определите истинность логического выражения F(А, В) = (А\/ В)/\(¬А\/¬В) .

Читайте также: