История создания лазера кратко

Обновлено: 03.07.2024

В 1902 году французский химик Жорж Клод изобрел, а в 1910 году показал публике неоновую лампу. Через пару лет какой–нибудь любознательный умелец уже вполне мог бы приделать к ней боковые зеркала и при большом везении методом проб и ошибок изготовить примитивный лазер. Тогда история техники могла бы сложиться иначе.

История одного из самых важных изобретений XX века – лазера

Но мысль исследовать газовые разряды ради наблюдения вынужденного излучения в те времена никому не пришла в голову — ведь ученые даже не подозревали о его существовании.

Альберт Эйнштейн

Первые эксперименты

Работы теоретиков не остались незамеченными. В 1928 году Рудольф Ладенбург, директор отдела атомной физики Института физической химии и электрохимии Общества кайзера Вильгельма, и его ученик Ганс Копферманн экспериментально наблюдали инверсию населенностей, причем именно в опытах с неоновыми трубками. Но вынужденное излучение было очень слабым, и различить его на фоне спонтанного излучения было сложно. До лазера оставался лишь шаг: чтобы усилить вынужденное излучение, в среду необходимо ввести положительную обратную связь, то есть поместить ее в резонатор. Но для этой идеи время еще не настало.

Мало кто занимался усилением оптических сигналов с помощью вынужденного излучения и в 1930-е годы. Наиболее серьезной работой по этой теме была докторская диссертация москвича Валентина Фабриканта, опубликованная в 1940 году. В 1951 году В.А. Фабрикант, Ф.А. Бутаева и М.М. Вудинский подали заявку на изобретение нового метода усиления электромагнитного излучения, основанного на использовании среды с инверсией населенностей. К сожалению, эта работа была опубликована лишь через 8 лет и мало кем замечена, а попытки построить действующий оптический усилитель оказались бесплодными — опять-таки из-за отсутствия резонатора. В 1957 году Фабрикант и Бутаева даже наблюдали квантовое усиление световых волн в опытах с пропусканием электрических разрядов через ртутные пары, однако это так и осталось их личным достижением.

Лазер

Путь к созданию лазера был найден не оптиками, а радиофизиками, которые издавна умели строить генераторы и усилители электромагнитных колебаний, использующие резонаторы и обратную связь. Им-то и было суждено сконструировать первые квантовые генераторы когерентного излучения, только не светового, а микроволнового.

Мазеры

Возможность создания такого генератора первым осознал профессор физики Колумбийского университета Чарльз Таунс. Эта мысль осенила его весной 1951 года во время прогулки по Франклин-скверу в центре Вашингтона. (Кстати, этому небольшому парку самой судьбой было предназначено войти в историю физической оптики. Именно там 3 июня 1880 года изобретатель телефона Александр Белл впервые испытал устройство, которое он считал своим главным изобретением. Прибор, который Белл назвал фотофоном, передавал звук не по проводам, а по световому лучу. Сегодня белловский фотофон считают предтечей опто-волоконных систем связи.)

Таунс понял, что можно построить микроволновой генератор с помощью пучка молекул, имеющих несколько уровней энергии. Для этого их нужно разделить электростатическими полями и загнать пучок возбужденных молекул в металлическую полость, где они перейдут на нижний уровень, излучая электромагнитные волны. Чтобы эта полость работала как резонатор, ее линейные размеры должны равняться длине излучаемых волн. Таунс поделился этой мыслью с аспирантом Джеймсом Гордоном и научным сотрудником Гербертом Цайгером. На роль среды они избрали аммиак, молекулы которого при переходе с возбужденного колебательного уровня на основной испускают волны длиной 12,6 мм. Изготовить высококачественный объемный резонатор такой величины было не слишком просто, но все же возможно. В апреле 1954-го Таунс и Гордон (Цайгер тогда уже ушел из университета) запустили первый в мире микроволновой квантовый генератор. Этот прибор Таунс назвал мазером (MASER — Microwave Amplification by Stimulated Emission of Radiation).

Чарльз Таунс Хард

От микроволн к свету

Не будет преувеличением сказать, что в середине 1950-х годов призрак оптического (в отличие от микроволнового) квантового генератора маячил в головах многих физиков — слишком многих, чтобы рассказать обо всех. Фактически не была решена лишь задача усиления вынужденного излучения с помощью положительной обратной связи. Поскольку длины световых волн измеряют десятыми долями микрона, изготовление объемного резонатора таких размеров было делом нереальным. Вероятно, возможность генерации света с помощью макроскопических открытых зеркальных резонаторов первым осознал американский физик Роберт Дике, который в мае 1956 года оформил эту идею в патентной заявке. В сентябре 1957 года Таунс набросал в записной книжке план создания такого генератора и назвал его оптическим мазером. Через год Таунс со своим старым другом и шурином Артуром Шавловым и независимо от них Прохоров выступили со статьями, содержащими теоретические обоснования этого метода генерации когерентного света.

Лазеры

Лазеры

Научная ценность и практическая польза лазеров были настолько очевидны, что ими сразу занялись тысячи ученых и инженеров из разных стран. В 1961 году заработал первый лазер на неодимовом стекле, в течение пяти лет были разработаны полупроводниковые лазерные диоды, лазеры на органических красителях, химические лазеры, лазеры на двуокиси углерода. В 1963 году Жорес Алферов и Герберт Кремер независимо друг от друга разработали теорию полупроводниковых гетероструктур, на основе которых позднее были созданы многие лазеры (за эту работу они 6 лет назад получили Нобелевскую премию). К настоящему времени трудно найти такую область науки и техники, где бы не применялись лазеры. Даже простое перечисление различных модификаций лазеров занимает несколько страниц печатного текста. Это, безусловно, одно из важнейших изобретений XX века навсегда изменило нашу жизнь.

История открытия: от мазера к лазеру

60 лет назад в Государственном оптическом институте (ГОИ) был запущен первый отечественный лазер. Нанофотоника, медицина, пилотажно-навигационные системы, лидарные комплексы – вот далеко не полный перечень областей науки и техники, в которых лазеры нашли свое применение. Об истории возникновения лазерных систем, принципе действия и сферах использования – в нашем материале.

Вынужденное излучение

История создания лазера берет свое начало в далеких 20-х прошлого столетия. Именно тогда формировался новый раздел физики – квантовая электроника. Открытие физических принципов квантовой электроники считается одним из самых выдающихся достижений науки прошлого века, а вершиной этого достижения, безусловно, является создание лазера.

Max_Planck_in_his_study_1919.jpg

Макс Планк, 1919 год

Как мазер стал лазером

Мазеры смогли совершить несколько значимых открытий: точно определили значение скорости света, в очередной раз подтвердили справедливость теории относительности и даже помогли обнаружить реликтовое излучение расширяющейся Вселенной. При всем этом мазеры оказались не при делах, когда речь шла о традиционной электронике. Действительно, на практике СВЧ-электронике мазеры ничем помочь не могли – прибор излучал на длине волны 1 см и генерировал мощность около 10 нВт.

В 1960 году американский физик Теодор Майман создает первый лазер. Это был импульсный рубиновый лазер, который состоял из кристалла рубина (сантиметром в диаметре и около двух в длину) с посеребренными торцами, а также лампы-вспышки.

Примерно через год первый лазер был запущен в СССР. Это произошло 2 июня 1961 года в ГОИ, старшим научным сотрудником Л.Д. Хазовым с участием И.М. Белоусовой . Все элементы лазера – рубин, покрытие на его торцах, лампы накачки – были созданы в ГОИ. После запуска лазера на рубине в институте началась интенсивная работа по созданию твердотельных и газовых лазеров. Уже в 1963 году была проведена первая в мире передача телевизионного сигнала по лучу гелий-неонового лазера через атмосферу.

От мегаватт современных лазеров к гигаваттам будущих лазерных систем

Различное применение лазерных источников излучения стало возможным благодаря исследованиям и разработкам ГОИ на протяжении последних 60 лет, с момента создания первого рубинового лазера. Под научным руководством сотрудников института промышленностью было освоено большое число лазерных систем, более двух десятков из них было принято на вооружение армии. Мощные лазеры разработки ГОИ открыли новые возможности развития измерительных и информационных систем (например, в доплеровской локации).

s2_1_big.jpg

Специалисты 17 научного отдела ГОИ, 1971 год

Специалисты ГОИ им. Вавилова продолжают исследования в этой сфере и находят лазеру новое применение. Один из последних проектов института связан с использованием лазеров в солнечной энергетике. В настоящее время разработками в этой области интенсивно занимаются ведущие страны, такие как США, Япония, а также страны Европы. Ученые ГОИ им. С.И. Вавилова внесли свою уникальную лепту.

В 2003 году в ГОИ впервые в мире был создан фуллерен-кислород-йодный лазер (ФОИЛ). Само использование фуллерена – новейшего наноматериала, обладающего широким спектром поглощения в ультрафиолетовой и видимой области спектра – делает этот лазер уникальным. Еще более фантастическим кажется сама идея использования прибора – преобразование солнечной энергии в лазерное излучение. Для этого планируется создание электростанции космического базирования, на геостационарных спутниках. Такая станция лишена всех недостатков солнечных электростанций на Земле – она не зависит от погодных условий, энергия по лазерному лучу может быть передана практически в любой район поверхности Земли, включая северные территории.

фуллерен_кислород_йодный_лазер.jpg

Конечно, создание электростанции в космосе требует разработки сложнейших оптоэлектронных систем, систем доставки и монтажа всех этих устройств на космические спутники. Это, безусловно, проект будущего, следующего поколения специалистов. Проект, который как нельзя лучше демонстрирует эволюцию лазеров и их безграничные возможности: от милливатт до гигаватт, от сварки корпуса наручных часов до задач космического масштаба.

Первые шаги на пути к лазеру


Поэтому историю создания лазера следует начинать с 1917 г., когда Альберт Эйнштейн , впервые ввел представление о вынужденном испускании. Это был первый шаг на пути к лазеру.


Следующий шаг сделал советский физик В.А. Фабрикант, указавший в1939 г. на возможность и спользования вынужденного излучения для усиления электромагнитного излучения при его прохождении через вещество.

Создание мазера

Первоначально этот способ усиления излучения оказался реализованным в радиодиапазоне, а точнее в диапазоне сверхвысоких частот (СВЧ диапазоне). В мае 1952 г. на Общесоюзной конференции по радиоспектроскопии советские физики (ныне академики) Н.Г. Басов и А.М.Прохоров сделали доклад о принципиальной возможности создания усилителя излучения в СВЧ диапазоне. Они назвали его “молекулярным генератором” (предполагалось использовать пучок молекул аммиака). Практически одновременно предложение об использовании вынужденного испускания для усиления и генерирования миллиметровых волн было высказано в Колумбийском университете в США американским физиком Ч. Таунсом. В 1954 г. молекулярный генератор, названный вскоре мазером, стал реальностью. Он был разработан и создан независимо и одновременно в двух точках земного шара — в Физическом институте имени П.Н. Лебедева Академии наук СССР (группой под руководством Н.Г. Басова и А.М. Прохорова) и в Колумбийском университете в США ( группой под руководством Ч. Таунса). Впоследствии от термина “мазер” и произошел термин “лазер” в результате замены буквы “М” (начальная буква слова
Microwave – микроволновой) буквой “L” (начальная буква слова Light – свет).
В основе работы, как мазера, так и лазера лежит один и тот же принцип – принцип, сформулированный в 1951 г. В.А. Фабрикантом. Появление мазера означало, что родилось новое направление в науке и технике. Вначале его назвали квантовой радиофизикой, а позднее стали называть квантовой электроникой.

В 1958 г. А.М. Прохоров и независимо от него американские физики А.Шавлов и Ч. Таунс теоретически обосновали возможность применения явления вынужденного испускания в оптическом диапазоне.

В 1964г. изобретателям лазера была присуждена Нобелевская премия. Лауреатами стали американец Чарльз Таунс и два российских физика - Николай Басов и Александр Прохоров.





Жорес Иванович Алферов - автор основополагающих работ в области многослойных гетероструктур, ставших основой современных полупроводниковых лазеров. Жорес Алфёров – лауреат Нобелевской премии в области физики за 2000 год.

Начиная с 1961 г., лазеры разных типов (газовые, газодинамические, полупроводниковые, жидкостные, лазеры на красителях) занимают прочное место в оптических лабораториях. Осваиваются новые активные среды, разрабатывается и совершенствуется технология изготовления лазеров. В 1962-1963 гг. в СССР и США одновременно создаются первые полупроводниковые лазеры. Так начался новый, “лазерный” период оптики.

Как известно, лазер – это устройство способное к усилению света путем вынужденного излучения. И возможность построения этого устройства была сначала предсказана в теории, а лишь много лет спустя удалось построить первый образец. Напомню, что вынужденное излучение было объяснено с точки зрения квантовой теории Эйнштейном, а первое воплощение этого принципа в железе началось в 50х годах ХХ века независимо различными группами ученых, наиболее известными из которых стали Ч. Таунс, А. М. Прохоров и Н. Г. Басов. Тогда им удалось построить первый квантовый генератор – мазер, который генерировал излучение в области сантиметровых волн. Непокоренным на то время оставался оптический диапазон, и о том, как его удалось покорить я и постараюсь рассказать в этой статье.

image

image

image

Детали лазера крупным планом:

image

Собственно, кристалл рубина.

image

И весь лазер в сборе, без источника питания.

image

image

image

А так его показывали в книжках Б. Ф. Федорова различных изданий.

image

image

Поскольку такой способ накачки все равно остается неэффективным, то от него быстро ушли в пользу накачки прямыми трубчатыми лампами серии ИФП. Кристаллы же рубина также стали выпускаться всего нескольких стандартных размеров, в точности по размеру светящейся части лампы. Кристалл рубина и лампу стали размещать в фокусах эллиптического отражателя, чтобы кристалл собирал максимум доступного света. Так это выглядит схематически.

image

А так выглядит эллиптический отражатель вживую.

image

image

Было бы странно, если бы мне не захотелось построить свой собственный рубиновый лазер, используя подручный и подножный выброшенный из лазерной лаборатории хлам. Хотелось отдать своего рода дань истории. Ну и получить первый опыт работы с импульсными твердотельными лазерами. Дальше следует описание постройки моего собственного лазера на рубине.

Информация представлена в ознакомительных целях. Автор не несет ответственности за попытки повторения описанного.

Основой стал упомянутый выше кристалл от установки УИГ-1. Это кристалл бледно-розового цвета с размером рабочей окрашенной части 8*120 мм, с дополнительными бесцветными наконечниками, что дает общую длину кристалла в 180 мм. Наконечники нужны для крепления кристалла в корпусе излучателя. Ещё одна причина, по которой окрашенную часть делают точно по размеру лампы накачки в том, что у рубина есть крайне нехорошее свойство поглощать собственное излучение на длине волны генерации. Если какая-то часть кристалла остается незасвеченной, то она начинает поглощать излучение, которое усиливается в засвеченной части и эффективность лазера сильно снижается. Обусловлено это трехуровневой схемой атомов хрома в рубине. По этой же причине у рубина очень высокая пороговая энергия накачки.

В первую очередь был построен макет источника питания для лампы накачки. Основная его деталь – это батарея конденсаторов емкостью 1000 мкФ, которая заряжалась до напряжения 3 кВ.

Напомню, что схемы с высоковольтными конденсаторами большой ёмкости смертельно опасны!

image

Схема заряда и поджига лампы. Для первой попытки взята ИФП-5000.

image

Сначала схема с лампой испытывалась без какого либо корпуса. Вспышка лампы крайне мощная, происходит с достаточно громким хлопком и её легко видно в соседних комнатах – свет распространяется через коридор, переотражаясь от стен. Вспышка лампы способна обугливать дерево и бумагу, расположенные к ней в упор. Каждая вспышка сопровождается запахом подгоревшей пыли и озона, выработанного могучим импульсом жёсткого ультрафиолета, и сопровождается волной жара, если находиться рядом с ней. Прямое наблюдение вспышки без средств защиты глаз крайне опасно! Для защиты достаточно обычной сварочной маски или очков.

image

image

В качестве глухого зеркала я решил использовать призму полного отражения.

image

image

В качестве отражателя было решено испытать белые кафельные плитки. Современной тенденцией в коммерческом лазеростроении является использование керамических диффузных отражателей сделанных из спеченной окиси алюминия, которая отражает до 97% падающего света. Фирменные отражатели мне, конечно же, недоступны, но вот кафельные плитки выглядят не хуже, тоже идеально белые.

image

image

Было заменено и выходное зеркало на новое с измеренным коэффициентом пропускания 45% на длине волны 694 нм.

image

image

Поскольку кристалл не имеет водяного охлаждения, то с повышением его температуры энергия луча довольно быстро падает, вплоть до полного срыва генерации. Да и кафельные плитки хорошо нагревались и затрудняли отвод тепла. При разборке я заметил, что поверхность плиток все же начала темнеть. Было решено испытать металлический отражатель, согнутый из хромированной пластины фотоглянцевателя.

image

image

Этот отражатель работал также как и кафельные плитки, но гораздо быстрее охлаждался и стрелять можно было чуть чаще. Было проведено несколько стрельб по металлу и резине. От сорта металла зависит вид высекаемых искр. Стрельба в трансформаторное железо. Для сквозного пробоя понадобилось 4 выстрела.

image

Стрельба в нержавейку. Искры более яркие.

image

Стрельба в лезвие канцелярского ножа из углеродистой стали дает обилие пушистых звездочек.

image

Стрельба в резину дает выброс факела пламени длиной до 3-4 см с последующими колечками дыма.

image

Также удалось выяснить, что из-за применения призмы полного отражения в качестве глухого зеркала лазер работает в одномодовом режиме и выдает энергию меньшую, чем мог бы, при том же уровне накачки. Дело в том, что центральное ребро у призмы – это мертвая зона и, исходя из схемы хода лучей света в призме полного отражения, световой пучок расщепляется на два параллельных, что соответствует моде ТЕМ10. Опозналось это по пятну ожога на черном карболите – было четко видно расщепленное пополам пятно как на картинке.

image

Если создать условия, при которых все остальные моды не будут подавляться, то за счет появления высших мод можно добиться повышения выходной энергии минимум вдвое. Для этого потребовалось заменить призму, которые легкодоступны, на специальное глухое зеркало, рассчитанное для работы на длине волны 694 нм. И это того стоило! Порог генерации упал до 900 Дж, а энергии действительно стало больше! И при стрельбе в черный карболит получалось равномерное пятно ожога. Теперь пластинка трансформаторного железа пробивалась за 2-3 выстрела, а диаметр отверстия получался несколько большим. Ну и количество искр стало существенно больше! Особенно красиво получается при стрельбе в углеродистую сталь.

image

image

image

Обычная сталь тоже искрит весьма неслабо!

image

3 выстрела делают в лезвии ножа сквозную дырку.

image

На этот момент возможности лазера уже были в принципе понятны, и оставалось убрать весь тот бардак из конденсаторов и оголенной высоковольтной проводки в более-менее аккуратный корпус, удачно оставшийся от разобранного блока питания лазера ЛГ-70. Принято решение сократить конденсаторную батарею, оставив только 6 однотипных конденсаторов, которые идеально влазили в корпус. Впихивание остального барахла затруднений не вызвало, даже осталось место для очень важного узла обеспечения безопасности – вакуумного выключателя имеющего нормально замкнутое положение, который разряжает конденсаторы на мощный резистор, когда прекращаются занятия с лазером и блок питания обесточивается. Заряд надежно сливается примерно за 40 секунд. Платой за это стало некоторое снижение энергии излучения, но зато лампы накачки работают в более щадящем режиме.

image

Вверху – конденсаторы, правее – разрядный резистор, в левом нижнем углу – система поджига лампы, круглая катушка правее – балластный дроссель который включается для ограничения импульсного тока через лампы (без него лампы торжественно взрываются после пары десятков вспышек), ещё правее (в центре) трансформатор от китайской микроволновки для заряда конденсаторов, ещё правее – его пускатель, и в правом нижнем углу – вакуумный выключатель ВВ-5, который замыкает конденсаторы на резистор при выключении аппарата из сети.

image

image

Вид БП сзади. Вентилятор там стоит просто потому, что он там был, и там было место под него. Реально греющиеся узлы в этом блоке отсутствуют. Высокое напряжение выводится через два контакта на самодельных проходных изоляторах, которым ещё нужно обеспечить дополнительную защиту от случайных прикосновений.

image

После сборки блока питания было решено взять штурмом пятак, выполненный из нержавеющй стали толщиной примерно 1.3 мм. Понадобилось около 7 выстрелов, но сквозной пробой был получен!

image

image

Здесь уже видны искры с тыльной стороны пятака.

image

А вот и желаемый результат – сквозной пробой пятака.

image

image

Подводя итог, было бы странно, если бы с моим увлечением я бы не построил этот действительно выдающийся вид лазера, у которого в моей реализации выходная энергия оценивается в 5 Дж при использовании полновесной батареи конденсаторов. Именно с него началась история всей лазерной техники и совершенно новой на тот момент науки – нелинейной оптики, которая открыла совершенно необычные казусы, происходящие со светом в области больших мощностей и энергий. Отдельно я бы хотел поблагодарить Джаррода Кинси, американского лазерного самодельщика, с ним я смог обсудить конструкцию своего самодельного лазера, и получить от него ряд ценных замечаний. В статье были использованы материалы из следующих источников, помимо бездонных глубин интернетов:

Благодарю за чтение, надеюсь было интересно.

А для будущих проектов у меня припасен действительно огромный рубиновый стержень – диаметром 16мм и с длиной окрашенной части 240 мм. Полная длина – 300 мм. Из такого кристалла можно получить до 100 Дж выходной энергии. Почти то, что нужно для лазерного бластера.

Читайте также: