Касательная плоскость и нормаль к поверхности кратко

Обновлено: 04.07.2024

Рассматриваем вектор–функцию двух скалярных аргументов: $$\vec=\vec(u,v).$$ Годографом такой функции является поверхность.

Запишем четыре способа задания поверхности: 1. Векторное уравнение: $$\vec=\vec(u,v).$$ 2. Параметрическое уравнение: $$x=x(u,v),\,\, y=y(u,v),\,\, z=z(u,v).$$ 3. Неявное уравнение: $$\varPhi(x,y,z)=0.$$ 4. Явное уравнение: $$z=z(x,y).$$

Поверхность называется регулярной ($k$ раз дифференцируемой), если у каждой точки этой поверхности есть окрестность, допускающая регулярную параметризацию (то есть функции $x(u,v), y(u,v),z=z(u,v)$ $k$ раз непрерывно дифференцируемы). При $k=1$ поверхность называется гладкой.

Регулярная поверхность в окрестности каждой своей точки допускает бесчисленное множество параметризаций.

Кривая, лежащая на поверхности $\vec=\vec(u,v)$, задается уравнениями $$ u=u(t),\,\, v=v(t).$$ Линии $u=\mbox$, $v=\mbox$ являются координатными линиями данной параметризации поверхности.

Решение задач

Задача 1 (Феденко №544)

Дана поверхность \begin x=u+v, \,\, y=u-v,\,\, z=uv. \end Проверить, принадлежат ли ей точки $A(4,2,3)$ и $B(1,4,-2)$.

Ответ. Точка $A$ принадлежит, так как ее координаты удовлетворяют системе уравнений, задающих поверхность. Точка $B$ не принадлежит поверхности.

Задача 2 (Феденко № 546)

Найдите неявное уравнение поверхности, заданной параметрическими уравнениями: \begin \begin x & = x_0 + a\,\mbox\,u\,\mbox\,v, \\ y & = y_0 + b\,\mbox\,u\,\mbox\,v, \\ z & = z_0 + c\,\mbox\,u. \end \end

Ответ. Эллипсоид с полуосями $a$, $b$, $c$ и центром в точке $(x_0, y_0, z_0)$: \begin \frac+\frac+\frac=1. \end

Задача 3 (Феденко №528)

В плоскости $xOz$ задана кривая $x=f(u)$, $z=g(u)$, не пересекающая ось $Oz$. Найдите параметризацию поверхности, полученной при вращении этой кривой вокруг оси $Oz$.

Решение задачи 3

Произвольная точка $M$, принадлежащая кривой и имеющая координаты $x_0=f(u_0)$, $y_0=0$, $z_0=g(u_0)$, движется по окружности с центром на оси $Oz$ и радиусом $R=f(u_0)$ в плоскости, параллельной плоскости $xOy$: $z=g(u_0)$. Поэтому изменение ее координат можно записать следующими уравнениями: \begin \left\< \begin x_0 & = & f(u_0)\,\mbox\,v, \\ y_0 & = & f(u_0)\,\mbox\,v, \\ z_0 & = & g(u_0). \\ \end \right. \end

Поскольку точка $M$ произвольная, уравнение искомой поверхности: \begin \left\< \begin x & = & f(u)\,\mbox\,v, \\ y & = & f(u)\,\mbox\,v, \\ z & = & g(u). \\ \end \right. \end

Краткие теоретические сведения

Пусть $\vec=\vec(u,v)\in C^1$ — поверхность, проходящая через точку $P(u_0, v_0)$. Пусть $u=u(t)$, $v=v(t)$ — уравнения гладкой кривой, проходящей через точку $P(u_0, v_0)$ и лежащей на заданной поверхности.

Пусть точка $P$ не является особой, то есть ранг матрицы \begin \left( \begin x_u & y_u & z_u \\ x_v & y_v & z_v \\ \end \right) \end в точке $P$ равен $2$ (для особой точки ранг меньше $2$). Если поверхность задана неявно $\varPhi(x,y,z)=0$, то в не особой точке $P$ выполняется условие: $\varPhi_x^2+\varPhi_y^2+\varPhi_z^2\neq0.$

Касательная к кривой $u=u(t)$, $v=v(t)$ на поверхности $\vec=\vec(u,v)$ определяется вектором: \begin \displaystyle\frac=\vec_u\displaystyle\frac+\vec_v\displaystyle\frac, \end где $\vec_u=\displaystyle\frac$, $\vec_v=\displaystyle\frac$. Для разных кривых, проходящих через точку $P(u_0, v_0)$, значения $\displaystyle\frac$, $\displaystyle\frac$ будут разными, а $\vec_u$, $\vec_v$ теми же. Следовательно, все векторы $\displaystyle\frac$ лежат в одной плоскости, определяемой векторами $\vec_u$, $\vec_v$. Эта плоскость называется касательной плоскостью к поверхности в точке $P$. Запишем уравнение касательной плоскости.

Обозначения:
- $\vec=\$ — радиус-вектор произвольной точки касательной плоскости.
- $\vec=\$ — радиус вектор точки $P(u_0, v_0)$.
- Частные производные $x_u$, $y_u$, $z_u$, $x_v$, $y_v$, $z_v$ вычисляются в точке $P(u_0, v_0)$.

Уравнение касательной плоскости:

1. Если поверхность задана векторно, то уравнение касательной плоскости можно записать через смешанное произведение трех линейно зависимых векторов: $$ \left(\vec-\vec, \, \vec_u, \, \vec_v \right)=0. $$ 2. Если поверхность задана параметрически, запишем определитель: \begin \left| \begin X-x & Y-y & Z-z \\ x_u & y_u & z_u\\ x_v & y_v & z_v\\ \end \right|=0 \end 3. Если поверхность задана неявным уравнением: \begin \varPhi_x(X-x)+\varPhi_y(Y-y)+\varPhi_z(Z-z)=0. \end 4. В случая явного задания поверхности, уравнение касательной плоскости примет вид: \begin (Z-z)=z_x(X-x)+z_y(Y-y). \end

Нормалью поверхности в точке $P$ называется прямая, проходящая через $P$ перпендикулярно касательной плоскости в этой точке.

Уравнение нормали:

1.$$ \vec=\vec + \lambda\vec, \,\, \vec=\vec_u\times\vec_v. $$ 2. \begin \displaystyle\frac< \left| \begin y_u & z_u\\ y_v & z_v\\ \end \right|>= \displaystyle\frac< \left| \begin z_u & x_u\\ z_v & x_v\\ \end \right|>= \displaystyle\frac< \left| \begin x_u & y_u\\ x_v & y_v\\ \end \right|>. \end 3. \begin \displaystyle\frac=\displaystyle\frac=\displaystyle\frac. \end 4. \begin \displaystyle\frac=\displaystyle\frac=\displaystyle\frac. \end

Решение задач

Задача 1 (Феденко №574)

Дана поверхность \begin x=u\,\mbox\,v,\,\, y=u\,\mbox\,v,\,\, z=u. \end Написать:
а) уравнение касательной плоскости к поверхности;
б] уравнение нормали к поверхности;
в) касательной к линии $u=2$
в точке $M\left(u=2, v=\displaystyle\frac<\pi>\right)$ поверхности.

Задача 2

Через точки $A(0,1,0)$ и $B(1,0,0)$ провести плоскость, касательную к поверхности $\vec=\$.

Ответ. $z=0, -2X-2Y+Z+2=0$.

Задача 3

Построить касательную плоскость к поверхности $y=x^2+z^2$, перпендикулярную вектору $\vec\$.

Задача 4

Через точку $M(1,2,1)$ провести плоскость, касательную к поверхности $x^2+y^2-z^2=0$.

Ответ. $X-Z=0$, $3X-4Y+5Z=0$.

Задача 5 (Феденко №594)

Докажите, что поверхности \begin z=\mbox(xy), \,\, x^2-y^2=a \end ортогональны в точках их пересечения.

Решение задачи 5

Запишем направляющие векторы нормалей к поверхностям, проведенным в точках их пересечения: \begin \begin \vec_1&=\left\<\mbox^2(x_0y_0)>,\frac<\mbox^2(x_0y_0)>,-1\right\>,\\ \vec_2&=\left\. \end \end Скалярные произведения векторов $n_1$ и $n_2$ равны нулю, следовательно векторы ортогональны. \begin n_1\cdot n_2=0. \end

Начнём с базовых вопросов: ЧТО ТАКОЕ касательная плоскость и ЧТО ТАКОЕ нормаль? Многие осознают эти понятия на уровне интуиции. Самая простая модель, приходящая на ум – это шар, на котором лежит тонкая плоская картонка. Картонка расположена максимально близко к сфере и касается её в единственной точке. Кроме того, в точке касания она закреплена торчащей строго вверх иголкой.

В теории существует довольно остроумное определение касательной плоскости. Представьте произвольную поверхность и принадлежащую ей точку . Очевидно, что через точку проходит много пространственных линий, которые принадлежат данной поверхности. У кого какие ассоциации? =) …лично я представил осьминога. Предположим, что у каждой такой линии существует пространственная касательная в точке .

Определение 1: касательная плоскость к поверхности в точке – это плоскость, содержащая касательные ко всем кривым, которые принадлежат данной поверхности и проходят через точку .

Определение 2: нормаль к поверхности в точке – это прямая, проходящая через данную точку перпендикулярно касательной плоскости.

Просто и изящно. Кстати, чтобы вы не померли со скуки от простоты материала, чуть позже я поделюсь с вами одним изящным секретом, который позволяет РАЗ И НАВСЕГДА забыть о зубрёжке различных определений.

С рабочими формулами и алгоритмом решения познакомимся прямо на конкретном примере. В подавляющем большинстве задач требуется составить и уравнение касательной плоскости, и уравнения нормали:

Найти уравнения касательной плоскости и нормали к поверхности в точке .

Решение: если поверхность задана уравнением (т.е. неявно), то уравнение касательной плоскости к данной поверхности в точке можно найти по следующей формуле:

Особое внимание обращаю на необычные частные производные – их не следует путать с частными производными неявно заданной функции (хотя поверхность задана неявно). При нахождении этих производных нужно руководствоваться правилами дифференцирования функции трёх переменных, то есть, при дифференцировании по какой-либо переменной, две другие буквы считаются константами:

Не отходя от кассы, найдём частную производную в точке:

Это был самый неприятный момент решения, в котором ошибка если не допускается, то постоянно мерещится. Тем не менее, здесь существует эффективный приём проверки, о котором я рассказывал на уроке Производная по направлению и градиент.

– общее уравнение искомой касательной плоскости.

Настоятельно рекомендую проконтролировать и этот этап решения. Сначала нужно убедиться, что координаты точки касания действительно удовлетворяют найденному уравнению:

Ответ:

Уравнения не возбраняется обозначить какими-нибудь буквами, однако, опять же – зачем? Здесь и так предельно понятно, что к чему.

Найти уравнения касательной плоскости и нормали к поверхности в точке .

И задание, интересное с технической точки зрения:

Составить уравнения касательной плоскости и нормали к поверхности в точке

Тут есть все шансы не только запутаться, но и столкнуться с трудностями при записи канонических уравнений прямой. А уравнения нормали, как вы, наверное, поняли, принято записывать именно в таком виде. Хотя, по причине забывчивости либо незнания некоторых нюансов более чем приемлема и параметрическая форма.

Примерные образцы чистового оформления решений в конце урока.

В любой ли точке поверхности существует касательная плоскость? В общем случае, конечно же, нет. Классический пример – это коническая поверхность и точка – касательные в этой точке непосредственно образуют коническую поверхность, и, разумеется, не лежат в одной плоскости. В неладах легко убедиться и аналитически: .

Другим источником проблем является факт несуществования какой-либо частной производной в точке. Однако это ещё не значит, что в данной точке нет единой касательной плоскости.

Но то была, скорее, научно-популярная, нежели практически значимая информация, и мы возвращаемся к делам насущным:

Как составить уравнения касательной плоскости и нормали в точке,
если поверхность задана явной функцией ?

Перепишем её в неявном виде :

и по тем же принципам найдём частные производные:

Таким образом, формула касательной плоскости трансформируется в следующее уравнение:

, и соответственно, канонические уравнения нормали:

Составить уравнения касательной плоскости и нормали к поверхности в точке .

Небольшая тут накладка получилась с обозначениями – теперь буква обозначает точку плоскости , но что поделать – такая уж популярная буква….

Решение: уравнение искомой касательной плоскости составим по формуле:

Вычислим значение функции в точке :

Вычислим частные производные 1-го порядка в данной точке:

аккуратно, не спешим:

Запишем канонические уравнения нормали в точке :

Ответ:

И заключительный пример для самостоятельного решения:

Составить уравнения касательной плоскости и нормали к поверхности в точке .

И напоследок обещанный секрет: так как же избежать зубрёжки определений? (я, конечно, не имею в виду ситуацию, когда студент что-то лихорадочно зубрит перед экзаменом)

Определение любого понятия/явления/объекта, прежде всего, даёт ответ на следующий вопрос: ЧТО ЭТО ТАКОЕ? (кто/такая/ такой/такие). Осознанно отвечая на данный вопрос, вы должны постараться отразить существенные признаки, однозначно идентифицирующие то или иное понятие/явление/объект. Да, поначалу это получается несколько косноязычно, неточно и избыточно (препод поправит =)), но со временем развивается вполне достойная научная речь.

Кроме того, в прикладных областях особую важность приобретает второй вопрос: ЗАЧЕМ ЭТО НУЖНО? Например, та или иная команда языка программирования. В подобных определениях должен обязательно содержаться ответ на этот вопрос.

Однако ответ желательно найти в любом случае. Ну, с нашими примерами всё понятно, Чебурашка нужен, чтобы развлекать детей, а касательные плоскости и нормали – чтобы радовать взрослых =)

Эту статью я написал за один-единственный день (величайшая редкость), и надеюсь, она вам понравилась!

Традиционные решения и ответы:

Пример 2: Решение: уравнение касательной плоскости к поверхности в точке составим по формуле:

Вычислим частные производные в точке :

Таким образом:

(умножили обе части на –5)

– уравнение искомой касательной плоскости.
Запишем уравнения нормали к поверхности в точке :

– канонические уравнения искомой нормали.
Ответ:

Пример 3: Решение: преобразуем уравнение:

Вычислим частные производные в точке :

Запишем уравнение касательной плоскости к данной поверхности в точке :

Запишем канонические уравнения нормали в точке :

Ответ: – уравнение искомой касательной плоскости;
– уравнения искомой нормали.

Пример 5: Решение: используем формулу:


Вычислим частные производные в точке :

Таким образом, уравнение касательной плоскости к поверхности в точке :

Уравнения нормали:

Ответ:

Автор: Емелин Александр

(Переход на главную страницу)

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

Понятие касательной плоскости и нормали к поверхности

Определение. Касательной плоскостьью к поверхности z = f(x,y) в точке P 0 (x 0 ,y 0 ,f(x 0 ,y 0 )) называется плоскость, содержащие все касательные к поверхности, проведённые в точке P 0 .

Определение. Нормалью к поверхности в точке P называется прямая, проходящая через эту точку перпендикулярно касательной плоскости, проведённой через точку P .

Чтобы найти уравнения касательной плоскости и нормали к поверхности, нужно выполнить следующее:

  • найти частные производные функции, которой задана поверхность;
  • найти значения найденных частных производных в точке P 0 ;
  • найденные значения частных производных и координаты точки P 0 подставить в уравнения касательной плоскости и нормали в общем виде.

Прежде чем решать примеры, выведем уравнения касательной плоскости и нормали к поверхности: их вывод может быть включён в экзаменационные билеты.

Вывод уравнений касательной плоскости и нормали к поверхности

Чтобы получить уравнение касательной плоскости, достаточно составить уравнение плоскости, на которой находятся две касательные прямые, проведённые через точку P 0 (x 0 ,y 0 ,f(x 0 ,y 0 )) . Одна из касательных прямых пусть будет параллельна плоскости xOz , другая - параллельна плоскости yOz (поэтому x - константа). Уравнения этих прямых будут следующими:

В последнем уравнении A и B - произвольные константы. Эта плоскость перпендикулярна вектору нормали .

Принимая в уравнении плоскости y = y 0 , получим уравнение пучка прямых, проходящих через точку P 0 (x 0 ,y 0 ,z 0 ) и лежащих в плоскости y = y 0 :

Чтобы касательная прямая принадлежала этому пучку прямых, должно быть .

Принимая в уравнении плоскости x = x 0 , получим уравнение пучка прямых, проходящих через точку P 0 (x 0 ,y 0 ,z 0 ) и лежащих в плоскости x = x 0 :

Чтобы касательная прямая принадлежала этому пучку прямых, должно быть .

Подставляя полученные коэффициенты A и B в уравнение плоскости, получаем уравнение касательной плоскости:

Это и есть уравнение касательной плоскости к поверхности z = f(x,y) в точке P 0 (x 0 ,y 0 ,z 0 ) .

Так как вектор перпендикулярен касательной плоскости к поверхности, то он параллелен нормали и может служить вектором её направления. Таким образом, уравнение нормали к поверхности z = f(x,y) в точке P 0 (x 0 ,y 0 ,z 0 ) :

Рассмотрим также случай, когда уравнение поверхности дано в неявной форме:

Это уравнение определяет неявную функцию z = f(x,y) , частные производные которой в точке P 0 (x 0 ,y 0 ,z 0 )

при условии, что , а . Подставляя эти производные в уравнение касательной плоскости, получаем

Перенеся все слагаемые в левую часть и умножив на , получаем уравнение касательной плоскости для случая, когда поверхность задана в неявном виде:

Соответствующие уравнения нормали к поверхности:

Примеры нахождения уравнений касательной плоскости и нормали к поверхности

Пример 1. Составить уравнения касательной плоскости и нормали к поверхности

Решение. Функция, которой задана поверхность:

Вычислим значения частных производных в точке :

Найденные значения частных производных и координаты точки подставим в уравнения касательнной плоскости и нормали к поверхности. Получаем уравнение касательной плоскости:

Пример 2. Составить уравнения касательной плоскости и нормали к поверхности

Решение. Эта задача уже посложнее, так как в ней не дано x 0 и эту координату требуется найти. Для этого подставим y 0 и z 0 в уравнение поверхности:

Найдём частные производные функции, которой задана поверхность:

Вычислим значения частных производных в точке P 0 (x 0 ,y 0 ,z 0 ) :

Найденные значения частных производных и координаты точки подставим в уравнения касательнной плосоксти и нормали к поверхности. Получаем уравнение касательной плоскости:

Пример 3. Составить уравнения касательной плоскости и нормали к поверхности

которая параллельна плоскости .

Решение. Сначала нужно найти точку поверхности, проведённая через которую касательная плоскость будет параллельна заданной плоскости. Если касательная плоскость и данная плоскость параллельны, то векторы нормалей будут коллинеарны.

Вектором нормали касательной плоскости будет , где . Вектором нормали данной плоскости является .

Если векторы коллинеарны, то их координаты пропорциональны, то есть

Чтобы найти координаты точки M, к последним равенствам нужно присоединить уравнение поверхности. В результате получим систему уравнений, которую и решаем:

Вот мы и нашли две точки и , проведённая через которые касательная плоскость параллельна данной плоскости.

Вычислим значения частных производных в точке :

Теперь уже можем составить уравнение касательной плоскости, проведённой через точку :

Пусть поверхность задана в неявном виде: $F(x,y,z)=0$ и пусть точка $M_0(x_0,y_0,z_0)$ принадлежит данной поверхности. Тогда уравнение касательной плоскости к этой поверхности в точке $M_0$ таково:

Уравнение нормали имеет вид:

Если же уравнение поверхности задано в явном виде $z=f(x,y)$, то уравнение касательной плоскости имеет вид:

Уравнение нормали в случае явного задания поверхности таково:

Примечание (желательное для более полного понимания текста): показать\скрыть

Формулы (3) и (4) легко получить из формул (1) и (2). Если $z=f(x,y)$, то перенося $z$ в правую часть равенства получим: $f(x,y)-z=0$. Обозначая $F(x,y,z)=f(x,y)-z$, получим: $F_^=\left(f(x,y)-z\right)_^=f_^(x,y)-0=f_^(x,y)$. Аналогично и $F_^=\left(f(x,y)-z\right)_^=f_^(x,y)-0=f_^(x,y)$. Что же касается последней производной (т.е. производной по переменной $z$), то тут нужно учесть, что выражение $f(x,y)$ не содержит $z$, поэтому: $F_^=\left(f(x,y)-z\right)_^=0-1=-1$. Подставляя в формулы (1) и (2) вместо $F_^$, $F_^$, $F_^$ соответственно $f_^$, $f_^$ и $-1$ и получим формулы (3) и (4).

Найти уравнение касательной плоскости и нормали к поверхности $z=3x^2y^4-6xy^3+5x-4y+10$ в точке $M_0(-2;1;20)$.

Поверхность задана в явном виде, посему для нахождения уравнений касательной плоскости и нормали будем применять формулы (3) и (4). Значения $x_0$, $y_0$, $z_0$ (координаты точки $M_0$) в нашем случае таковы: $x_0=-2$, $y_0=1$, $z_0=20$. Но перед тем, как переходить к решению, осуществим небольшую проверку. Убедимся, что точка $M_0$ действительно лежит на заданной поверхности. Эта проверка не является обязательной, но желательна, ибо ошибка в условиях подобных задач – дело вовсе не редкое. Подставим $x=x_0$, $y=y_0$ в уравнение нашей поверхности и убедимся, что $z_0$ действительно равно 20:

$$ z_0=3x_^y_^-6x_0y_^+5x_0-4y_0+10=3\cdot (-2)^2\cdot 1^4-6\cdot (-2)\cdot 1^3-4\cdot 1+10=12+12-4=20. $$

Проверка пройдена, точка $M_0$ действительно лежит на заданной поверхности. Теперь найдём частные производные, т.е. $z_^$ и $z_^$:

Нас интересуют значения частных производных именно в точке $M_0$, посему подставим $x=x_0$, $y=y_0$ в выражения частных производных:

Подставляя $x_0=-2$, $y_0=1$, $z_0=20$, $z_^ \left(x_0, y_0\right)=-13$, $z_^ \left(x_0, y_0\right)=80$ в формулу (3) получим уравнение касательной плоскости:

Подставляя $x_0=-2$, $y_0=1$, $z_0=20$, $z_^ \left(x_0, y_0\right)=-13$, $z_^ \left(x_0, y_0\right)=80$ в формулу (4) получим уравнение нормали:

Ответ: Касательная плоскость: $-13x+80y-z-86=0$; нормаль: $\frac=\frac=\frac$.

Найти уравнение касательной плоскости и нормали к поверхности $z=5\sqrt-2xy-39$ в точке $M_0(3;-4;z_0)$.

Поверхность задана в явном виде, посему для нахождения уравнений касательной плоскости и нормали будем применять формулы (3) и (4). Значения $x_0$ и $y_0$ (первая и вторая координаты точки $M_0$) заданы по условию: $x_0=3$, $y_0=-4$. Третью координату (т.е. $z_0$) нужно определить самостоятельно, подставив в заданное уравнение $x=x_0$ и $y=y_0$:

Теперь, как и в предыдущем примере, перейдём к нахождению частных производных $z_^$ и $z_^$. После того, как мы найдём эти производные в общем виде, укажем их значения при $x=x_0$ и $y=y_0$:

Подставляя $x_0=3$, $y_0=-4$, $z_0=10$, $z_^ \left(x_0, y_0\right)=11$, $z_^ \left(x_0, y_0\right)=-10$ в формулы (3) и (4) получим уравнения касательной плоскости и нормали:

Ответ: Касательная плоскость: $11x-10y-z-63=0$; нормаль: $\frac=\frac=\frac$.

Найти уравнение касательной плоскости и нормали к поверхности $3xy^2z+5xy+z^2=10xz-2y+1$ в точке $M_0(1;-2;3)$.

Перенесём все слагаемые в левую часть равенства и обозначим полученное в левой части выражение как $F(x,y,z)$:

Используем формулы (1) и (2). Значения $x_0$, $y_0$ и $z_0$ как и ранее обозначают координаты точки $M_0$, т.е. $x_0=1$, $y_0=-2$, $z_0=3$.

Проверим, действительно ли точка $M_0$ лежит на данной поверхности. Для этого подставим $x=x_0$, $y=y_0$ и $z=z_0$ в выражение $3xy^2z+5xy+z^2-10xz+2y-1$ и выясним, равен ли нулю полученный результат:

Итак, точка $M_0$ действительно лежит на данной поверхности. Естественно, что данная проверка не является обязательной, но она крайне желательна. Перейдём к дальнейшему решению. Нам нужно найти $F_^$, $F_^$ и $F_^$:

Нас интересуют значения частных производных именно в точке $M_0$, посему подставим $x=x_0$, $y=y_0$ и $z=z_0$ в выражения частных производных:

Подставляя $x_0=1$, $y_0=-2$, $z_0=3$, $F_^ \left(M_0\right)=-4$, $F_^ \left(M_0\right)=-29$ и $F_^ \left(M_0\right)=8$ в формулы (1) и (2) получим уравнения касательной плоскости и нормали:

Ответ: Касательная плоскость: $-4x-29y+8z-78=0$; нормаль: $\frac=\frac=\frac$.

Поверхность задана в неявном виде, посему для нахождения уравнений касательной плоскости и нормали будем применять формулы (1) и (2). Значения $x_0$ и $y_0$ (первая и вторая координаты точки $M_0$) заданы по условию: $x_0=0$, $y_0=-3$. Третью координату (т.е. $z_0$) нужно определить самостоятельно, подставив в заданное уравнение $x=x_0$ и $y=y_0$:

Перенесём все слагаемые в левую часть равенства:

Обозначим $F(x,y,z)=z^3+4xyz+3x^2-5y-7$ и применим формулы (1) и (2). Найдём частные производные первого порядка $F_^$, $F_^$ и $F_^$. После того, как мы найдём эти производные в общем виде, укажем их значения в точке $M_0$:

Подставляя $x_0=0$, $y_0=-3$, $z_0=-2$, $F_^ \left(M_0\right)=-24$, $F_^ \left(M_0\right)=-5$ и $F_^ \left(M_0\right)=12$ в формулы (1) и (2) получим уравнения касательной плоскости и нормали:

Ответ: Касательная плоскость: $-24x-5y+12z+9=0$; нормаль: $\frac=\frac=\frac$.

Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).

Читайте также: