Круговая частота это кратко

Обновлено: 05.07.2024


Любые колебательные процессы в Природе (в том числе и непериодические) могут быть представлены в виде бесконечной суммы простых гармонических колебаний. Поэтому в первую очередь изучаются гармонические колебания. Рассмотрим такую характеристику этих колебаний, как циклическая частота.

Период и частота гармонических колебаний

Впервые гармоническими колебаниями заинтересовались еще античные философы, изучая вопросы музыкальной гармонии. Поэтому простейшие колебания, происходящие по закону круговых функций (синуса или косинуса), называются гармоническими.

Формула гармонических колебаний:


Рис. 1. График гармонических колебаний.

Как можно видеть из графика колебаний (а также из изучения круговых функций в математическом анализе), функции эти регулярно повторяют свои значения. Более того, регулярно повторяется форма графика колебаний. Это свойство функции называется периодичностью. То есть, функция, обладающая периодичностью, имеет равные значения на промежутках, равных своему периоду.

Период обозначается латинской буквой $T$. Однако, физический и математический подход к измерению периода немного различен.

В математике в качестве аргумента круговой функции рассматривается угол поворота вектора, образующего ее, и этот угол удобно измерять в радианах (каждый радиан равен дуге, имеющей длину радиуса). В радианах измеряется и период круговой функции. Для простого синуса или косинуса $T = 2\pi$.

Период синуса и косинуса

Рис. 2. Период синуса и косинуса.

Если период показывает, за сколько времени совершается одно колебание, то частота показывает, сколько колебаний совершается за одну секунду:

Частота измеряется в колебаниях в секунду или Герцах (Гц). Один герц – это одно колебание в секунду.

Круговая частота

Как видим, физический и математический подход к описанию периода функций несколько отличаются, и возникает вопрос их связи.

Из приведенной выше формулы гармонических колебаний можно видеть, что она имеет период:

В эту формулу входит параметр $\omega$, который обратно пропорционален периоду. При сравнении этой формулы с формулой частоты можно получить:

Или, после упрощений:

Физический смысл частоты – это количество колебаний, происходящих в системе за единицу времени, а физический смысл круговой частоты – это количество радиан, проходящих функцией, описывающей систему, за единицу времени.

Круговая (циклическая) частота

Рис. 3. Круговая (циклическая) частота.

Таким образом, удобный и наглядный параметр частоты может быть легко преобразован для вида, удобного в математических преобразованиях.

Что мы узнали?

Круговая (циклическая) частота – это важный параметр гармонического колебания, удобный в математической обработке функций. Круговая частота обозначает количество радиан, прошедших гармонической функцией за единицу времени. Она прямо пропорциональна обычной частоте.

Единица измерения периода в системе СИ – секунда.

На графике колебаний период определяется как промежуток времени. через который система возвращается в то же состояние, в котором она находилась в начальный момент времени, который выбирается произвольно (рис.1).


Рис.1. Определение по графику периода колебаний.

\[\nu =\frac<n></p>
<p>=\frac\]

Единица измерения частоты в системе СИ – 1 Герц (Гц).

Циклическая частота – это число колебаний, совершаемых телом за секунд:

\[\omega =\frac<2\pi ></p>
<p>\]

Единица измерения циклической частоты в системе СИ — рад/с.

Частота и циклическая частота связаны между собой формулой:

Примеры решения задач

Задание Определить частоту колебаний железнодорожных вагонов, если период их вертикального колебания равен 0,5 с.
Решение Частота колебаний – это величина, обратная периоду:

\[\nu =\frac<1></p>
<p>\ ,\]


Гц

Задание Маятник совершает 9 колебаний за 18 с. Определить период и частоту колебаний. Записать уравнение гармонических колебаний и построить график колебаний маятника, если амплитуда равна 10 см.
Решение Частота колебаний определяется формулой:

\[\nu =\frac<n></p>
<p>;\]


Гц

\[T=\frac<1></p>
<p>;\]

\[T=\frac<1></p>
<p>=2\ c\]

\[x=A\sin \left(\omega t+<\varphi ></p>
<p>_0\right)\ \]

В данном случае:


Задание Период колебаний крыльев шмеля 5 мс, а частота колебаний крыльев комара 600 Гц. Определить, какое насекомое и на сколько больше сделает взмахов крыльями при полете за 1 минуту.
Решение Определим частоту колебаний крыльев шмеля:

\[<\nu ></p>
<p>_1=\frac\ \]

С другой стороны, частота:

\[<\nu ></p>
<p>_1=\ \frac\]

Приравняв правые части равенств, найдем число взмахов крыльями, которое сделает шмель за время :

\[\frac<1></p>
<p>=\frac;\]

\[n_1=\frac<t></p>
<p>\]

Число взмахов крыльями, которое сделает комар за время , найдем непосредственно из формулы:

\[<\nu ></p>
<p>_2=\ \frac;\]

\[n_2=<\nu ></p>
<p>_2t\]

=5\cdot <10></p>
<p>Переведем единицы в систему СИ:  мс ^\ c; \quad t=1
мин .

\[n_1=\frac<60></p>
<p>^>=12000;\]


На уроке рассматривается простейший вид колебательного движения — гармонические колебания. Рассматриваются основные характеристики колебательного движения: амплитуда, период (частота) и фаза колебаний.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Гармонические колебания. Амплитуда, период и частота колебательного движения"

В рамках прошлой темы говорилось о новом виде механического движения – колебательном движении.

Механическое колебательное движение —это движение, при котором состояния тела с течением времени повторяются, причем тело проходит через положение устойчивого равновесия поочередно в противоположных направлениях.

Если колебания происходят в системе только под действием внутренних сил, то такие колебания называют свободными.

Колебательной системой называют такую физическую систему, в которой при отклонении от положения равновесия возникают и существуют колебания.

Маятник – это твердое тело, совершающее под действием приложенных сил колебания около неподвижной точки или вокруг оси.

В рамках данной темы будет рассмотрен простейший вид колебательного движения — гармонические колебания.

Гармонические колебания — это колебания, при которых смещение колеблющейся точки от положения равновесия изменяется с течением времени по закону синуса или косинуса.

Смещение от положения равновесия при гармонических колебаниях описывается уравнениями вида:



Эти уравнения называют кинематическим законом гармонического движения.

Покажем, что гармонические колебания действительно подчиняются закону синуса или косинуса. Для этого рассмотрим следующую установку.


Возьмем нитяной маятник, а в качестве груза к нему выберем небольшой массивный сосуд с маленьким отверстием снизу и насыплем в него песок.А под полученную систему положим длинную бумажную ленту.

Если ленту перемещать с постоянной скоростью в направлении, перпендикулярном плоскости колебаний, то на ней останется волнообразная дорожка из песка, каждая точка которой соответствует положению колеблющегося груза в тот момент, когда он проходил над ней. Из опыта видно, что след, который оставляет песок на листе бумаги, есть некая кривая.

Она называется синусоидой. Из курса математики старших классов вы узнаете о том, что аналогичные графики имеют функции типа



Значит, графически зависимость смещения колеблющейся точки от времени изображается синусоидой или косинусоидой.



Через точки, соответствующие положению равновесия маятника, проведена ось времени t, а перпендикулярно ей — ось смещения икс. График дает возможность приблизительно определить координату груза в любой момент времени.

Теперь разберемся с величинами, входящими в уравнение колебательного движения.


Смещение — величина, характеризующая положение колеблющейся точки в некоторый момент времени относительно положения равновесия и измеряемая расстоянием от положения равновесия до положения точки в данный момент времени.

Амплитуда колебаний — максимальное смещение тела от положения равновесия.

Циклическая, или круговая частота, показывающая, сколько колебаний совершает тело за 2p секунд.

j0 — это начальная фаза колебаний.

Фаза колебаний — это аргумент периодической функции, который при заданной амплитуде колебаний определяет состояние колебательной системы в любой момент времени.

Промежуток времени, в течение которого тело совершает одно полное колебание, называется периодом колебаний.

Период колебаний обычно обозначается буквой Т и в системе СИ измеряется в секундах.



Число колебаний в единицу времени называется частотой колебаний. Обозначается частота буквой ν. За единицу частоты принято одно колебание в секунду. Эта единица названа в честь немецкого ученого Генриха Герца.


Период колебания и частота колебаний связаны следующей зависимостью:


Т.е. частота — это величина обратная периоду и равная числу полных колебаний, совершаемых за 1 секунду.

Циклическая частота также связана с периодом колебаний или частотой. Эту связь математически можно записать в следующем виде:


Таким образом, любое колебательное движение характеризуется амплитудой, частотой (или периодом) и фазой колебаний.

При совершении телом гармонических колебаний не только его координата, но и такие величины, как сила, ускорение, скорость, тоже изменяются по закону синуса или косинуса.




Это следует из известных вам законов и формул, в которых указанные величины попарно связаны прямо пропорциональной зависимостью, например законом Гука или вторым законом Ньютона. Из этих формул видно, что сила и ускорение достигают наибольших значений, когда колеблющееся тело находится в крайних положениях, где смещение наиболее велико, и равны нулю, когда тело проходит через положение равновесия.

Что же касается скорости, то она, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия достигает наибольшего значения.

Колебания, практически близкие к гармоническим, совершает тяжелый шарик, подвешенный на легкой и малорастяжимой нити, длина которой значительно больше диаметра шарика. Такую колебательную систему называют математическим маятником.


Математический маятник — это материальная точка, подвешенная на невесомой нерастяжимой нити, прикрепленной к подвесу и находящейся в поле силы тяжести.

Также гармонические колебания может совершать груз подвешенный на пружине, совершающий колебания в вертикальной плоскости. Такую колебательную систему называют пружинным маятником — это система, состоящая из материальной точки массой m и пружины.


Основные выводы:

– Гармонические колебания — это колебания, при которых смещение колеблющейся точки от положения равновесия изменяется с течением времени по закону синуса или косинуса.

– Любое колебательное движение характеризуется амплитудой, частотой (или периодом) и фазой колебаний.

– Амплитуда колебаний — максимальное смещение тела от положения равновесия.

– Промежуток времени, в течение которого тело совершает одно полное колебание, называется периодом колебаний.

– Число колебаний в единицу времени называется частотой колебаний.

– Фаза колебаний — это аргумент периодической функции, который при заданной амплитуде колебаний определяет состояние колебательной системы в любой момент времени.

– Математический и пружинный маятники — это простейшие идеализированные колебательные системы, подчиняющиеся закону синуса или косинуса.

– Математический маятник — это материальная точка, подвешенная на невесомой нерастяжимой нити, прикрепленной к подвесу и находящейся в поле силы тяжести.

– Пружинный маятник — это система, состоящая из материальной точки массой m и пружины, которая совершает колебания в вертикальной плоскости.

Амплитуда колебаний (лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Амплитуда колебаний (лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша­рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Механические колебания и волны

Амплитуда колебаний измеряется в единицах длины — метрах, санти­метрах и т. д. На графике колебаний амплитуда определяется как макси­мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Амплитуда период частота колебаний

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша­ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т) — это время, за которое совершается одно полное ко­лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

Амплитуда период частота колебаний

За полный период колебаний, таким образом, тело проходит путь, равный четы­рем амплитудам. Период колебаний измеряется в единицах времени — секундах, минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Амплитуда период частота колебаний

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с.

Единица частоты в СИ названа герцем (Гц) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v) равна 1 Гц, то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

Амплитуда период частота колебаний

.

В теории колебаний пользуются также понятием циклической, или круговой частоты ω. Она связана с обычной частотой v и периодом колебаний Т соотношениями:

Амплитуда период частота колебаний

.

Циклическая частота — это число колебаний, совершаемых за секунд.

Читайте также: