История открытия магнитных явлений кратко

Обновлено: 02.07.2024

Узнав об открытии Эрстеда, французский физик Доминик Франсуа Араго начал серию опытов. Он обмотал медной проволокой стеклянную трубку, в которую вставил железный стержень. Как только замкнули электрическую цепь , стержень сильно намагнитился и к его концу крепко прилипли железные ключи; когда выключили ток, ключи отпали. Араго рассматривал проводник, по которому идёт ток, как магнит. Правильное объяснение этого явления было дано после исследования французского физика Андре Ампера , который установил внутреннюю связь между электричеством и магнетизмом. В сентябре 1820 года он сообщил Французской Академии наук о полученных им результатах.

В 1825 году английский инженер Уильям Стёрджен изготовил первый электромагнит , представляющий собой согнутый стержень из мягкого железа с обмоткой из толстой медной проволоки. Для изолирования от обмотки стержень был покрыт лаком. При пропускании тока железный стержень приобретал свойства сильного магнита, но при прерывании тока он мгновенно их терял. Именно эта особенность электромагнитов позволила широко применять их в технике

Раздался голос, взор мой понуждая

Оборотиться, как иглу звезда…

Однако природа магнетизма ещё долго оставалась неизвестной. Некоторые из первых исследователей высказывали мнение о его связи с электричеством, однако другие считали такое мнение предрассудком. Первая точка зрения подтвердилась в XVIII в., когда было обнаружено намагничивающее действие молнии, а затем и приборов, производящих электрические разряды.


Рис. 76. Первые упоминания о компасе относятся к XI в., а к XIV в. компас с подвижной розой (картушкой) уже получил широкое распространение

Исследование этого нового и необъяснимого явления начались немедленно. В том же году Андре Мари Ампер (1775–1836) (рис. 77) показал, что два параллельных проводника, по которым пропускается электрический ток, могут притягиваться или отталкиваться в зависимости от соотношения направлений токов: токи одного направления притягиваются, а разного – отталкиваются (рис. 78). При этом сила притяжения или отталкивания между проводниками прямо пропорциональна силе тока в них: чем больше – сила тока, тем сильнее взаимодействуют проводники.


Рис. 77. Андре Мари Ампер


Рис. 78. Взаимодействие двух параллельных проводников с током

Магнитное поле.





Рис. 79 Майкл Фарадей


Рис. 80. Опыты Фарадея: А – катушка, состоящая из большого числа витков изолированного провода, подключена к гальванометру;

Б – при внесении в катушку полосового магнита стрелка гальванометра отклоняется, фиксируя появление электрического тока в цепи;

В – магнит останавливается, ток в катушке исчезает;

Г – при выдвижении магнита из катушки ток появляется, но его направление изменяется на противоположное

Магнитное поле, в отличие от электрического, не создаётся какими-либо зарядами. Магнитных зарядов не существует. Аналогом электрических зарядов в магнитном поле служат два полюса, один из которых называют северным, а второй – южным в честь компаса, побудившего к исследованиям магнетизма. Как и в случае с электрическими зарядами, одноимённые полюсы отталкиваются, а разноимённые – притягиваются. Но в отличие от электрических зарядов, магнитные полюсы не могут существовать друг без друга. В этом легко убедиться, распиливая железный магнит: как бы ни мала была отпиленная часть, у неё всегда будут северный и южный полюсы.

Магнетики.

Кроме ферромагнетиков существуют парамагнетики, которые проявляют свойства магнита, только находясь во внешнем магнитном поле, а после прекращения его действия немедленно теряют эти свойства. Парамагнетиками являются алюминий, платина, оксид марганца и многие другие соединения. Наконец, существует ещё группа веществ, называемых диамагнетиками. Они также не обладают магнитными свойствами при отсутствии внешнего магнитного поля, но обладают свойством поворачивать свои атомы противоположно внешнему магнитному полю. К диамагнетикам относятся, например, вода, поваренная соль, водород и азот.

Раздался голос, взор мой понуждая

Оборотиться, как иглу звезда…

Однако природа магнетизма ещё долго оставалась неизвестной. Некоторые из первых исследователей высказывали мнение о его связи с электричеством, однако другие считали такое мнение предрассудком. Первая точка зрения подтвердилась в XVIII в., когда было обнаружено намагничивающее действие молнии, а затем и приборов, производящих электрические разряды.


Рис. 76. Первые упоминания о компасе относятся к XI в., а к XIV в. компас с подвижной розой (картушкой) уже получил широкое распространение

Исследование этого нового и необъяснимого явления начались немедленно. В том же году Андре Мари Ампер (1775–1836) (рис. 77) показал, что два параллельных проводника, по которым пропускается электрический ток, могут притягиваться или отталкиваться в зависимости от соотношения направлений токов: токи одного направления притягиваются, а разного – отталкиваются (рис. 78). При этом сила притяжения или отталкивания между проводниками прямо пропорциональна силе тока в них: чем больше – сила тока, тем сильнее взаимодействуют проводники.


Рис. 77. Андре Мари Ампер


Рис. 78. Взаимодействие двух параллельных проводников с током

Магнитное поле.


Рис. 79 Майкл Фарадей


Рис. 80. Опыты Фарадея: А – катушка, состоящая из большого числа витков изолированного провода, подключена к гальванометру;

Б – при внесении в катушку полосового магнита стрелка гальванометра отклоняется, фиксируя появление электрического тока в цепи;

В – магнит останавливается, ток в катушке исчезает;

Г – при выдвижении магнита из катушки ток появляется, но его направление изменяется на противоположное

Магнитное поле, в отличие от электрического, не создаётся какими-либо зарядами. Магнитных зарядов не существует. Аналогом электрических зарядов в магнитном поле служат два полюса, один из которых называют северным, а второй – южным в честь компаса, побудившего к исследованиям магнетизма. Как и в случае с электрическими зарядами, одноимённые полюсы отталкиваются, а разноимённые – притягиваются. Но в отличие от электрических зарядов, магнитные полюсы не могут существовать друг без друга. В этом легко убедиться, распиливая железный магнит: как бы ни мала была отпиленная часть, у неё всегда будут северный и южный полюсы.

Магнетики.

Кроме ферромагнетиков существуют парамагнетики, которые проявляют свойства магнита, только находясь во внешнем магнитном поле, а после прекращения его действия немедленно теряют эти свойства. Парамагнетиками являются алюминий, платина, оксид марганца и многие другие соединения. Наконец, существует ещё группа веществ, называемых диамагнетиками. Они также не обладают магнитными свойствами при отсутствии внешнего магнитного поля, но обладают свойством поворачивать свои атомы противоположно внешнему магнитному полю. К диамагнетикам относятся, например, вода, поваренная соль, водород и азот.

Магнетизм изучается с давних времен, а за последние два столетия стал основой современной цивилизации.

Магнетизм: история притягательности


В ферромагнетике собственные магнитные моменты атомов выстраиваются параллельно (энергия такой ориентации минимальна). В результате образуются намагниченные области, домены — микроскопические (10-4-10-6 м) постоянные магнитики, разделённые доменными стенками. В отсутствие внешнего магнитного поля магнитные моменты доменов ориентированы в ферромагнетике хаотически, во внешнем поле границы начинают смещаться, так что домены с моментами параллельно полю вытесняют все остальные — ферромагнетик намагничивается.

Зарождение науки об магнетизме


Революция в навигации. Компас произвёл настоящую революцию в морской навигации, сделав глобальные путешествия не единичными случаями, а привычной регулярной рутиной.

Два века перерыва

После Гильберта наука о магнетизме вплоть до начала XIX века продвинулась очень мало. Сделанное за это время можно буквально перечесть по пальцам. В 1640 году ученик Галилея Бенедетто Кастелли объяснил притяжение магнетита наличием в его составе множества мельчайших магнитных частиц — первая и очень несовершенная догадка, что природу магнетизма следует искать на атомном уровне. Голландец Себальд Бругманс в 1778 году заметил, что висмут и сурьма отталкиваются от полюсов магнитной стрелки — это был первый пример физического явления, которое 67 годами позже Фарадей назвал диамагнетизмом. В 1785 году Шарль-Огюстен Кулон посредством прецизионных измерений на крутильных весах показал, что сила взаимодействия магнитных полюсов обратно пропорциональна квадрату расстояния между ними — точно так же, как и сила взаимодействия между электрическими зарядами (в 1750 году к аналогичному выводу пришел англичанин Джон Мичелл, но кулоновское заключение много надежней).

А вот изучение электричества в те годы двигалось семимильными шагами. Объяснить это нетрудно. Единственными первичными источниками магнитной силы оставались природные магниты — других наука не знала. Их сила стабильна, ее нельзя ни изменить (разве что уничтожить нагревом), ни тем более генерировать по собственному желанию. Понятно, что это обстоятельство сильно ограничивало возможности экспериментаторов.



Электричество было в гораздо более выгодном положении — ведь его можно было получать и накапливать. Первый генератор статических зарядов построил в 1663 году бургомистр Магдебурга Отто фон Герике (знаменитые магдебургские полушария — тоже его детище). Век спустя такие генераторы стали столь широко распространены, что их демонстрировали даже на великосветских приемах. В 1744 году немец Эвальд Георг фон Клейст и немногим позже голландец Питер ван Мушенбрук изобрели лейденскую банку — первый электрический конденсатор; тогда же появились и первые электрометры. В результате к концу XVIII века наука знала об электричестве куда больше, чем в его начале. А вот о магнетизме этого сказать было нельзя.

А потом все изменилось. В 1800 году Алессандро Вольта изобрел первый химический источник электрического тока — гальваническую батарею, также известную как вольтов столб. После этого открытие связи между электричеством и магнетизмом стало вопросом времени. Оно могло состояться уже на следующий год, когда французский химик Николя Готеро заметил, что два параллельных провода с током притягиваются друг к другу. Однако ни он, ни великий Лаплас, ни замечательный физик-экспериментатор Жан-Батист Био, которые позже наблюдали это явление, не придали ему никакого значения. Поэтому приоритет справедливо достался ученому, давно предположившему существование такой связи и много лет посвятившему ее поискам.

От Копенгагена до Парижа

widget-interest

Многообразие магнитных полей Ампер изучил взаимодействие между параллельными проводниками с током. Его идеи развил Фарадей, который предложил концепцию магнитных силовых линий.

Эрстед с 1813 года вполне сознательно пытался установить связь между электричеством и магнетизмом (он был приверженцем великого философа Иммануила Канта, полагавшего, что все природные силы обладают внутренним единством). В качестве индикаторов Эрстед использовал компасы, но долгое время безрезультатно. Эрстед ожидал, что магнитная сила тока параллельна ему самому, и для получения максимального крутящего момента располагал электрический провод перпендикулярно стрелке компаса. Естественно, что стрелка не реагировала на включение тока. И только весной 1820 года во время лекции Эрстед протянул провод параллельно стрелке (либо чтобы посмотреть, что из этого получится, либо у него появилась новая гипотеза — об этом историки физики спорят до сих пор). И вот тут-то стрелка и качнулась — не слишком сильно (у Эрстеда была маломощная батарея), но все-таки заметно.


Лондонский тандем

Для Майкла Фарадея 1821 год стал воистину судьбоносным. Он получил заветную должность суперинтенданта лондонского Королевского института и фактически случайно начал исследовательскую программу, благодаря которой занял уникальное место в истории мировой науки.


Поначалу он почитал силовые линии удобным методом описания наблюдений, но со временем уверился в их физической реальности (тем более что нашел способ наблюдать их с помощью рассыпанных между магнитами железных опилок). К концу 1830-х он четко осознал, что энергия, источником которой служат постоянные магниты и проводники под током, распределена в пространстве, заполненном силовыми линиями. Фактически Фарадей уже мыслил в теоретико-полевых терминах, в чем значительно опередил своих современников.

Но главное его открытие состояло в другом. В августе 1831 года Фарадей смог заставить магнетизм генерировать электрический ток. Его прибор состоял из железного кольца с двумя противоположными обмотками. Одну из спиралей можно было замкнуть на электрическую батарею, другая соединялась с проводником, расположенным над магнитным компасом. Стрелка не меняла положения, если по первой катушке шел постоянный ток, но качалась во время его включения и выключения. Фарадей понял, что в это время во второй обмотке возникали электрические импульсы, обусловленные возникновением или исчезновением магнитных силовых линий. Иначе говоря, он открыл, что причиной электродвижущей силы служат изменения магнитного поля. Этот эффект обнаружил также американский физик Джозеф Генри, но он опубликовал свои результаты позднее, чем Фарадей, и не сделал столь серьезных теоретических выводов.


Электромагниты и соленоиды лежат в основе множества технологий, без которых невозможно представить современную цивилизацию: от вырабатывающих электроэнергию электрогенераторов, электродвигателей, трансформаторов до радиосвязи и вообще практически всей современной электроники.

Теория Максвелла представила магнетизм как особого рода взаимодействие между электрическими токами. Квантовая физика XX века добавила к этой картине всего два новых момента. Теперь мы знаем, что электромагнитные взаимодействия переносятся фотонами и что электроны и многие другие элементарные частицы обладают собственными магнитными моментами. На этом фундаменте построены все экспериментальные и теоретические работы в области магнетизма.

Человечество собирает знания о магнитных явлениях не меньше трех с половиной тысяч лет (первые наблюдения электрических сил имели место тысячелетием позже). Четыреста лет назад, на заре становления физики, магнитные свойства веществ были отделены от электрических, после чего долгое время те и другие изучались самостоятельно. Так была создана экспериментальная и теоретическая база, ставшая к середине XIX века основой единой теории электромагнитных явлений.

После Гильберта наука о магнетизме вплоть до начала XIX века продвинулась очень мало. Сделанное за это время можно буквально перечесть по пальцам. В 1640 году ученик Галилея Бенедетто Кастелли объяснил притяжение магнетита наличием в его составе множества мельчайших магнитных частиц — первая и очень несовершенная догадка, что природу магнетизма следует искать на атомном уровне. Голландец Себальд Бругманс в 1778 году заметил, что висмут и сурьма отталкиваются от полюсов магнитной стрелки — это был первый пример физического явления, которое 67 годами позже Фарадей назвал диамагнетизмом. В 1785 году Шарль-Огюстен Кулон посредством прецизионных измерений на крутильных весах показал, что сила взаимодействия магнитных полюсов обратно пропорциональна квадрату расстояния между ними — точно так же, как и сила взаимодействия между электрическими зарядами (в 1750 году к аналогичному выводу пришел англичанин Джон Мичелл, но кулоновское заключение много надежней).


А вот изучение электричества в те годы двигалось семимильными шагами. Объяснить это нетрудно. Единственными первичными источниками магнитной силы оставались природные магниты — других наука не знала. Их сила стабильна, ее нельзя ни изменить (разве что уничтожить нагревом), ни тем более генерировать по собственному желанию. Понятно, что это обстоятельство сильно ограничивало возможности экспериментаторов.

Электричество было в гораздо более выгодном положении — ведь его можно было получать и накапливать. Первый генератор статических зарядов построил в 1663 году бургомистр Магдебурга Отто фон Герике (знаменитые магдебургские полушария — тоже его детище). Век спустя такие генераторы стали столь широко распространены, что их демонстрировали даже на великосветских приемах. В 1744 году немец Эвальд Георг фон Клейст и немногим позже голландец Питер ван Мушенбрук изобрели лейденскую банку — первый электрический конденсатор; тогда же появились и первые электрометры. В результате к концу XVIII века наука знала об электричестве куда больше, чем в его начале. А вот о магнетизме этого сказать было нельзя.

А потом все изменилось. В 1800 году Алессандро Вольта изобрел первый химический источник электрического тока — гальваническую батарею, также известную как вольтов столб. После этого открытие связи между электричеством и магнетизмом стало вопросом времени. Оно могло состояться уже на следующий год, когда французский химик Николя Готеро заметил, что два параллельных провода с током притягиваются друг к другу. Однако ни он, ни великий Лаплас, ни замечательный физик-экспериментатор Жан-Батист Био, которые позже наблюдали это явление, не придали ему никакого значения. Поэтому приоритет справедливо достался ученому, давно предположившему существование такой связи и много лет посвятившему ее поискам.

Эрстед с 1813 года вполне сознательно пытался установить связь между электричеством и магнетизмом (он был приверженцем великого философа Иммануила Канта, полагавшего, что все природные силы обладают внутренним единством). В качестве индикаторов Эрстед использовал компасы, но долгое время безрезультатно. Эрстед ожидал, что магнитная сила тока параллельна ему самому, и для получения максимального крутящего момента располагал электрический провод перпендикулярно стрелке компаса. Естественно, что стрелка не реагировала на включение тока. И только весной 1820 года во время лекции Эрстед протянул провод параллельно стрелке (либо чтобы посмотреть, что из этого получится, либо у него появилась новая гипотеза — об этом историки физики спорят до сих пор). И вот тут-то стрелка и качнулась — не слишком сильно (у Эрстеда была маломощная батарея), но все-таки заметно.

Первыми ее приняли парижане. 4 сентября известный физик и математик Доминик Араго рассказал об открытии Эрстеда на заседании Академии наук. Его коллега Андре-Мари Ампер решил заняться магнитным действием токов и буквально на следующий день приступил к экспериментам. Первым делом он повторил и подтвердил опыты Эрстеда, а в начале октября обнаружил, что параллельные проводники притягиваются, если токи текут через них в одном и том же направлении, и отталкиваются — если в противоположных. Ампер изучил взаимодействие и между непараллельными проводниками и представил его формулой (закон Ампера). Он показал также, что свернутые в спираль проводники с током поворачиваются в магнитном поле, подобно стрелке компаса (и между делом изобрел соленоид — магнитную катушку). Наконец, он выдвинул смелую гипотезу: внутри намагниченных материалов текут незатухающие микроскопические параллельные круговые токи, которые и служат причиной их магнитного действия. Тогда же Био и Феликс Савар совместными усилиями выявили математическую зависимость, позволяющую определять интенсивность магнитного поля, создаваемого постоянным током (закон Био–Савара).

Для Майкла Фарадея 1821 год стал воистину судьбоносным. Он получил заветную должность суперинтенданта лондонского Королевского института и фактически случайно начал исследовательскую программу, благодаря которой занял уникальное место в истории мировой науки.

Поначалу он почитал силовые линии удобным методом описания наблюдений, но со временем уверился в их физической реальности (тем более что нашел способ наблюдать их с помощью рассыпанных между магнитами железных опилок). К концу 1830-х он четко осознал, что энергия, источником которой служат постоянные магниты и проводники под током, распределена в пространстве, заполненном силовыми линиями. Фактически Фарадей уже мыслил в теоретико-полевых терминах, в чем значительно опередил своих современников.

Но главное его открытие состояло в другом. В августе 1831 года Фарадей смог заставить магнетизм генерировать электрический ток. Его прибор состоял из железного кольца с двумя противоположными обмотками. Одну из спиралей можно было замкнуть на электрическую батарею, другая соединялась с проводником, расположенным над магнитным компасом. Стрелка не меняла положения, если по первой катушке шел постоянный ток, но качалась во время его включения и выключения. Фарадей понял, что в это время во второй обмотке возникали электрические импульсы, обусловленные возникновением или исчезновением магнитных силовых линий. Иначе говоря, он открыл, что причиной электродвижущей силы служат изменения магнитного поля. Этот эффект обнаружил также американский физик Джозеф Генри, но он опубликовал свои результаты позднее, чем Фарадей, и не сделал столь серьезных теоретических выводов.

Теория Максвелла представила магнетизм как особого рода взаимодействие между электрическими токами. Квантовая физика XX века добавила к этой картине всего два новых момента. Теперь мы знаем, что электромагнитные взаимодействия переносятся фотонами и что электроны и многие другие элементарные частицы обладают собственными магнитными моментами. На этом фундаменте построены все экспериментальные и теоретические работы в области магнетизма.

Читайте также: