Кратко о передачах вращательного движения

Обновлено: 05.07.2024

Механическая передача — механизм, превращающий кинематические и энергетические параметры двигателя в необходимые параметры движения рабочих органов машин и предназначенный для согласования режима работы двигателя с режимом работы исполнительных органов. [1]

Типы механических передач:

  • зубчатые (цилиндрические, конические);
  • винтовые (винтовые, червячные, гипоидные);
  • с гибкими элементами (ременные, цепные);
  • фрикционные (за счёт трения, применяются при плохих условиях работы).

В зависимости от соотношения параметров входного и выходного валов передачи разделяют на:

  • редукторы (понижающие передачи) — от входного вала к выходному уменьшают частоту вращения и увеличивают крутящий момент;
  • мультипликаторы (повышающие передачи) — от входного вала к выходному увеличивают частоту вращения и уменьшают крутящий момент.

Зубчатая передача — это механизм или часть механизма механической передачи, в состав которого входят зубчатые колёса. При этом усилие от одного элемента к другому передаётся с помощью зубьев. [2]

Зубчатые передачи предназначены для:

Зубчатое колесо передачи с меньшим числом зубьев называется шестернёй, второе колесо с большим числом зубьев называется колесом.

Зубчатые передачи классифицируют по расположению валов:

  • с параллельными осями (цилиндрические с внутренним и внешним зацеплениями);
  • с пересекающимися осями (конические);
  • с перекрестными осями (рейка-шестерня).

Основные виды цилиндрических зубчатых передач

Рисунок 1 — Основные виды цилиндрических зубчатых передач

Конические зубчатые передачи (рисунок 2) применяют в тех случаях, когда оси валов пересекаются под некоторым углом, чаще всего 90°. Конические передачи более сложны в изготовлении и монтаже, чем цилиндрические. Нагрузочная способность конической прямозубой передачи составляет приблизительно 85% цилиндрической. Для повышения нагрузочной способности конических колёс применяют колёса с непрямыми (тангенциальными, круговыми) зубьями.

Конические зубчатые передачи

Рисунок 2 — Конические зубчатые передачи

Достоинства зубчатых передач:

  • компактность;
  • возможность передавать большие мощности;
  • большие скорости вращения;
  • постоянство передаточного отношения;
  • высокий КПД.

Недостатки зубчатых передач:

  • сложность передачи движения на значительные расстояния;
  • жёсткость передачи;
  • шум во время работы;
  • необходимость в смазке.

Червячные передачи (рисунок 3) применяют для передачи движения между перекрещивающимися осями, угол между которыми, как правило, составляет 90°. Движение в червячных передачах передается по принципу винтовой пары.

Червячная передача

Рисунок 3 — Червячная передача

В отличие от большинства разновидностей зубчатых в червячной передаче окружные скорости на червяке и на колесе не совпадают. Они направлены под углом и отличаются по значению. При относительном движении начальные цилиндры скользят. Большое скольжение является причиной низкого КПД, повышенного износа и заедания. Для снижения износа применяют специальные антифрикционные пары материалов: червяк — сталь, венец червячного колеса — бронза (реже — латунь, чугун).

Достоинства червячных передач:

  • большие передаточные отношения;
  • плавность и бесшумность работы;
  • высокая кинематическая точность;
  • самоторможение.

Недостатки червячных передач:

  • низкий КПД;
  • высокий износ, заедание;
  • использование дорогих материалов;
  • высокие требования к точности сборки.

Для передачи движения между сравнительно далеко расположенными друг от друга валами применяют механизмы, в которых усилие от ведущего звена к ведомому передаётся с помощью гибких звеньев. В качестве гибких звеньев применяются: ремни, шнуры, канаты разных профилей, провода, стальную ленту, цепи различных конструкций.

Передачи с гибкими звеньями могут обеспечивать постоянное и переменное передаточное отношения со ступенчатым или плавным изменением его величины.

Для сохранности постоянства натяжения гибких звеньев в механизмах применяются натяжные устройства: ролики, пружины, противовесы и т.п.

Различают следующие разновидности передач с гибкими звеньями:

  • по способу соединения гибкого звена с остальными:
    • фрикционные;
    • с непосредственным соединением;
    • с зацеплением;
    • открытые;
    • перекрёстные;
    • полуперекрёстные;

    Ременная передача (рисунок 4) состоит из двух шкивов, закреплённых на валах, и ремня, охватывающего эти шкивы. Нагрузки передается за счёт сил трения, возникающих между шкивами и ремнём вследствие натяжения последнего.

    В зависимости от формы поперечного перереза ремня различают передачи:

    • плоскоременную;
    • клиноременную (получили наиболее широкое применение);
    • круглоременную.

    Ременная передача

    Рисунок 4 — Ременная передача

    Наибольшие преимущества наблюдаются в передачах с зубчатыми (поликлиновыми) ремнями.

    Достоинства ременных передач:

    • возможность передачи движения на значительные расстояния;
    • плавность и бесшумность работы;
    • защита механизмов от колебаний нагрузки вследствие упругости ремня;
    • защита механизмов от перегрузки за счёт возможного проскальзывания ремня;
    • простота конструкции и эксплуатации (не требует смазки).

    Недостатки ременных передач:

    • повышенные габариты (при равных условиях диаметры шкивов в 5 раз больше диаметров зубчатых колёс);
    • непостоянство передаточного отношения вследствие проскальзывания ремня;
    • повышенная нагрузка на валы и их опоры, связанная с большим предварительным натяжением ремня (в 2-3 раза больше, чем у зубчатых передач);
    • низкая долговечность ремней (1000-5000 часов).

    Цепная передача (рисунок 5) основана на принципе зацепления цепи и звёздочек. Цепная передача состоит из:

    • ведущей звёздочки;
    • ведомой звёздочки;
    • цепи, которая охватывает звёздочки и зацепляется за них зубьями;
    • натяжных устройств;
    • смазывающих устройств;
    • ограждения.

    Цепные передачи

    Рисунок 5 — Цепные передачи: а) с роликовой цепью; б) с зубчатой пластинчатой цепью

    Область применения цепных передач:

    • при значительных межосевых расстояниях;
    • при передаче от одного ведущего вала нескольким ведомым;
    • когда зубчатые передачи неприменимы, а ременные недостаточно надёжны.

    По типу применяемых цепей бывают:

    • роликовые;
    • втулочные (лёгкие, но большой износ);
    • роликовтулочные (тяжёлые, но низкий износ);
    • зубчатые пластинчатые (обеспечивают плавность работы).

    Достоинства цепных передач (по сравнению с ременной передачей):

    • большая нагрузочная способность;
    • отсутствие скольжения и буксования, что обеспечивает постоянство передаточного отношения и возможность работы при кратковременных перегрузках;
    • принцип зацепления не требует предварительного натяжения цепи;
    • могут работать при меньших межосевых расстояниях и при больших передаточных отношениях.

    Недостатки цепных передач связаны с тем, что звенья располагаются на звёздочке не по окружности, а по многоугольнику, что влечёт:

    • износ шарниров цепи;
    • шум и дополнительные динамические нагрузки;
    • необходимость обеспечения смазки.

    Фрикционная передача — кинематическая пара, использующая силу трения для передачи механической энергии (рисунок 6). [3]

    Рисунок 6 — Фрикционные передачи

    Трение между элементами может быть сухое, граничное, жидкостное. Жидкостное трение наиболее предпочтительно, так как значительно увеличивает долговечность фрикционной передачи.

    Механическая энергия, используемая для приведения в движение машины-орудия, представляет собой энергию вращательного движения вала двигателя. Вращательное движение получило наибольшее распространение в механизмах и машинах, так как обладает следующими достоинствами : обеспечивает непрерывное и равномерное движение при небольших потерях на трение; позволяет иметь простую и компактную конструкцию передаточного механизма.

    Все современные двигатели для уменьшения габаритов и стоимости выполняют быстроходными с весьма узким диапазоном изменения угловых скоростей. Непосредственно быстроходный вал двигателя соединяют с валом машины редко (вентиляторы и т. п.). В абсолютном большинстве случаев режим работы машины-орудия не совпадает с режимом работы двигателя, поэтому передача механической энергии от двигателя к рабочему органу машины осуществляется с помощью различных передач.

    Передачей будем называть устройство, предназначенное для передачи энергии из одной точки пространства в другую, расположенную на некотором расстоянии от первой.

    Механическими передачами, или просто передачами, называют механизмы для передачи энергии от машины-двигателя к машине-орудию, как правило, с преобразованием скоростей, моментов, а иногда — с преобразованием видов (например, вращательное в поступательное) и законов движения.

    Передача (в механике) соединяет вал источника энергии - двигателя и валы потребителей энергии - рабочих органов машины, таких, например, как ведущие колёса гусеничного движителя или автомобиля.

    Механические передачи известны со времен зарождения техники, прошли вместе с ней длительный путь развития и совершенствования и имеют сейчас очень широкое распространение. Грамотная эксплуатация механических передач требует знания основ и особенностей их проектирования и методов расчетов.

    При проектировании к механическим передачам предъявляются следующие требования:

    - высокие нагрузочные способности при ограниченных габаритных размерах, весе, стоимости;

    - постоянство передаточного отношения или закона его изменения;

    - обеспечение определенного взаимного расположения осей ведущего и ведомого валов, в частности, межосевого расстояния a w ;

    - малые потери при передаче мощности (высокий кпд) и, как следствие, ограниченный нагрев и износ;

    - плавная и бесшумная работа;

    - прочность, долговечность, надёжность.

    Передачи имеют широкое распространение в машиностроении по следующим причинам:

    1) энергию целесообразно передавать при больших частотах вращения;

    2) требуемые скорости движения рабочих органов машин, как правило, не совпадают с оптимальными скоростями двигателя; обычно ниже, а создание тихоходных двигателей вызывает увеличение габаритов и стоимости;

    3) скорость исполнительного органа в процессе работы машины-орудия необходимо изменять (например, у автомобиля, грузоподъемного крана, токарного станка), а скорость машины-двигателя чаще посто­янна (например, у электродвигателей);

    4) нередко от одного двигателя необходимо приводить в движение не­сколько механизмов с различными скоростями;

    5) в отдельные периоды работы исполнительному органу машины тре­буется передать вращающие моменты, превышающие моменты на валу машины-двигателя, а это возможно выполнить за счет уменьше­ния угловой скорости вала машины-орудия;

    6) двигатели обычно выполняют для равномерного вращательного движения, а в машинах часто оказывается необходимым поступательное движение с определенным законом;

    7) двигатели не всегда могут быть непосредственно соединены с исполнительными механизмами из-за габаритов машины, условий техники безопасности и удобства обслуживания;

    8) распределять работу двигателя между несколькими исполнительными органами машины.

    Как правило, угловые скорости валов большинства используемых в настоящее время в технике двигателей (поршневых двигателей внутреннего сгорания, газотурбинных, электрических, гидравлических и пневматических двигателей) значительно превышают угловые скорости валов исполнительных или рабочих органов машин, порой на 2-3 порядка. Поэтому доставка (передача) энергии двигателя с помощью передачи любого типа, в том числе и механической, происходит, как правило, совместно с одновременным преобразованием моментов и угловых скоростей (в сторону повышения первых и понижения последних).

    При этом необходимо отметить, что конструктивное обеспечение функции транспортного характера – чисто передачи энергии иной раз вступает в логическое противоречие с направлением задачи конечного преобразования силовых и скоростных параметров этой энергии. Например, в трансмиссиях многих транспортных машин (особенно высокой проходимости) входной редуктор сначала повышает частоту вращения, понижение ее до требуемых пределов производят бортовые или колесные редукторы.

    Этот прием позволяет снизить габаритно-весовые показатели промежуточных элементов трансмиссии (коробок перемены передач, карданных валов) – размеры валов и шестерен пропорциональны величине передаваемого крутящего момента в степени 1/3.

    Аналогичный принцип используется при передаче электроэнергии – повышение напряжения перед ЛЭП позволяет значительно снизить тепловые потери, определяемые в основном силой тока в проводах, а заодно уменьшить сечение этих проводов.

    Иногда передача механической энергии двигателя сопровождается также преобразованием вида движения (например, поступательного движения во вращательное или наоборот) или законов движения (например, равномерного движения в неравномерное).

    Широко известными образцами таких передач являются кривошипно-шатунный механизм и кулачковый привод механизма газораспределения.

    Классификация механических передач

    Механические передачи, применяемые в машиностроении, класси­фицируют (рис.1 и 2):

    по энергетической характеристике механические передачи делятся на:

    - кинематические (передаваемая мощность Р

    - силовые (передаваемая мощность Р ≥0,1 кВт).

    по принципу передачи движения:

    - передачи трением (примеры: фрикционная — рис.1, а и ременная — рис.2, а) - действующие за счет сил трения, создаваемых между элементами передач;

    Фрикционные передачи подразделяют на:

    - фрикционные передачи с жесткими звеньями (с различного рода катками, дисками);

    - фрикционные передачи с гибким звеном (ременные, канатные).

    - зацеплением (примеры: зубчатые — рис.1, б, червячные — рис.1, в; цеп­ные — рис.2, б; передачи винт-гайка — рис.1, г, д) - работающие в результате возникновения давления между зубьями, кулачками или другими специальными выступами на деталях.

    Передачи зацеплением делятся на:

    - передачи зацеплением с непосредственным контактом жестких звеньев (цилиндрические, конические, червячные);

    - волновые передачи зацеплением;

    - передачи зацеплением с гибким звеном (зубчато-ременные, цепные).

    Как фрикционные, так и зубчатые передачи могут быть выполнены с непосредственным контактом ведущего и ведомого звеньев или посредством гибкой связи – ремня, цепи.

    Необходимость изобретать и применять в промышленных масштабах различного рода машины невольно породила потребность в специалистах, способных осуществлять эту деятельность не от случая к случаю, а постоянно. Таким образом, переворот в техническом компоненте производительных сил привел к видоизменению человеческого компонента – появились инженеры механики. Проектирование передач инженерами осуществляется не только в соответствии с отечественной нормативной базой (ГОСТ, ОСТ), но и по стандартам других стран (AGMA, ASA, DIN, ISO, JIS, GBT). Применение зарубежных стандартов при проектировании механических передач расширяет возможности по ремонту импортных узлов и агрегатов, при этом способствует сокращению сроков и снижению цены ремонта сложного технологического оборудования.

    Инженеры вовлечены, как правило, во все процессы жизненного цикла технических устройств и механических передач, являющихся предметом инженерного дела, включая прикладные исследования, планирование, проектирование, конструирование, разработку технологии изготовления, подготовку технической документации, производство, наладку, испытание, эксплуатацию, техническое обслуживание, ремонт и утилизацию.

    Хороший инженер умеет почти всё. Он - технолог, механик, слесарь, наладчик. Как же это у него получается? На самом деле одна из основ знаний и умений инженера - это "глубина понимания". Вторая основа - опыт. В хороших ВУЗах инженеров учат не "знать всё на свете", а находить нужную информацию в кратчайшие сроки. С опытом приходит и умение "отделять мух от котлет" и "видеть" решение той или иной задачи/проблемы. Инженеру не составит большого труда разобраться в кинематической схеме оборудования, из каких передач оно состоит.

    Механическая энергия, используемая для приведения в движение машины-орудия, представляет собой энергию вращательного движения вала двигателя. Вращательное движение получило наибольшее распространение в механизмах и машинах, так как обладает следующими достоинствами: обеспечивает непрерывное и равномерное движение при небольших потерях на трение; позволяет иметь простую и компактную конструкцию передаточного механизма.

    Все современные двигатели для уменьшения габаритов и стоимости выполняют быстроходными с весьма узким диапазоном изменения угловых скоростей. Непосредственно быстроходный вал двигателя соединяют с валом машины редко (вентиляторы и т. п.). В абсолютном большинстве случаев режим работы машина-орган не совпадает с режимом работы двигателя, поэтому передача механической энергии от двигателя к рабочему органу машины осуществляется с помощью различных передач.

    Передачей будем называть устройство, предназначенное для передачи энергии из одной точки пространства в другую, расположенную на некотором расстоянии от первой.

    В современном машиностроении в зависимости от вида передаваемой энергии применяют механические, пневматические, гидравлические и электрические передачи.

    Механическими передачами, или просто передачами, называют механизмы для передачи энергии от машины-двигателя к машине-исполнительному механизму, как правило, с преобразованием скоростей, моментов, а иногда — с преобразованием видов (например, вращательное в поступательное) и законов движения.

    Передача (в механике) соединяет вал источника энергии - двигателя и валы потребителей энергии - рабочих органов машины, таких, например, как шпиндель токарного станка, ведущие колёса гусеничной техники или привод автомобиля.

    Механические передачи известны со времен зарождения техники, прошли вместе с ней длительный путь развития и совершенствования и имеют сейчас очень широкое распространение.

    Механические передачи известны со времен зарождения техники, прошли вместе с ней длительный путь развития и совершенствования и имеют сейчас очень широкое распространение.

    Механические передачи известны со времен зарождения техники, прошли вместе с ней длительный путь развития и совершенствования и имеют сейчас очень широкое распространение. Грамотная эксплуатация механических передач требует знания основ и особенностей их проектирования и методов расчетов.

    Сегодня я бы хотел более подробно раскрыть тему зубчатых механических передач и их предназначение в устройствах и узлах.

    Что такое шестеренки?

    Шестерня - это колесо с зубьями по окружности. Зубчатые передачи с одинаковым профилем зубьев зацепляются. Это позволяет передавать мощность с ведущего вала на ведомый. Шестерни обычно используются в тандеме из двух или более, используемых для передачи вращения от оси одной шестерни к оси другой.

    Зубья шестерни на одной оси зацепляются с зубьями шестерни на другой, создавая таким образом связь между вращением двух осей. Когда одна ось вращается, другая тоже будет вращаться. Шестеренки также могут использоваться для перекачивания жидкостей, как, например, в случае шестеренчатых насосов для жидкого топлива и смазочного масла. Они настолько хорошо зацепляются (образуя поршневой насос прямого действия), что жидкость продвигается вперед с высоким давлением нагнетания. Они также используются в цепных блоках для легкого подъема тяжелых предметов. Таким образом, шестерни являются основным компонентом большинства оборудования, поскольку они довольно универсальны и способны выполнять множество задач.

    Таким образом, шестерни являются основным компонентом большинства оборудования, поскольку они довольно универсальны и способны выполнять множество задач.

    Таким образом, шестерни являются основным компонентом большинства оборудования, поскольку они довольно универсальны и способны выполнять множество задач.

    В зависимости от профиля зубьев колес различают зацепления трех основных видов: эвольвентные, когда профиль зуба образован двумя симметричными эвольвентами; циклоидальные, когда профиль зубьев образован циклоидальными кривыми; зацепления Новикова, когда профиль зуба образован дугами окружности.

    Две шестерни разных размеров заставят их две оси вращаться с разной скоростью, что очень важно в механических передачах. Это измерение помогает определить, насколько быстро механизм может двигаться в машине. Отношение числа зубьев колеса к числу зубьев шестерни называют передаточным числом. Зубчатое колесо, передающее вращение, называют ведущим, приводимое во вращение - ведомым. Колесо зубчатой пары с меньшим числом зубьев называют шестерней, сопряженное с ним парное колесо с большим числом зубьев - колесом.

    Для чего используют шестерни ?

    Элементы и характеристики зубчатого колеса.

    Есть несколько различных терминов, которые необходимо знать, если вы только начинаете знакомиться с зубчатыми передачами. Для того чтобы шестерни сцепились, диаметральный шаг и угол давления должны быть одинаковыми.

    Ось: ось вращения шестерни, где проходит вал.

    Зубья: зубчатые грани, выступающие наружу от окружности шестерни, используемые для передачи вращения на другие шестерни. Число зубьев на шестерне должно быть целым числом. Шестерни передают вращение в том случае, если их зубья сцепляются и имеют одинаковый профиль.

    Наружный диаметр. Это максимальный диаметр шестерни. Это расстояние от центра корпуса шестерни до вершины зуба. Внешний диаметр обозначает крайнюю протяженность шестерни.

    Делительный диаметр для зубчатого колеса всегда один. Длина делительной окружности зубчатого колеса: πd = pt z (где π = 3,14), откуда диаметр делительной окружности d = (pt / π) z. Линейная величина, в π раз меньшая шага зацепления, называется модулем и обозначается буквой m.

    Модуль зацепления называется иногда диаметральным шагом зубчатого колеса: отношение количества зубьев к диаметру шага. Две шестерни должны иметь одинаковый диаметральный шаг для зацепления. Введение модуля упрощает расчет и изготовление зубчатых передач, так как позволяет выражать различные параметры колеса (например, диаметры колеса) целыми числами, а не бесконечными дробями, связанными с числом п . ГОСТ 9563—60* установил следующие значения модуля, мм: 0,5; (0,55); 0,6; (0,7); 0,8; (0,9); 1; (1,125); 1,25; (1,375); 1,5; (1,75); 2; (2,25); 2,5; (2,75); 3; (3,5); 4; (4,5); 5; (5,5); 6; (7); 8; (9); 10; (11); 12; (14); 16; (18); 20; (22); 25; (28); 32; (36); 40; (45); 50; (55); 60; (70); 80; (90); 100.

    Угол профиля исходного контура: угол давления шестерни - это угол между линией, определяющий радиус окружности шага до точки, где окружность шага пересекает зуб, и касательной к этому зубу в этой точке. Стандартные углы давления составляют 14,5, 20 и 25 градусов. Угол давления влияет на то, как шестерни контактируют друг с другом, и таким образом, как сила распределяется вдоль зуба. Две шестерни должны иметь одинаковый угол давления для зацепления.

    Исходный контур. При стандартизации зубчатых колес и зуборезного инструмента для упрощения определения формы и размеров нарезаемых зубьев и инструмента введено понятие исходного контура. Это контур зубьев номинальной исходной зубчатой рейки в сечении плоскостью, перпендикулярной к ее делительной плоскости. На рисунке показан исходный контур по ГОСТ 13755—81 (СТ СЭВ 308—76) — прямобочный реечный контур со следующими значениями параметров и коэффициентов: угол главного профиля а = 20° ; коэффициент высоты головки h*a = 1 ; коэффициент высоты ножки h*f = 1,25 ; коэффициент радиуса кривизны переходной кривой р*f = 0,38 ; коэффициент глубины захода зубьев в паре исходных контуров h*w = 2 ; коэффициент радиального зазора в паре исходных контуров С* = 0,25 .

    Рис. 5. Исходный контур: а — основные элементы профиля; б — фланкированный профиль; 1 — делительная прямая. Смещения исходного контура; а — положительное; б — без смещения; в — отрицательное;

    Рис. 5. Исходный контур: а — основные элементы профиля; б — фланкированный профиль; 1 — делительная прямая. Смещения исходного контура; а — положительное; б — без смещения; в — отрицательное;

    Для улучшения работы зубчатых колес (повышения прочности зубьев, плавности зацепления и тп.), получения заданного межосевого расстояния, во избежание подрезания зубьев и для других целей производят смещение исходного контура: положительное или отрицательное.

    Для улучшения плавности работы цилиндрических колес (преимущественно при увеличении окружной скорости их вращения) применяют профильную модификацию зуба, в результате которой поверхность зуба выполняется с преднамеренным отклонением от теоретической эвольвентной формулы у вершины или у основания зуба. Например, срезают профиль зуба у его вершины на высоте hc = 0,45m от окружности вершин на глубину модификации А = (0,005%0,02) m

    Различные типы шестерен

    Существует множество различных типов шестерен и зубчатых механизмов. Вот некоторые из них: цилиндрическая зубчатая передача, косозубое колесо, зубчатая рейка, коническая шестерня, тангенциальная коническая передача, червячная передача, внутреннее зубчатое колесо и другие.

    1. Цилиндрические зубчатые передачи

    Цилиндрические зубчатые колеса самый простой тип шестерни. Зубчатые шестерни используются для того, чтобы перенести движение от одного вала к параллельному валу. Зубья расположены параллельно оси вращения. Когда два соседних зубчатых колеса сцепляются, они вращаются в противоположных направлениях. Эти шестерни наиболее часто используются, потому что они легко и быстро изготавливаются по сравнению с другими типами. Они отлично работают при умеренной нагрузке и умеренной скорости и обычно используются там, где шум и вибрация не являются проблемой. Другие типы шестерен требуют более точных и более сложных процедур обработки. Для изменения крутящего момента и числа оборотов можно использовать две прямозубые цилиндрические шестерни разного размера.Одним из его преимуществ является обеспечение высокого КПД трансмиссии при отсутствии осевой нагрузки на вал.

    К некоторым недостаткам можно отнести высокий уровень шума и вибрации при работе на высоких скоростях, а также большую нагрузку на зубья в этой простой конструкции.

    Необходимость изобретать и применять в промышленных масштабах различного рода машины невольно породила потребность в специалистах, способных осуществлять эту деятельность не от случая к случаю, а постоянно. Таким образом, переворот в техническом компоненте производительных сил привел к видоизменению человеческого компонента – появились инженеры механики. Проектирование передач инженерами осуществляется не только в соответствии с отечественной нормативной базой (ГОСТ, ОСТ), но и по стандартам других стран (AGMA, ASA, DIN, ISO, JIS, GBT). Применение зарубежных стандартов при проектировании механических передач расширяет возможности по ремонту импортных узлов и агрегатов, при этом способствует сокращению сроков и снижению цены ремонта сложного технологического оборудования.

    Механические передачи. Характеристики, виды, принцип работы.

    Механические передачи. Характеристики, виды, принцип работы.

    Инженеры вовлечены, как правило, во все процессы жизненного цикла технических устройств и механических передач, являющихся предметом инженерного дела, включая прикладные исследования, планирование, проектирование, конструирование, разработку технологии изготовления, подготовку технической документации, производство, наладку, испытание, эксплуатацию, техническое обслуживание, ремонт и утилизацию.

    Хороший инженер умеет почти всё. Он - технолог, механик, слесарь, наладчик. Как же это у него получается? На самом деле одна из основ знаний и умений инженера - это "глубина понимания". Вторая основа - опыт. В хороших ВУЗах инженеров учат не "знать всё на свете", а находить нужную информацию в кратчайшие сроки. С опытом приходит и умение "отделять мух от котлет" и "видеть" решение той или иной задачи/проблемы. Инженеру не составит большого труда разобраться в схеме оборудования, из каких передач оно состоит.

    Механическая энергия, используемая для приведения в движение машины-орудия, представляет собой энергию вращательного движения вала двигателя. Вращательное движение получило наибольшее распространение в механизмах и машинах, так как обладает следующими достоинствами: обеспечивает непрерывное и равномерное движение при небольших потерях на трение; позволяет иметь простую и компактную конструкцию передаточного механизма.

    Все современные двигатели для уменьшения габаритов и стоимости выполняют быстроходными с весьма узким диапазоном изменения угловых скоростей. Непосредственно быстроходный вал двигателя соединяют с валом машины редко (вентиляторы и т. п.). В абсолютном большинстве случаев режим работы машина-орган не совпадает с режимом работы двигателя, поэтому передача механической энергии от двигателя к рабочему органу машины осуществляется с помощью различных передач.

    Передачей будем называть устройство, предназначенное для передачи энергии из одной точки пространства в другую, расположенную на некотором расстоянии от первой.

    Механическими передачами, или просто передачами, называют механизмы для передачи энергии от машины-двигателя к машине-исполнительному механизму, как правило, с преобразованием скоростей, моментов, а иногда — с преобразованием видов (например, вращательное в поступательное) и законов движения.

    Передача (в механике) соединяет вал источника энергии - двигателя и валы потребителей энергии - рабочих органов машины, таких, например, как шпиндель токарного станка, ведущие колёса гусеничной техники или привод автомобиля.

    Механические передачи известны со времен зарождения техники, прошли вместе с ней длительный путь развития и совершенствования и имеют сейчас очень широкое распространение. Грамотная эксплуатация механических передач требует знания основ и особенностей их проектирования и методов расчетов.

    Сегодня я бы хотел более подробно раскрыть тему зубчатых механических передач и их предназначение в устройствах и узлах.

    Что такое шестеренки?

    Шестерня - это колесо с зубьями по окружности. Шестерни обычно используются в тандеме из двух или более, используемых для передачи вращения от оси одной шестерни к оси другой.

    Зубья шестерни на одной оси зацепляются с зубьями шестерни на другой, создавая таким образом связь между вращением двух осей. Когда одна ось вращается, другая тоже будет вращаться.В зависимости от профиля зубьев колес различают зацепления трех основных видов: эвольвентные, когда профиль зуба образован двумя симметричными эвольвентами; циклоидальные, когда профиль зубьев образован циклоидальными кривыми; зацепления Новикова, когда профиль зуба образован дугами окружности.

    Две шестерни разных размеров заставят их две оси вращаться с разной скоростью, что очень важно в механических передачах. Это измерение помогает определить, насколько быстро механизм может двигаться в машине. Отношение числа зубьев колеса к числу зубьев шестерни называют передаточным числом. Зубчатое колесо, передающее вращение, называют ведущим, приводимое во вращение - ведомым. Колесо зубчатой пары с меньшим числом зубьев называют шестерней, сопряженное с ним парное колесо с большим числом зубьев - колесом.

    Для чего используют шестерни ?

    Виды зубчатых передач.

    Виды зубчатых передач.

    Детали зубчатого колеса.

    Есть несколько различных терминов, которые необходимо знать, если вы только начинаете знакомиться с зубчатыми передачами. Для того чтобы шестерни сцепились, диаметральный шаг и угол давления должны быть одинаковыми.

    Ось: ось вращения шестерни, где проходит вал.

    Зубья: зубчатые грани, выступающие наружу от окружности шестерни, используемые для передачи вращения на другие шестерни. Число зубьев на шестерне должно быть целым числом. Шестерни передают вращение в том случае, если их зубья сцепляются и имеют одинаковый профиль.

    Модуль зацепления называется иногда диаметральным шагом зубчатого колеса: отношение количества зубьев к диаметру шага. Две шестерни должны иметь одинаковый диаметральный шаг для зацепления. Введение модуля упрощает расчет и изготовление зубчатых передач, так как позволяет выражать различные параметры колеса (например, диаметры колеса) целыми числами, а не бесконечными дробями, связанными с числом п. ГОСТ 9563—60* установил следующие значения модуля, мм: 0,5; (0,55); 0,6; (0,7); 0,8; (0,9); 1; (1,125); 1,25; (1,375); 1,5; (1,75); 2; (2,25); 2,5; (2,75); 3; (3,5); 4; (4,5); 5; (5,5); 6; (7); 8; (9); 10; (11); 12; (14); 16; (18); 20; (22); 25; (28); 32; (36); 40; (45); 50; (55); 60; (70); 80; (90); 100.

    Угол профиля исходного контура: угол давления шестерни - это угол между линией, определяющий радиус окружности шага до точки, где окружность шага пересекает зуб, и касательной к этому зубу в этой точке. Стандартные углы давления составляют 14,5, 20 и 25 градусов. Угол давления влияет на то, как шестерни контактируют друг с другом, и таким образом, как сила распределяется вдоль зуба. Две шестерни должны иметь одинаковый угол давления для зацепления.

    Исходный контур. При стандартизации зубчатых колес и зуборезного инструмента для упрощения определения формы и размеров нарезаемых зубьев и инструмента введено понятие исходного контура. Это контур зубьев номинальной исходной зубчатой рейки в сечении плоскостью, перпендикулярной к ее делительной плоскости. На рисунке показан исходный контур по ГОСТ 13755—81 (СТ СЭВ 308—76) — прямобочный реечный контур со следующими значениями параметров и коэффициентов: угол главного профиля а = 20°; коэффициент высоты головки h*a = 1; коэффициент высоты ножки h*f = 1,25; коэффициент радиуса кривизны переходной кривой р*f = 0,38; коэффициент глубины захода зубьев в паре исходных контуров h*w = 2; коэффициент радиального зазора в паре исходных контуров С* = 0,25.

    Рис. 5. Исходный контур: а — основные элементы профиля; б — фланкированный профиль; 1 — делительная прямая. Смещения исходного контура; а — положительное; б — без смещения; в — отрицательное;

    Рис. 5. Исходный контур: а — основные элементы профиля; б — фланкированный профиль; 1 — делительная прямая. Смещения исходного контура; а — положительное; б — без смещения; в — отрицательное;

    Для улучшения работы зубчатых колес (повышения прочности зубьев, плавности зацепления и тп.), получения заданного межосевого расстояния, во избежание подрезания зубьев и для других целей производят смещение исходного контура: положительное или отрицательное.

    Для улучшения плавности работы цилиндрических колес (преимущественно при увеличении окружной скорости их вращения) применяют профильную модификацию зуба, в результате которой поверхность зуба выполняется с преднамеренным отклонением от теоретической эвольвентной формулы у вершины или у основания зуба. Например, срезают профиль зуба у его вершины на высоте hc = 0,45m от окружности вершин на глубину модификации А = (0,005%0,02) m

    Типы механических передач

    Существует множество различных типов шестерен и зубчатых механизмов. Вот некоторые из них: цилиндрическая зубчатая передача, косозубое колесо, зубчатая рейка, коническая шестерня, тангенциальная коническая передача, червячная передача, внутреннее зубчатое колесо и другие.

    1. Цилиндрические зубчатые передачи

    Цилиндрические зубчатые колеса самый простой тип шестерни. Зубчатые шестерни используются для того, чтобы перенести движение от одного вала к параллельному валу. Зубья расположены параллельно оси вращения. Когда два соседних зубчатых колеса сцепляются, они вращаются в противоположных направлениях. Эти шестерни наиболее часто используются, потому что они легко и быстро изготавливаются по сравнению с другими типами. Другие типы шестерен требуют более точных и более сложных процедур обработки.

    2. Косозубая передача

    Винтовые зубчатые передачи используются с параллельными валами подобно цилиндрическим шестерням. Они имеют более крепкое сцепление, чем цилиндрические и менее шумные, а также могут работать при более высоких нагрузках, делая их пригодными для работы на высоких скоростях. При использовании винтовых зубчатых колес они создают силу тяги в осевом направлении, что требует использования упорных подшипников.

    3. Зубчатая рейка

    Зубья одинакового размера и формы, вырезанные на равных расстояниях вдоль плоской поверхности или прямого стержня, называются зубчатыми рейками. Зубчатая рейка представляет собой цилиндрическую шестерню с бесконечным радиусом цилиндра шага. Путем зацепления с цилиндрической шестерней, оно преобразовывает вращательное движение в линейное. Зубчатые рейки могут быть разделены на прямые зубчатые рейки и винтовые зубчатые рейки, но обе имеют прямые зубчатые линии.

    4. Коническая зубчатая передача

    Конические зубчатые колеса имеют конусообразное сечение и используются для того, чтобы передать вращение между 2 валами которые пересекаются в одной точке. Виды конических зубчатых колес включают прямые конические зубчатые колеса, спиральные конические зубчатые колеса, угловые конические зубчатые колеса, гипоидные шестерни.

    5. Тангенциальная коническая передача

    Если зубья конических колес прямые, но идут не по радиусам, то они называются тангенциальными и могут работать с окружной скоростью до 12 м/с.

    6. Конические передачи с криволинейными зубьями

    Конические колеса с криволинейными зубьями бывают трех разновидностей:

    1. Коническое зубчатое колесо с круговыми зубьями, нарезанными по окружности, линии зубьев которых имеют вид дуги окружности с углом наклона β n > 0 (этот угол называют углом спирали);
    2. Коническое зубчатое колесо с эвольвентной линией зубьев - зубчатое колесо, теоретическими линиями зубьев которого на развертке делительного конуса являются эвольвенты концентрической окружности (Паллоидные);
    3. Коническое зубчатое колесо с циклоидальной линией зубьев - зубчатое колесо, теоретическими линиями зубьев которого на развертке делительного конуса являются циклоидальные кривые.

    Коническое зубчатое колесо с круговыми зубьями, у которого угол наклона зубьев (угол спирали) в одной из точек делительной средней линии зуба равен нулю называют, также, коническое зубчатое колесо с нулевым углом наклона зубьев или "Зерол".

    7. Винтовая передача

    Винтовые передачи представляют собой пару одинаковых ручных винтовых передач с углом закрутки 45° на непараллельных, непересекающихся валах. Т.к. контакт зубьев хуже, чем у других типов передач, поэтому они не предназначены для передачи больших нагрузок. Поскольку мощность передается при скольжении поверхностей зубьев, необходимо обратить внимание на смазку при использовании винтовых передач. Нет никаких ограничений по количеству комбинаций зубьев.

    Винтовая передача

    Винтовая передача

    8. Червячная передача

    Червяки и червячные колеса не ограничиваются цилиндрическими формами. Существует некоторые типы червячных передач, которые имеют лучший коэффициент контакта, но производство таких передач становится более сложным и дорогим. Благодаря скользящему контакту поверхностей зубчатых колес необходимо уменьшить трение. По этой причине, как правило, жесткий материал используется для червяка, а мягкий материал используется для червячного колеса. Главное преимущество такой передачи – ровное и тихое вращение.

    Зубчатое червячное колесо Z32 m4.5

    Зубчатое червячное колесо Z32 m4.5

    9. Передачи зубчатые внутреннего зацепления.

    Внутренние шестерни имеют зубья, вырезанные на внутренности цилиндров или конусов и спарены с внешними шестернями. Существуют ограничения в количестве зубьев между внутренними и внешними передачами из-за эвольвентных и трохоидных помех и проблем обрезки. Часто применяют в планетарных передачах.

    10. Цепные передачи

    Применяются при передаче вращения между, параллельными удаленными друг от друга валами. В настоящее время получили распространение два типа приводных цепей:

    а) цепи втулочно-роликовые (типа Галя),

    б) цепи зубчатые из штампованных звеньев (типа Рейнольдса).

    Зубчатые цепи, благодаря относительно меньшему шагу, работают более плавно и бесшумно.

    Недостатком цепных передач является сравнительно быстрый износ шарниров, способствующий вытяжке цепи и нарушению ее зацепления со звездочкой, а также шумная работа на высоких скоростях вследствие особенностей кинематики цепной передачи.

    11. Ременные передачи

    Применяются также для передачи вращения между параллельными удаленными валами. Область распространения этих передач в настоящее время значительно сократилась, однако они еще находят широкое применение в качестве первичного привода от двигателя, а также привода к механизмам, обладающим большим моментом вращающихся масс. При трогании с места и в случае внезапных перегрузок ремни пробуксовывают, спасая механизмы от поломок.

    По способу передачи механической энергии: трением, зацеплением.

    Различные способы установки: открытый, перекрёстный, полуперекрёстный.

    По виду ремней: плоские ремни, клиновые ремни, поликлиновые ремни (многоручьевые), зубчатые ремни, ремни круглого сечения.

    Ременные передачи

    Ременные передачи

    Ремённая передача По форме сечения ремня

    Ремённая передача По форме сечения ремня

    Шкив 3 B 3.100.28 Д16Т ГОСТ20889-88

    Шкив 3 B 3.100.28 Д16Т ГОСТ20889-88

    Преимущественное распространение перед плоскими получили клиновые ремни, обладающие большей тяговой способностью.

    12. Фрикционные передачи

    Фрикционные передачи по форме фрикционных катков могут быть: цилиндрическими, коническими, лобовыми - с внешним и внутренним контактом. Главное достоинство фрикционных передач заключается в возможности создания на их базе фрикционных вариаторов (бесступенчатых коробок передач), а также в бесшумной их работе при высоких скоростях.

    Почему вращательные механические передачи так важны?

    Только представьте, все, чем мы с вами сегодня пользуемся был произведено на производственных линиях, в конструкции которых обязательно есть механические передачи, шестерни.

    На протяжении многих поколений люди более или менее усовершенствовали дизайн и характеристики этих чудес производства с помощью нескольких ключевых методов. Три основных процесса изготовления зубчатых колес: протяжка, фрезеровка и механическая обработка.

    Мы знаем, как они помогли нам построить современную цивилизацию, но нет никаких сомнений, им найдется применение и в век информационных технологий.

    Передачей называют техническое приспособление для передачи того или иного вида движения от одной части механизма к другой. Передача происходит от источника энергии к месту ее потребления или преобразования. Первые передаточные механизмы были разработаны в античном мире и использовались в системах орошения Древнего Египта, Междуречья и Китая. Средневековые механики значительно усовершенствовали устройства, передающие движение, и разработали множество новых видов, используя и в прялках и гончарном деле. Подлинный же расцвет начался в Новое время, с внедрением технологий производства и точной обработки стальных сплавов.

    Виды передачи движения

    Виды передачи движения

    Виды передачи движения

    В различных станках, бытовых приборах, транспортных средствах и других механизмах используют разнообразные виды передач.

    Обычно различают следующие виды передачи:

    • вращательного движения;
    • прямолинейного или возвратно-поступательного;
    • движения по определенной траектории.

    Самым широко применяемым типом механических передач являются вращательные.

    Особенности зубчатого механизма

    Такие механизмы предназначены для того, чтобы передавать вращение от одного зубчатого колеса к другому, используя зацепление зубцов. У них относительно малые потери на трение по сравнению с фрикционами, поскольку плотный прижим колесной пары друг к другу не нужен.

    Зубчатый механизм

    Пара шестерен преобразует скорость вращения вала обратно пропорционально соотношению числа зубцов. Это соотношение называют передаточным числом. Так, колесо с пятью зубьями будет вращаться в 4 раза быстрее, чем состоящее с ним в зацеплении 20-зубое колесо. Крутящий момент в такой паре уменьшится также в 4 раза. Это свойство используют для создания редукторов, понижающих скорость вращения с возрастанием крутящего момента (или наоборот).

    Если необходимо получить большое передаточное число, то одной пары шестерен может быть недостаточно: редуктор получится очень больших размеров. Тогда применяют несколько последовательных пар шестерен, каждую с относительно небольшим передаточным числом. Характерным примером такого вида является автомобильная коробка передач или механические часы.

    Зубчатый механизм способен также изменять направление вращения приводного вала. Если оси лежат в одной плоскости — применяют конические шестерни, если в разных- то передачу червячного или планетарного вида.

    Планетарный зубчатый механизм

    Планетарный зубчатый механизм

    Для реализации движение с определенным периодом на одной из шестерен оставляют один (или несколько) зубец. Тогда вторичный вал будет перемещаться на заданный угол только каждый полный оборот ведущего вала.

    Если развернуть одну из шестерен на плоскость – получится зубчатая рейка. Такая пара может преобразовывать вращательное движение в прямолинейное.

    Параметры зубчатой передачи

    Для того чтобы шестерни входили в зацепление и эффективно передавали движение, необходимо, чтобы зубья точно совпадали между собой по профилю. Регламентированы основные параметры, используемые при расчете:

    • Диаметр начальной окружности.
    • Шаг зацепления — расстояние между соседними зубцами, определенное вдоль линии начальной окружности.
    • Модуль. – Отношение шага к константе π. Шестерни с равным модулем всегда входят в зацепление, независимо от количества зубцов. Стандартом предписывается допустимый ряд значение модулей. Через модуль выражаются все основные параметры шестерни.
    • Высота зуба.

    Параметры зубчатого движения

    Параметры зубчатого движения

    Важными параметрами также являются высота головки и основания зуба, диаметр окружности выступов, угол контура и другие.

    Преимущества

    Передачи зубчатого вида обладают рядом очевидных достоинств. Это:

    • преобразование параметров движения (число оборотов и крутящий момент) в широких пределах;
    • высокая отказоустойчивость и ресурс работы;
    • компактность;
    • малые потери и большой коэффициент полезного действия;
    • небольшие нагрузки на оси;
    • стабильность передаточного числа;
    • несложное обслуживание и ремонт.

    Классификация зубчатых передач

    Классификация зубчатых передач

    Недостатки

    Зубчатым механизмам свойственны и определенные минусы:

    • При изготовлении и сборке требуется высокая точность и специальная обработка поверхностей.
    • Неизбежный шум и вибрация, особенно при высоких оборотах или больших усилиях
    • Жесткость конструкции приводит к поломкам при стопорении ведомого вала.

    При выборе вида передачи конструктор сопоставляет преимущества и недостатки для каждого конкретного случая.

    Механические передачи

    Механические передачи служит для того, чтобы передать вращение от ведущего вала к ведомому, от места генерации механической энергии (обычно — двигатель того или иного типа) к месту ее потребления или преобразования.

    Как правило, двигатели вращают свой вал с ограниченным пределом изменения числа оборотов и крутящего момента. Потребителям же требуются более широкие диапазоны.

    По методу передачи механической энергии среди передач различают следующие виды:

    • зубчатые;
    • винтовые;
    • гибкие.
    • фрикционные.

    Виды механических передач

    Виды механических передач

    Зубчатые передающие механизмы, в свою очередь, подразделяются на такие виды, как:

    • цилиндрические;
    • конические;
    • профиль Новикова.

    По соотношению скорости вращения ведущего и ведомого валов различают редукторы (снижающие обороты) и мультипликаторы (увеличивающие обороты). Современная механическая коробка передач для автомобиля объединяет в себе оба вида, являясь одновременно и редуктором, и мультипликатором.

    Функции механических передач

    Главная функция механических передач — это предать кинетическую энергию от ее источника к потребителям, рабочим органам. Помимо главной, передаточные механизмы выполняют и дополнительные функции:

    • Изменение числа оборотов и крутящего момента. При постоянном количестве движения изменения этих величин обратно пропорциональны. Для ступенчатого изменения применяют сменные зубчатые пары, для плавного подходят ременные или торсионные вариаторы.
    • Изменение направления вращения. Включает как обычный реверс, так и изменение направления оси вращения с помощью конических, планетарных или карданных механизмов.
    • Преобразование видов движения. Вращательного в прямолинейное, непрерывного в циклическое.
    • Раздача крутящего момента между несколькими потребителями.

    Механические передачи выполняют и другие вспомогательные функции.

    Классификация механических передач

    Машиностроителями принято несколько классификаций в зависимости от классифицирующего фактора.

    По принципу действия различают следующие виды механических передач:

    • зацеплением;
    • трением качения;
    • гибкими звеньями.

    По направлению изменения числа оборотов выделяют редукторы (снижение) и мультипликаторы (повышение). Каждый из них соответственно изменяет и крутящий момент (в обратную сторону).

    По числу потребителей передаваемой энергии вращения вид может быть:

    Классификация механических передач

    Классификация механических передач

    По числу этапов преобразования – одноступенчатые и многоступенчатые.

    По признаку преобразования видов движения выделяют такие типы механических передач, как

    • Вращательно-поступательные. Червячные, реечные и винтовые.
    • Вращательно-качательные. Рычажные пары.
    • Поступательно-вращательные. Кривошипно-шатунные широко применяются в двигателях внутреннего сгорания и паровых машинах.

    Для обеспечения движения по сложным заданным траекториям используют системы рычагов, кулачков и клапанов.

    Основные показатели для выбора механических передач

    Выбор типа передачи — сложная конструкторская задача. Нужно подобрать вид и спроектировать механизм, наиболее полно удовлетворяющий техническим требованиям, сформулированным для данного узла.

    При выборе конструктор сопоставляет следующие основные факторы:

    • опыт предшествующих аналогичных конструкций;
    • мощность и момент на валу ;
    • число оборотов на входе и на выходе;
    • требуемый К.П.Д.;
    • массогабаритные характеристики;
    • доступность регулировок;
    • плановый эксплуатационный ресурс;
    • себестоимость производства;
    • стоимость обслуживания.

    При высоких передаваемых мощностях обычно выбирают многопоточный зубчатый вид. При необходимости регулировки числа оборотов в широком диапазоне разумно будет выбрать клиноременной вариатор. Конечное решение остается за конструктором.

    Цилиндрические передачи

    Механизмы такого вида выполняют с внутренним или с внешним зацеплением. Если зубья расположены под углом к продольной оси, шестерню называют косозубой. По мере увеличения угла наклона зубцов прочность пары повышается. Зацепление косозубого вида также отличается лучшей износостойкостью, плавностью хода и низким уровнем шума и вибраций.

    Цилиндрическая передача

    Недостатком этого типа является возникновение паразитной силы, действующей вдоль оси колеса. Это создает лишнюю нагрузку на опорные подшипники.

    Коническая передача

    Если необходимо изменить направление вращения, а оси валов лежат в одной плоскости, применяют конический тип передачи. Наиболее распространенный угол изменения – 90°.

    Такой тип механизма более сложен в изготовлении и монтаже и, также как и косозубый, требует укрепления опорных конструкций.

    Коническая передача

    Конический механизм может передать до 80% мощности по сравнению с цилиндрическим.

    Реечная и ременная зубчатая передача

    Реечная передача преобразует вращательное движение в поступательное. Одно из зубчатых колес пары как бы развернуто в линию и представляет собой зубчатую рейку. Такой способ используется в рулевом управлений автомобиля, в других исполнительных механизмах.

    Ременная передача была изобретена в доисторические времена и с тех пор заметно видоизменилась и усовершенствовалась.

    Она состоит из двух закрепленных на входном и выходном валу колес-шкивов, охваченных кольцевым приводным ремнем. Вращение передается за счет сил трения, возникающих на шкивах.

    Ременная зубчатая передача Реечная зубчатая передача

    Плоские и круглые ремни используются при небольших нагрузках. Широкое распространение получил ремень в форме клина, шкив при этом выполняется со щечками, и зацепление осуществляется одной нижней и двумя боковыми поверхностями ремня.

    Ремни также снабжаются зубчатыми фрагментами. Поликлиновые передачи широко применяются в современных автомобильных и мотоциклетных вариаторах. Они позволяют передавать значительный крутящий момент и плавно регулировать скорость вращения ведомого вала.

    Достоинства и недостатки ременных передач

    • передача вращения на большие дистанции (до 20 метров);
    • низкий уровень шума и вибраций;
    • демпфирование динамических нагрузок упругим материалом ремня;
    • простое устройство и эксплуатация, смазка ремня не требуется).
    • большие размеры (при равной мощности шестерня в 5-6 раз меньше шкива);
    • переменное передаточное число из-за проскальзывания;
    • малая долговечность по сравнению с зубчатыми колесами.

    Чтобы обеспечить тяговую способность, ремень приходится подвергать большому предварительному натяжению. Это ускоряет износ подшипников и валов шкивов.

    Применение

    Из всех типов передач наиболее широко применяются зубчатые. Практически любой механизм, бытовой прибор, станок, механические часы, транспортное средство включает в себя зубчатые пары.

    В последнее время, с прогрессом электротехники, разработкой новых материалов и отходом двигателей внутреннего сгорания на второй план, использование зубчатых механизмов приобрело тенденцию к сокращению.

    Все чаще вместо редуктора используют электронную схему регулировки момента и числа оборотов электродвигателя. В электромобиле из нескольких тысяч движущихся частей, 30% из которых составляли разного вида шестерни, осталось несколько сотен.

    Зубчатые шестерни в механизме часов Двигатель с зубчатым механизмом

    Тяговые электродвигатели размещены непосредственно в колесе, необходимость в сложной трансмиссии отпадает.

    Похожие тенденции намечаются и в бытовой технике.

    Свои позиции зубчатые редукторы и трансмиссии сохраняют там, где требуется передача очень больших мощностей и крутящих моментов. Это промышленные установки, горная техника, некоторые виды транспортных систем.

    Обслуживание

    Своевременное обслуживание любой техники в соответствии с рекомендациями ее производителя обеспечит ее нормальное функционирование, паспортную производительность и выработку планового ресурса.

    Обслуживание разбивается на несколько видов

    • текущее обслуживание;
    • диагностика;
    • планово-предупредительный ремонт;
    • внеплановый ремонт;
    • аварийный ремонт.

    При условии проведения текущего обслуживания и планово-предупредительных ремонтов в соответствии с графиками удается значительно снизить риски выхода оборудования из строя.

    Диагностика проводится с заданной периодичностью и призвана выявить негативные изменения в работе оборудования на ранней стадии и минимизировать потери времени и средств на внеплановые ремонты.

    Обслуживание зубчатых передач заключается в их своевременной смазке.

    Для ременных необходимо периодическое восстановление силы натяжения ремня.

    Диагностика проводится как методом визуального осмотра, таки измерением температуры, уровня шума и вибрации, ультразвуковым и рентгеновским просвечиванием механизма без его разборки.

    Обслуживание зубчатого механизма

    Обслуживание зубчатого механизма

    Стандарты

    Основные параметры различных видов передач нормируются соответствующими ГОСТами:

    • Зубчатые цилиндрические: 16531-83.
    • Червячные 2144-76.
    • Эвольвентные 19274-73.

    Дополнительные параметры, методы расчета и особенности эксплуатации описаны в других государственных стандартах.

    Читайте также: