Корпускулярно волновая природа электрона химия кратко

Обновлено: 09.05.2024

Недостатки модели Бора. Выдвинутая Бором модель атома до сих пор используется в ряде случаев. Она применима для объяснения линий в спектре атомарного водорода. Ею можно пользоваться, объясняя расположение элементов в периодической таблице и закономерности изменения энергий ионизации элементов.

Однако модель Бора имеет несколько недостатков. Во-первых, она не позволяет объяснить некоторые сложные особенности в спектрах элементов, более тяжелых, чем водород. Во-вторых, экспериментально не подтверждается, что электроны в атомах вращаются вокруг ядра по круговым орбитам со строго определенным угловым моментом. Более того, если бы это было так, электрон должен был бы постепенно терять энергию и замедляться. В конце концов он оказался бы притянутым к ядру, что означает разрушение атома. На самом деле этого не происходит.

Двойственная природа электрона.

Решающий шаг в развитии квантовой теории атома произошел в 1925 г., когда Луи де Бройль высказал предположение, что электрону следует приписать некоторую длину волны. Было уже известно, что электромагнитное излучение способно обнаруживать свойства, как волновые, так и корпускулярные (подобные свойствам частиц), и в последнем случае ведет себя как поток частиц-фотонов. Энергия Е фотона связана с его длиной волны X или частотой v соотношениями

(где с - скорость света). Пользуясь уравнением Эйнштейна

и подставляя это значение Е в приведенное выше соотношение, находим

Обратим внимание на то, что полученное уравнение связывает длину волны фотона с его моментом.

Де Бройль предположил, что аналогичное уравнение можно записать и для электрона. Уравнение де Бройля имеет вид

где - длина волны электрона, - его масса, скорость. Это уравнение легло в основу новой квантовой теории.

Де Бройль предложил рассматривать электрон как стоячую волну, которая должна умещаться на круговой атомной орбите. Этим определяется требование к длине волны электрона - она должна была уложиться на орбите целое число раз. Число раз, которое длина волны укладывается на орбите, соответствует квантовому числу электрона.

В 1927 г. наличие волновых свойств у электрона экспериментально подтвердили опыты К. Дэвиссона и Л. Джермера, а также Дж. П. Томсона. Они обнаружили, что пучок электронов, подобно пучку света, испытывает дифракцию, проходя через кристалл либо через металлическую фольгу. Другие эксперименты свидетельствуют как о волновых, так и о корпускулярных свойствах электрона. Эти эксперименты и соответствующие свойства указаны в табл. 1.4.

Таблица 1.4. Эксперименты, свидетельствующие о волновых и о корпускулярных свойствах электрона

В 1923 году французский физик Луи де Бройль, опираясь на идеи Планка и Эйнштейна, предположил, что корпускулярно-волновой дуализм применим не только к излучению, а является фундаментальным свойством материи. Длина волны λ для тела массой m движущегося со скоростью v (vс) может быть вычислена по формуле:

где p – импульс частицы.

Длина волны де Бройля убывает, с ростом массы и скорости частицы. Тело с массой в 1 грамм, движущейся со скоростью 1 м/с, соответствует волне де Бройля примерно 6,6·10 -31 метра, что находиться за пределом доступным наблюдению. Для макроскопических тел, таким образом, волновые свойства несущественны. Для электронов же с энергиями от одного до 10000 электрон-вольт λ лежит в пределах от 1 нм до 10 -2 нм, в интервале длин волн рентгеновского излучения. Поэтому волновые свойства электронов должны проявляться при их рассеянии на кристаллах, на которых и наблюдается дифракция рентгеновских лучей.

В модели атома Луи де Бройль постарался учесть волновые свойства электронов. Электроны в его атомах двигаются по орбитам, вмещающим целое число длин волн: 2πr = nλ (n =1,2,3. ). Вдоль орбиты электрона существует своеобразная стоячая волна. Разрешенные орбиты отличаются друг от друга на одну длину волны де Бройля (рис.11).

Рисунок 11. Модель атома Луи де Бройля. На каждой стационарной электронной орбите укладывается целое число (n) длин волн.

Через несколько лет идея о волновых свойствах электрона получила экспериментальное подтверждение. Американские физики Клинтон Дэвиссон и Лестер Джермер обнаружили, что пучок электронов, рассеивающийся на кристалле никеля, подобно рентгеновскому излучению, дает отчетливую дифракционную картину. Расчет длины волны электрона, по положению дифракционных максимумов показал полное соответствие с формулой Луи де Бройля. Чуть позже Джордж Паджет Томсон, а также независимо от него Петр Савич Тартаковский наблюдали дифракционную картину, возникающую на экране при пропускании электронного пучка через поликристаллическую фольгу из золота (рис.12).

Рисунок 12. Опыт по дифракции электронов на поликристалле.

1 – электронная пушка

2 – золотая фольга

4 –дифракционная картина

Этот опыт был реализован гораздо позже, в 1961 году Клаусом Иенсоном, Пучок электронов пропускался через две щели на медной пластине, после чего на фотопластинке, установленной за ними, наблюдалась интерференционная картина. Для наблюдения за электронами перед одной из щелей был поставлен детектор, регистрирующий событие прохождения электрона сквозь нее. И, как ожидалось, наличие детектора привело к исчезновению интерференционной картины на экране. Электрон стал вести себя как классическая частица, пролетая либо через первую, либо через вторую щель. Если детектор выключали, интерференционная картина восстанавливалась.

Современные ученые смогли показать волновые свойства довольно больших объектов. В начале этого века физики наблюдали дифракцию фуллеренов, фталоцианина и некоторых других крупных молекул.




В 1923 году французский физик Луи де Бройль, опираясь на идеи Планка и Эйнштейна, предположил, что корпускулярно-волновой дуализм применим не только к излучению, а является фундаментальным свойством материи. Длина волны λ для тела массой m движущегося со скоростью v (vс) может быть вычислена по формуле:

где p – импульс частицы.

Длина волны де Бройля убывает, с ростом массы и скорости частицы. Тело с массой в 1 грамм, движущейся со скоростью 1 м/с, соответствует волне де Бройля примерно 6,6·10 -31 метра, что находиться за пределом доступным наблюдению. Для макроскопических тел, таким образом, волновые свойства несущественны. Для электронов же с энергиями от одного до 10000 электрон-вольт λ лежит в пределах от 1 нм до 10 -2 нм, в интервале длин волн рентгеновского излучения. Поэтому волновые свойства электронов должны проявляться при их рассеянии на кристаллах, на которых и наблюдается дифракция рентгеновских лучей.

В модели атома Луи де Бройль постарался учесть волновые свойства электронов. Электроны в его атомах двигаются по орбитам, вмещающим целое число длин волн: 2πr = nλ (n =1,2,3. ). Вдоль орбиты электрона существует своеобразная стоячая волна. Разрешенные орбиты отличаются друг от друга на одну длину волны де Бройля (рис.11).

Рисунок 11. Модель атома Луи де Бройля. На каждой стационарной электронной орбите укладывается целое число (n) длин волн.

Через несколько лет идея о волновых свойствах электрона получила экспериментальное подтверждение. Американские физики Клинтон Дэвиссон и Лестер Джермер обнаружили, что пучок электронов, рассеивающийся на кристалле никеля, подобно рентгеновскому излучению, дает отчетливую дифракционную картину. Расчет длины волны электрона, по положению дифракционных максимумов показал полное соответствие с формулой Луи де Бройля. Чуть позже Джордж Паджет Томсон, а также независимо от него Петр Савич Тартаковский наблюдали дифракционную картину, возникающую на экране при пропускании электронного пучка через поликристаллическую фольгу из золота (рис.12).

Рисунок 12. Опыт по дифракции электронов на поликристалле.

1 – электронная пушка

2 – золотая фольга

4 –дифракционная картина

Этот опыт был реализован гораздо позже, в 1961 году Клаусом Иенсоном, Пучок электронов пропускался через две щели на медной пластине, после чего на фотопластинке, установленной за ними, наблюдалась интерференционная картина. Для наблюдения за электронами перед одной из щелей был поставлен детектор, регистрирующий событие прохождения электрона сквозь нее. И, как ожидалось, наличие детектора привело к исчезновению интерференционной картины на экране. Электрон стал вести себя как классическая частица, пролетая либо через первую, либо через вторую щель. Если детектор выключали, интерференционная картина восстанавливалась.

Современные ученые смогли показать волновые свойства довольно больших объектов. В начале этого века физики наблюдали дифракцию фуллеренов, фталоцианина и некоторых других крупных молекул.

Электрон обладает корпускулярно-волновым дуализмом. Корпускуля́рно-волново́й дуали́зм-принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. Был введён при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепция квантованных полей в квантовой теории поля. Многие концепции современной физики, такие как теория электромагнетизма, электродинамика, квантовая механика и др., основываются на представлении об электроне как носителе отрицательного электрического заряда. Однако представления о природе этого явления фактически отсутствуют.

Содержание работы

• Квантово-волновая природа электрона
• Уравнение Планка
• Уравнение волны де Бройля
• Принцип неопределённости Гейзенберга
• Вывод
• Список литературы

Файлы: 1 файл

реферат по химии.docx

По дисциплине: Неорганическая химия

Кафедра: Неорганической химии

Руководитель: Понамарева Н.А

Выполнила: Болдырева Н.А.

Группа: ВСЭ, 122/ 1

  • Квантово-волновая природа электрона
  • Уравнение Планка
  • Уравнение волны де Бройля
  • Принцип неопределённости Гейзенберга
  • Вывод
  • Список литературы

КОРПУСКУЛЯРНО-ВОЛНОВАЯ ПРИРОДА ЭЛЕКТРОНА

Электрон обладает корпускулярно-волновым дуализмом. Корпускуля́рно-волново́й дуали́зм-принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. Был введён при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепция квантованных полей в квантовой теории поля. Многие концепции современной физики, такие как теория электромагнетизма, электродинамика, квантовая механика и др., основываются на представлении об электроне как носителе отрицательного электрического заряда. Однако представления о природе этого явления фактически отсутствуют.

Высказывалась гипотеза о том, что каждому протону в атоме соответствует свой собственный электрон и что природа отрицательного и положительного зарядов различается, в первую очередь, тем, что плотность распределения массы у протона возрастает от периферии к центру, а у электрона - от центра к периферии, т.е. электрон похож на мыльный пузырь, вся масса электрона может быть размазана по поверхности этого пузыря. Эта гипотеза в неявном виде присутствует в современных представлениях о сущности элементарных частиц, в соответствии с которыми элементарные частицы обладают пространственной протяженностью и своеобразной внутренней структурой.

ОСНОВНЫЕ ЗАКОНЫ КВАНТОВОЙ МЕХАНИКИ

Квантовая механика – теория, устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов), а также связь величин, характеризующих частицы и системы с физическими величинами, непосредственно измеряемыми в макроскопических опытах.

Законы квантовой механики составляют фундамент изучения строения вещества.Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение ядер атомных, изучать свойства элементарных частиц. Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы квантовой механики лежат в основе понимания большинства макроскопических явлений. Квантовая механика позволила, например, объяснить температурную зависимость и вычислить величину теплоёмкости газов и твёрдых тел, определить строение и понять многие свойства твёрдых тел (металлов, диэлектриков, полупроводников). Только на основе квантовой механики удалось последовательно объяснить такие явления, как ферромагнетизм(одно из магнитных состояний кристаллических, как правило, веществ, характеризуемое параллельной ориентацией магнитных моментов атомных носителей магнетизма), сверхтекучесть, сверхпроводимость, понять природу таких астрофизических объектов, как белые карлики, нейтронные звёзды, выяснить механизм протекания термоядерных реакций в Солнце и звёздах.

Ряд крупнейших технических достижений 20 в. основан по существу на

специфических законах квантовой механики. Квантово-механические законы лежат в основе работы лазеров, ядерных реакторов, обусловливают возможность осуществления в земных условиях термоядерных реакций, проявляются в ряде явлений в металлах и полупроводниках, используемых в новейшей технике, и т.д.Фундамент такой бурно развивающейся области физики, как квантовая электроника, составляет квантово-механическая теория излучения, о которой речь пойдёт ниже.

Место квантовой механики среди других наук.

В начале XX в. выяснилось, что классическая механика И. Ньютона имеет

ограниченную область применимости и нуждается в обобщении. Во-первых, она не применима при больших скоростях движения тел - скоростях, сравнимых со скоростью света. Здесь её заменила и обобщила релятивистская механика, построенная на основе специальной теории относительности А. Эйнштейна. Для классической механики в целом характерно описание частиц путём задания их положения в пространстве (координат) и скоростей и зависимости этих величин от времени.

Такому описанию соответствует движение частиц по вполне определенным траекториям. Однако опыт показал, что это описание не всегда справедливо, особенно для частиц с очень малой массой (микрочастиц). Более общее описание движения дает квантовая механика, которая включает в себя как частный случай классическую механику. Квантовая механика, как и классическая,делится на нерелятивистскую, справедливую в случае малых скоростей, и релятивистскую, удовлетворяющую требованиям специальной теории относительности.

Корпускулярно-волновой дуализм (слово дуализм означает двойственность) — это физический принцип, утверждающий, что любой объект природы может вести себя и как частица, и как волна.

С первым проявлением этого принципа мы столкнулись в предыдущем листке, когда говорили о двойственной, корпускулярно-волновой природе света. В явлениях интерференции и дифракции свет демонстрирует свою волновую природу. В явлении фотоэффекта свет выступает как дискретный поток частиц — фотонов.

Является ли свет каким-то особым объектом нашего мира, таким, что подобный дуализм присущ только ему? Или, быть может, корпускулярно-волновой дуализм — это свойство вообще всех материальных объектов, просто впервые обнаружен он был для света?

Гипотеза де Бройля

Идея об универсальной двойственности корпускулярных и волновых свойств всех объектов природы была впервые высказана Луи де Бройлем (в 1924году) в качестве гипотезы о волновых свойствах частиц.

Итак, мы знаем, что свету с частотой и длиной волны соответствуют частицы — фотоны, обладающие энергией и импульсом . Де Бройль, в сущности, постулировал обратное.

Гипотеза де Бройля. Движению каждой частицы соответствует распространение некоторой волны. Частота и длина этой волны определяются энергией и импульсом частицы:

Точно так же, любой волне с частотой и длиной волны отвечают частицы с энергией и импульсом .

В случае электромагнитных волн мы имеем следующую закономерность. По мере увеличения длины волны всё легче наблюдать волновые свойства излучения и всё труднее — корпускулярные. И наоборот, чем меньше длина волны, тем ярче выражены корпускулярные свойства излучения и тем труднее наблюдать его волновые свойства. Изменение соотношения корпускулярных и волновых свойств хорошо прослеживается при движении по известной вам шкале электромагнитных волн.

Радиоволны.Длины волн здесь настолько велики, что корпускулярные свойства излучения практически не проявляются. Волновые свойства в этом диапазоне абсолютно доминируют.

Энергия квантов в рентгеновском и гамма-диапазоне настолько велика, что излучение ведёт себя почти стопроцентно как поток частиц.

Рассуждая по аналогии с электромагнитными волнами, можно заключить, что и частица будет проявлять волновые свойства тем лучше, чем больше её длина волны де Бройля (в масштабах данной ситуации).

Так, мы совсем не наблюдаем волновых свойств у окружающих нас тел. (Видели вы, например, интерференцию движущихся автомобилей?) А почему? Давайте посчитаем длину дебройлевской волны объекта массой кг, движущегося со скоростью м/с:

Дифракция электронов

Совсем другое дело — электрон. Масса электрона равна кг, и столь малое значение массы (а стало быть, и импульса в формуле ) может дать длину волны де Бройля, достаточную для экспериментального обнаружения волновых свойств.

Впервые это было сделано в знаменитом эксперименте американских физиков Дэвиссона и Джермера (1927 год). Дифракция электронов на кристаллах была обнаружена! Как и ожидалось, полученная дифракционная картина имела тот же характер, что и при дифракции на кристаллической решётке рентгеновских лучей.

Впоследствии волновые свойства были обнаружены и у более крупных частиц: протонов, нейтронов, атомов и молекул. Гипотеза де Бройля, таким образом, получила надёжное опытное подтверждение.

Соотношение неопределённостей

Обнаружение корпускулярных свойств электромагнитных волн и волновых свойств частиц показало, что объекты микромира подчиняются необычным законам. Эти законы совершенно непривычны для нас, привыкших наблюдать за макроскопическими телами.

Наше сознание выработало некоторые образы частицы и волны, вполне пригодные для описания объектов классической физики. Частица — это маленький, локализованный в пространстве сгусток вещества. Волна — это распределённый (не локализованный) в пространстве колебательный процесс. Как же эти понятия могут совмещаться в одном объекте (например, в электроне)?

Но коль скоро нет возможности одновременно точно измерить координаты и скорость, то теряет смысл понятие траектории движения объекта. Механика Ньютона перестаёт работать в микромире и уступает место квантовой механике.


Квантовая физика — раздел физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Тепловое излучение – электромагнитное излучение, возникающее за счет внутренней энергии тела и зависящее только от температуры и оптических свойств этого тела.

В случае, если излучение находится в термодинамическом равновесии с веществом, то такое излучение называется равновесным.

Спектр такого излучения эквивалентен спектру абсолютно черного тела. Однако в общем случае тепловое излучение не находится в термодинамическом равновесии с веществом, таким образом, более горячее тело остывает, а более холодное, наоборот, нагревается.

Основные характеристики теплового излучения:

  • поток излучения – отношение энергии излучения ко времени, за которое это излучение произошло;


  • энергетическая светимость тела – отношение потока излучения, испускаемого телом, к площади поверхности излучателя;


  • коэффициент поглощения – величина, равная отношению потока излучения, поглощенного данным телом, к потоку излучения, падающего на это тело.


Абсолютно черное тело — это физическая абстракция (модель), под которой понимают тело, полностью поглощающее все падающее на него электромагнитное излучение произвольной длины волны ​ \( \alpha_\lambda \) ​ = 1.

Серое тело — это такое тело, коэффициент поглощения которого не зависит от частоты, а зависит только от температуры \( \alpha_\lambda \) ​ \( \alpha_\lambda \) ​ = 0.

Основные законы теплового излучения

Закон Стефана–Больцмана:
мощность излучения абсолютно черного тела прямо пропорциональна четвертой степени термодинамической температуры тела:


где ​ \( \sigma \) ​ = 5,67·10 -8 Вт/(м 2 ·К 4 ) – постоянная Стефана–Больцмана.

Закон смещения Вина:
длина волны, соответствующая максимальному значению энергетической светимости абсолютно черного тела, обратно пропорциональна его термодинамической температуре:


где ​ \( b \) ​ = 2,9·10 -3 м·К – постоянная Вина.

Закон излучения Кирхгофа:
отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химического состава:


Для объяснения световых явлений некоторые ученые во главе с И. Ньютоном считали, что свет – это поток частиц (корпускул). Другие ученые во главе с Гюйгенсом считали, что свет – это волна.

Луи де Бройль впервые выдвинул идею о том, что свет имеет двойственную природу.

Свет, как поток частиц (корпускул), проявляет себя при поглощении и излучении атомов, в других явлениях (интерференция, дифракция, поляризация, дисперсия) свет ведет себя как волна.

Гипотеза М. Планка о квантах

М. Планк выдвинул гипотезу о квантах:
энергия испускается телом не непрерывно, а отдельными порциями – квантами, энергия которых пропорциональна частоте колебаний.


где ​ \( h \) ​ – постоянная Планка, ​ \( h \) ​ = 6,62·10 -34 Дж·с.

Свет, как и любое другое электромагнитное излучение, представляет собой поток фотонов с энергией ​ \( \varepsilon \) ​.

Фотоэффект

Фотоэффект был открыт в 1887 году Г. Герцем.

В опытах с электроискровыми вибраторами Герц установил, что заряженный проводник, освещенный ультрафиолетовыми лучами, быстро теряет свой заряд, а электрическая искра возникает в искровом промежутке при меньшей разности потенциалов.

Фотоэффект – это явление взаимодействия света с веществом, в результате которого энергия фотонов передается электронам вещества.

Различают внутренний и внешний фотоэффект.

Внутренний фотоэффект – изменение концентрации носителей заряда в веществе.

Внешний фотоэффект – явление вырывания электронов с поверхности вещества под действием падающего на него света.

Опыты А. Г. Столетова

В 1888 году А. Г. Столетов впервые систематически исследовал фотоэффект. Он выяснил, от чего зависит число вырванных светом с поверхности вещества электронов (фотоэлектронов) и чем определяется их скорость или кинетическая энергия. Он исследовал вещества различной природы и установил, что наиболее восприимчивы к свету металлы: никель, медь, цинк, алюминий, серебро. Для облучения электродов он использовал свет различных длин волн: красный, зеленый, синий, ультрафиолетовый.

Для исследования фотоэффекта он собрал следующую установку: в стеклянный баллон, из которого выкачан воздух, помещаются два электрода.

На электроды подается напряжение, которое можно менять с помощью потенциометра ​ \( R \) ​ и измерять вольтметром ​ \( V \) ​.

К освещаемому электроду (катоду ​ \( K \) ​) присоединяют отрицательный полюс батареи. Под действием света этот электрод испускает электроны, которые при движении в электрическом поле образуют электрический ток.


Облучая катод светом различных длин волн, Столетов установил закономерности (законы) фотоэффекта, не утратившие своего значения до нашего времени.

При малых напряжениях не все вырванные светом электроны достигают другого электрода (анод А). Если, не меняя интенсивности излучения, увеличивать разность потенциалов между электродами, то сила тока также увеличивается. При некотором напряжении она достигает максимального значения, после чего перестает изменяться.

Вольт-амперная характеристика (зависимость силы фототока от напряжения)


Из графика видно:

1) сила фототока отлична от нуля и при отсутствии напряжения. Это означает, что часть вырванных светом электронов достигает анода и при отсутствии напряжения, т. е. фотоэлектроны при вылете обладают кинетической энергией;

2) при некотором значении напряжения ​ \( U_ \) ​ между электродами сила фототока перестает зависеть от напряжения и не изменяется при увеличении напряжения. Максимальное значение силы тока \( I_ \) называется током насыщения. При фототоке насыщения все электроны, покинувшие за 1 с поверхность металла, за это же время попадают на анод. Поэтому по силе фототока насыщения можно судить о числе фотоэлектронов, вылетающих с катода в единицу времени:


где ​ \( q_ \) ​ – максимальный заряд, переносимый фотоэлектронами; ​ \( n \) ​ – число фотоэлектронов, вылетающих с поверхности освещаемого металла; ​ \( e \) ​ – заряд электрона;

3) если катод соединить с положительным полюсом источника тока, а анод — с отрицательным, то в электростатическом поле между электродами фотоэлектроны будут тормозиться, а сила фототока уменьшаться при увеличении значения этого отрицательного напряжения. При некотором значении отрицательного напряжения ​ \( U_ \) ​ (его называют запирающим или задерживающим напряжением) фототок прекращается. Это значит, что электрическое поле тормозит вырванные электроны до полной остановки, а затем возвращает их на электрод.

Согласно теореме о кинетической энергии работа задерживающего электрического поля равна изменению кинетической энергии фотоэлектронов:


Законы внешнего фотоэффекта


С уменьшением частоты падающего света (увеличением длины волны) энергия падающих квантов при некоторой частоте (длине волны) может стать равной работе выхода электрона из металла.

Фотоэффект практически безынерционен. Он наступает через 10 -9 с от момента освещения катода.

Уравнение Эйнштейна для фотоэффекта

Теоретическое обоснование законов фотоэффекта было дано А. Эйнштейном.





Фотоны

Электромагнитное излучение имеет квантовый характер, т. е. излучается и поглощается веществом в виде отдельных частиц электромагнитного поля – фотонов.

Основные свойства фотона:

  • является частицей электромагнитного поля;
  • движется со скоростью света;
  • существует только в движении;
  • масса покоя равна нулю;
  • заряд равен нулю.

Равенство нулю массы фотона означает невозможность его нахождения в покоящемся состоянии. Фотон всегда движется, причем только со скоростью света.

согласно теории относительности ​ \( E=mc^2,E=h\nu, \) ​


Энергия фотона


Импульс фотона


Давление света

Максвелл на основе электромагнитной теории света предсказал, что свет должен оказывать давление на препятствия.

Под действием электрического поля волны, падающей на поверхность тела, например металла, свободный электрон движется в сторону, противоположную вектору ​ \( \vec \) ​.

На движущийся электрон действует сила Лоренца, направленная в сторону распространения волны. Суммарная сила, действующая на электроны поверхности металла, и определяет силу светового давления.


Для доказательства справедливости теории Максвелла было важно измерить давление света. Многие ученые пытались это сделать, но безуспешно, так как световое давление очень мало. В яркий солнечный день на поверхности площадью 1 м 2 действует сила, равная всего лишь 4·10 -6 Н.

Впервые давление света измерил русский физик Петр Николаевич Лебедев в 1900 г. Прибор Лебедева состоял из очень легкого стерженька на тонкой стеклянной нити, по краям которого были приклеены легкие крылышки. Весь прибор помещался в сосуд, откуда был выкачан воздух. Свет падал на крылышки, расположенные по одну сторону от стерженька. О значении давления можно было судить по углу закручивания нити. Трудность точного измерения давления света была связана с невозможностью создать вакуум (движение молекул воздуха, вызванное неодинаковым нагревом крылышек и стенок сосуда, приводит к возникновению дополнительных вращающих моментов). На закручивание нити влияет и неодинаковый нагрев сторон крылышек (сторона, обращенная к источнику света, нагревается сильнее, чем противоположная сторона). Молекулы, отражающиеся от более нагретой стороны, передают крылышку больший импульс, чем молекулы, отражающиеся от менее нагретой стороны.


Лебедев сумел преодолеть все эти трудности, взяв очень большой сосуд и очень тонкие крылышки. Полученное значение совпало с предсказанным Максвеллом. Впоследствии после трех лет работы Лебедеву удалось осуществить еще более тонкий эксперимент: измерить давление света на газы.

Появление квантовой теории света позволило более просто объяснить причину светового давления. Фотоны, подобно частицам вещества, имеющим массу покоя, обладают импульсом. При поглощении их телом они передают ему свой импульс. Согласно закону сохранения импульса импульс тела становится равным импульсу поглощенных фотонов. Поэтому покоящееся тело приходит в движение. Изменение импульса тела означает, согласно второму закону Ньютона, что на тело действует сила.

Важно!
Опыты Лебедева можно рассматривать как экспериментальное доказательство того, что фотоны обладают импульсом.

Хотя световое давление очень мало в обычных условиях, оно является существенным в недрах звезд. При температуре в несколько десятков миллионов Кельвинов давление электромагнитного излучения достигает громадных значений и совместно с гравитационными силами обеспечивает стабильное состояние звезд.

Давление света, согласно электродинамике Максвелла, возникает из-за действия силы Лоренца на электроны среды, колеблющиеся под действием электрического поля электромагнитной волны. С точки зрения квантовой теории давление появляется в результате передачи телу импульсов фотонов при их поглощении:


где ​ \( \rho \) ​ – коэффициент отражения, ​ \( N \) ​ – количество всех фотонов, падающих на единицу поверхности в единицу времени.

Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм

  • корпускулярная теория Ньютона (1675);
  • волновая теория Гюйгенса (1678).

Согласно корпускулярной теории Ньютона светящиеся тела испускают мельчайшие частицы – корпускулы, которые летят прямолинейно по всем направлениям. Доказательством корпускулярной теории являются фотоэффект, излучение черного тела.

Согласно волновой теории Гюйгенса светящиеся тела вызывают в окружающей среде упругие колебания, которые распространяются в эфире подобно звуковым волнам в воздухе. Доказательством волновой теории Гюйгенса являются интерференция, дифракция, поляризация света.

Однако это не означает, что свет излучается как поток частиц, затем превращается в волну и распространяется волной, а при поглощении опять превращается в поток частиц – фотонов. Свет одновременно обладает и волновыми, и корпускулярными свойствами. Такое сочетание свойств обозначается термином корпускулярно-волновой дуализм.

Корпускулярными характеристиками света являются энергия и импульс, волновыми – частота или длина волны.

Уравнения, связывающие корпускулярные и волновые характеристики света:


Гипотеза де Бройля

После того как представления о двойственных свойствах света подтвердились, было высказано предположение о том, что корпускулярно-волновая двойственность свойств характерна не только для фотонов, но и для частиц вещества – электронов, протонов, нейтронов, а также атомов, молекул и атомных ядер – т. е. движение любых частиц, имеющих энергию ​ \( \varepsilon \) ​ и импульс ​ \( p \) ​, можно рассматривать с помощью теории волн. При этом движущаяся частица представляется как волна с частотой:


Позже эти волны получили название волн де Бройля в честь французского ученого Луи де Бройля, высказавшего это предположение.

Корпускулярно-волновая двойственность света характерна для электромагнитного поля и имеет универсальный характер.

Дифракция электронов

Дифракция электронов является опытным доказательством гипотезы де Бройля о волновых свойствах частиц.

Опыт К. Дэвиссона и Л. Джермера (1927)

Общим условием дифракции является соизмеримость длины падающей волны с расстоянием между рассеивающими центрами: ​ \( \lambda\approx d \) ​.


В качестве дифракционной решетки использовалась кристаллическая решетка никеля, расстояние между атомами которого ​ \( d \) ​ ≈ 2·10 -10 м. Пучок ускоренных электрическим полем электронов с длиной волны ​ \( \lambda \) ​ ≈ 10 -10 м направлялся под углом ​ \( \varphi \) ​ на поверхность кристалла никеля. Полученная дифракционная картина и явилась доказательством наличия у электронов волновых свойств.

Читайте также: