Индуктивность кольцевой и цилиндрической катушек кратко

Обновлено: 02.07.2024

Магнитное поле катушки рассмотрим на примере магнитного поля кольцевой и цилиндрической катушек.

Магнитное поле кольцевой катушки

Магнитное поле кольцевой катушки состредоточено внутри катушки с током.

Силовые линии магнитного поля кольцевой катушки являются концентрическими окружностями.

Определим магнитное поле кольцевой катушки, используя закон полного тока.

Выбираем контур радиусом r внутри кольцевой катушки. Контур будет совпадать с силовой линией магнитного поля катушки. МДС F вдоль контура:

где Hr – проекция вектора напряженности магнитного поля катушки на направления касательной, напряженность одинакова для всех точек контура;
2πr – длина контура.

Отсюда получим значение напряженности:

где ΣI – полный ток;
w – число витков катушки.

Полученное формула напряженности магнитного поля кольцевой катушки и определяет магнитное поле катушки в каждой точке контура.

Магнитное поле цилиндрической катушки

Теперь рассмотрим цилиндрическую катушку с током. Высоту катушки обозначаем через L, а её внутренний диаметр через D. Если высота цилиндрической катушки больше или равна её пяти внутренним диаметрам, то напряженность магнитного поля в любой точке А в средней части цилиндрической катушки:

Если условие L >= 5D не соблюдается, то магнитное поле цилиндрической катушки определяем по формуле (см. аналогию в статье Магнитное поле прямолинейного тока):


В однородное магнитное поле перпендикулярно его направлению поместим прямолинейный проводник (см. рисунок) и подведем к нему постоянное напряжение . Т.к. в проводнике возникает ток , то на него действует электромагнитная сила . Направление этой силы определяется по правилу левой руки. Под действием силы проводник будет скользить пко медным шинам А и Б, пересекать силовые линии магнитного поля. В результате в проводнике возникает ЭДС индукции , где - скорость движения проводника. Пользуясь правилом правой руки, можно установить, что индуцируемая ЭДС направлена навстречу току, а следовательно, и приложенному напряжению . Поэтому ток в цепи , где - сопротивление движущегося проводника. Из данной формулы следует или .

Умножив обе части последнего уравнения на ток I, получим , где - мощность источника питания; - механическая мощность, развиваемая проводником; - мощность, теряемая на нагревание проводника. Т.о. при движении проводника с током в магнитном поле под действие его сил происходит преобразование электрической энергии в тепловую и механическую. На этом явлении основана работа электродвигателей.

Рассмотрим устройство простейшего двигателя постоянного тока. На якоре двигателя укладывается обмотка якоря, которая состоит из проводников. Ток в обмотку якоря поступает через щетки и коллектор. Для создания магнитного поля на полюсных наконечниках размещается обмотка возбуждения. Она соединяется последовательно, параллельно или смешанно с обмоткой якоря. После включения рубильника ток в обмотке якоря взаимодействует с магнитным полем, которое создается током обмотки возбуждения. В результате возникают силы F и якорь приходи во вращение. В момент пуска встречная ЭДС в обмотке якоря и ток значительно больше номинального. Для уменьшения тока последовательно с обмоткой якоря включают пусковой реостат. После того как якорь придет в движение и в обмотке возникнет встречная ЭДС, пусковой реостат выводят. Электродвигатели преобразуют электрическую энергию в механическую и приводят в движение различные машины, станки и т.д.

Понятие о потокосцеплении


Потокосцеплением называют алгебраическую сумму магнитных потоков, пронизывающих отдельные витки:

Если магнитные потоки, пронизывающие витки, одинаковы, т.е. , то есть потокосцепление будет равно . ЭДС катушки .

Понятие об индуктивности


Замкнутый контур в цепи всегда пронизывается магнитным потоком, созданным протекающим по этой цепи током. Причем, величина магнитного потока пропорциональна току. Алгебраическая сумма магнитных потоков, пронизывающих витки

катушки , которые обусловлены током в этой цепи, называют потокосцеплением самоиндукции .

Отношение потокосцепления с самоиндукцией к току в этой катушке является постоянной величиной и называется индуктивностью .


Индуктивность кольцевой и цилиндрической катушки


Т.к. магнитных поток пронизывает все витки катушки, то потокосцепление самоиндукции:

Тогда индуктивность катушки будет равна:

ЭДС самоиндукции

Изменение тока в катушке вызывает изменение потока сцепления самоиндукции, а следовательно возникает ЭДС.

Явление, при котором ЭДС возникает в контуре или в катушке в результате изменения тока в этом контуре или катушке, называется самоиндукцией.

ЭДС самоиндукции обозначается .

Т.о. ЭДС самоиндукции пропорциональна индуктивности катушки и скорости изменения тока в ней.

Если (ток нарастает), то - отрицательна, т.е. направлена навстречу току (противо ЭДС), если же (ток убывает), то - положительна, т.е. направлена согласно с током.


Время нарастания и уменьшения тока характеризуется постоянным временем.

При включении катушки в электрическую цепь вокруг катушки создается магнитное поле, в котором запасается часть энергии, израсходованной источниками.

Величина этой энергии определяется как:

Явление взаимоиндукции


Если две катушки с током расположены близко друг от друга, то часть магнитного потока первой катушки пронизывает витки второй и наоборот. Такие контуры и катушки называют индуктивно- или магнитосвязанными.

Магнитный поток , а следовательно и потокосцепление пропорциональны току в катушке I1, т. е.




М – взаимная индуктивность двух катушек, равная отношению потокосцепления одной катушки к току другой.

ЭДС, возникающая при этом в другой катушке будет равна:

где K – коэффициент связи двух катушек, зависящий от взаимного их расположения (чем ближе катушка, тем больше K и наоборот).

Однофазный переменный ток

Переменным называют такой электрический ток, который с течением времени изменяется по величине и по направлению.

Основным достоинством переменного тока является возможность его трансформации, а также то, то электрические машины и аппараты переменного тока значительно проще и дешевле, чем постоянного тока.

Время, в течении которого ток делает полный цикл своих изменений называется периодом.

Величина, обратная периоду и численно равная числу периодов за секунду, называется частотой .


Значение переменного тока в любой момент времени называется мгновенным значением.

Наибольшее из мгновенных значений называется максимальным, или амплитудным .


В однородное магнитное поле перпендикулярно его направлению поместим прямолинейный проводник (см. рисунок) и подведем к нему постоянное напряжение . Т.к. в проводнике возникает ток , то на него действует электромагнитная сила . Направление этой силы определяется по правилу левой руки. Под действием силы проводник будет скользить пко медным шинам А и Б, пересекать силовые линии магнитного поля. В результате в проводнике возникает ЭДС индукции , где - скорость движения проводника. Пользуясь правилом правой руки, можно установить, что индуцируемая ЭДС направлена навстречу току, а следовательно, и приложенному напряжению . Поэтому ток в цепи , где - сопротивление движущегося проводника. Из данной формулы следует или .

Умножив обе части последнего уравнения на ток I, получим , где - мощность источника питания; - механическая мощность, развиваемая проводником; - мощность, теряемая на нагревание проводника. Т.о. при движении проводника с током в магнитном поле под действие его сил происходит преобразование электрической энергии в тепловую и механическую. На этом явлении основана работа электродвигателей.

Рассмотрим устройство простейшего двигателя постоянного тока. На якоре двигателя укладывается обмотка якоря, которая состоит из проводников. Ток в обмотку якоря поступает через щетки и коллектор. Для создания магнитного поля на полюсных наконечниках размещается обмотка возбуждения. Она соединяется последовательно, параллельно или смешанно с обмоткой якоря. После включения рубильника ток в обмотке якоря взаимодействует с магнитным полем, которое создается током обмотки возбуждения. В результате возникают силы F и якорь приходи во вращение. В момент пуска встречная ЭДС в обмотке якоря и ток значительно больше номинального. Для уменьшения тока последовательно с обмоткой якоря включают пусковой реостат. После того как якорь придет в движение и в обмотке возникнет встречная ЭДС, пусковой реостат выводят. Электродвигатели преобразуют электрическую энергию в механическую и приводят в движение различные машины, станки и т.д.

Понятие о потокосцеплении


Потокосцеплением называют алгебраическую сумму магнитных потоков, пронизывающих отдельные витки:

Если магнитные потоки, пронизывающие витки, одинаковы, т.е. , то есть потокосцепление будет равно . ЭДС катушки .

Понятие об индуктивности


Замкнутый контур в цепи всегда пронизывается магнитным потоком, созданным протекающим по этой цепи током. Причем, величина магнитного потока пропорциональна току. Алгебраическая сумма магнитных потоков, пронизывающих витки

катушки , которые обусловлены током в этой цепи, называют потокосцеплением самоиндукции .

Отношение потокосцепления с самоиндукцией к току в этой катушке является постоянной величиной и называется индуктивностью .


Индуктивность кольцевой и цилиндрической катушки


Т.к. магнитных поток пронизывает все витки катушки, то потокосцепление самоиндукции:

Тогда индуктивность катушки будет равна:

ЭДС самоиндукции

Изменение тока в катушке вызывает изменение потока сцепления самоиндукции, а следовательно возникает ЭДС.

Явление, при котором ЭДС возникает в контуре или в катушке в результате изменения тока в этом контуре или катушке, называется самоиндукцией.

ЭДС самоиндукции обозначается .

Т.о. ЭДС самоиндукции пропорциональна индуктивности катушки и скорости изменения тока в ней.

Если (ток нарастает), то - отрицательна, т.е. направлена навстречу току (противо ЭДС), если же (ток убывает), то - положительна, т.е. направлена согласно с током.


Время нарастания и уменьшения тока характеризуется постоянным временем.

При включении катушки в электрическую цепь вокруг катушки создается магнитное поле, в котором запасается часть энергии, израсходованной источниками.

Величина этой энергии определяется как:

Явление взаимоиндукции


Если две катушки с током расположены близко друг от друга, то часть магнитного потока первой катушки пронизывает витки второй и наоборот. Такие контуры и катушки называют индуктивно- или магнитосвязанными.

Магнитный поток , а следовательно и потокосцепление пропорциональны току в катушке I1, т. е.

М – взаимная индуктивность двух катушек, равная отношению потокосцепления одной катушки к току другой.

ЭДС, возникающая при этом в другой катушке будет равна:

где K – коэффициент связи двух катушек, зависящий от взаимного их расположения (чем ближе катушка, тем больше K и наоборот).

Однофазный переменный ток

Переменным называют такой электрический ток, который с течением времени изменяется по величине и по направлению.

Основным достоинством переменного тока является возможность его трансформации, а также то, то электрические машины и аппараты переменного тока значительно проще и дешевле, чем постоянного тока.

Время, в течении которого ток делает полный цикл своих изменений называется периодом.

Величина, обратная периоду и численно равная числу периодов за секунду, называется частотой .


Значение переменного тока в любой момент времени называется мгновенным значением.

Наибольшее из мгновенных значений называется максимальным, или амплитудным .

Выше мы рассматривали два основных понятия в электротехнике — идеальный генератор напряжения и идеальный генератор тока.

Идеальный генератор напряжения выдает заданное напряжения U (давление в водопроводной аналогии) на любой нагрузке (сопротивлении внешней цепи).

При этом в соответствии с законом Ома I=U/R, даже если R стремится к нулю, а ток возрастает до бесконечности.

Внутренне сопротивление идеального генератора напряжения равно 0.

Идеальный генератор тока выдает заданный ток I (поток в водопроводной аналогии), даже если сопротивление внешней цепи стремится к бесконечности. Напряжение на нагрузке при этом также стремится к бесконечности U=I*R.

Внутреннее сопротивление идеального генератора тока равно ∞.

Тут можно увидеть определенную симметрию, дуализм.

Мы рассматривали конденсатор С который может накапливать заряд (потому и называется — емкость) С=Q/U. Чем больше емкость, тем медленнее растет напряжение (давление) при закачке в конденсатор заряда U=Q/C.

Если емкость заряда очень большая (стремится к бесконечности), то такой конденсатор бесконечной емкости будет являться идеальным генератором напряжения. Он никогда не разрядится и при этом может выдать ток любой величины, и напряжение на нем будет оставаться постоянным.

Симметричным (дуальным) к конденсатору элементом будет являться индуктивность. Индуктивность обозначается буквой L (см схему ниже).

Обычно сам электронный компонент называется катушка индуктивности, а его параметр — индуктивность L.

рис 13. Подключение катушки индуктивности к генератору напряжения.

рис 13. Подключение катушки индуктивности к генератору напряжения.

Если конденсатор является генератором напряжения, то индуктивность является генератором тока. Индуктивность стремиться поддерживать ток в цепи постоянным, то есть препятствует изменению тока в цепи.

Индуктивность бесконечной величины является идеальным генератором тока, то есть будет бесконечно гнать заданный ток I независимо от сопротивления нагрузки.

Как хорошо сказано в wiki - “При сопоставлении силы электрического тока со скоростью в механике и электрической индуктивности с массой в механике ЭДС самоиндукции сходна с силой инерции.”

Так и в индуктивности, после подачи напряжения ток будет постепенно расти (вагонетка разгоняется), а при подаче напряжения другой полярности — постепенно уменьшаться (вагонетка тормозится).

То есть даже если щелкнуть выключателем S4 на схеме и разомкнуть цепь, ток в первый момент после этого будет продолжать идти! На практике это приводит к тому, что в момент размыкания контактов в выключателе между ними будет проскакивать искра.

Сопротивление при размыкании контактов увеличивается до бесконечности (в реальности до очень больших величин) и протекающий ток создаст на этом сопротивлении напряжение очень большой величины, так что воздушный промежуток между контактами будет пробит.

В водопроводной аналогии этому явлению можно сопоставить гидравлический удар, когда масса воды в водопроводе набирает скорость, и при резком закрытии крана вода, продолжая двигаться по инерции, создает высокое давление, что может привести к разрыву трубы.

“При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС. Это явление называется самоиндукцией. Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Явление самоиндукции проявляется в замедлении процессов исчезновения и установления тока.

По отношению к конденсатору , основным отличием индуктивности, если говорить простыми словами, является то, что конденсатор пропускает переменный ток и не пропускает постоянный, а индуктивность наоборот — пропускает постоянный ток и не пропускает переменный.

А вот индуктивность совсем не пропускает переменный ток бесконечной частоты. А просто переменный ток любой конечной частоты немножко пропускает.

Но к понятию напряжения переменного тока мы вернемся позже.

Рассмотрим цепь на рис. 13 - подключение катушки индуктивности к генератору напряжения.
Ниже представлен график тока в индуктивности при подаче на нее постоянного напряжения от генератора напряжения.

 рис. 14 График тока в индуктивности при подаче на нее постоянного напряжения.

рис. 14 График тока в индуктивности при подаче на нее постоянного напряжения.

При подаче на индуктивность постоянного напряжения ток в ней линейно возрастает со временем.

Мы помним аналогичную картину для конденсатора.

Напряжение на конденсаторе линейно возрастает при его заряде постоянным током.

А что будет, если запитать индуктивность от генератора тока?

рис 15. Подключение индуктивности к генератору тока.

рис 15. Подключение индуктивности к генератору тока.

Попробуйте проанализировать работу схемы (hint - вообще схема изображена с ошибкой. В чем она заключается? Как нарисовать схему правильно?)

Цепи, содержащие конденсатор и индуктивность

Как было отмечено выше, индуктивность в электротехнике играет ту же роль, что масса в механике. А что является аналогом конденсатора в механике? Конденсатор является генератором напряжения, то есть создает силу, которая двигает поток заряда по проводам. Выше мы приводили аналог конденсатора в виде водонапорной башни, которая заполняется водой (зарядом) и давление (напряжение) в ней увеличивается.

Но можно также представить конденсатор в виде пружины — при заряде пружина сжимается и сила сжатия (напряжение) увеличивается. Емкость в этом случае величина обратная жесткости пружины. Чем пружина жестче, тем быстрее возрастает сила при сжатии. То есть соединение конденсатора и индуктивности эквивалентно вагонетке закрепленной на пружине. )

Что же будет происходить, если конденсатор соединить с индуктивностью, например как в схеме на рис. 16

рис 16. Параллельное включение конденсатора и катушки индуктивности.

рис 16. Параллельное включение конденсатора и катушки индуктивности.

Пусть конденсатор С заряжен до напряжения U. Ключ S2 замыкается и в цепи начинает течь ток. Это эквивалентно тому, как если бы мы сжали пружину и затем в какой-то момент отпустили (замкнули ключ S2).

То есть цепь пришла в состояние когда конденсатор заряжен, ток в ней равен нулю.
Хм.. но это то же состояние, с которого мы начали, только полярность напряжения противоположная. Следовательно процесс повторится, только ток потечет уже в другую сторону и система вернется в исходное состояние. Вагонетка поедет обратно, проедет положение равновесия и по инерции снова сожмет пружину.

Возникнет колебательный процесс. То есть вагонетка на пружине так и будет кататься туда-сюда и в отсутствие потерь энергии (трения) этот процесс будет длиться бесконечно.

Таким образом соединение конденсатора с индуктивностью образует колебательное звено. Такие звенья широко используются в электротехнике для создания генераторов и фильтров напряжения переменного тока.

Понятие переменного тока рассмотрим в следующей статье.

UPD.
Поскольку возник диспут экспоненциально ли растет ток при подключении катушки индуктивности к генератору напряжения или линейно, скажу еще пару слов по этому вопросу.

Откуда же берется экспонента роста тока в схеме на рис.13?
Ответ- ниоткуда. Ее там нет. Ток растет линейно и зависимость тока от напряжения описывается формулой


ЭДС самоиндукции в цепи прямо пропорциональна скорости изменения силы тока в этой цепи.
Чтобы обеспечить U=const (а U – это производная от тока в катушке), ток должен линейно расти.

А откуда тогда вообще зашел разговор об экспоненте? А зашел он потому, что ток линейно растет только в идеальном случае — в схеме с идеальным генератором напряжения (бесконечной мощности и с нулевым внутренним сопротивлением) и идеальной индуктивностью (с нулевым внутренним сопротивлением).
В реальном случае с учетом внутреннего сопротивления схема будет выглядеть так.

рис 17. Подключение катушки индуктивности к генератору напряжения с учетом внутреннего сопротивления.

рис 17. Подключение катушки индуктивности к генератору напряжения с учетом внутреннего сопротивления.

На схеме рис.17 R символизирует собой внутреннее сопротивление генератора и катушки индуктивности. (они все равно включены последовательно, поэтому можно обойтись одним R, как суммой этих сопротивлений)

Вот в этом случае и получится такой экспоненциальный график роста тока в индуктивности.

Предположим, что обычная катушка индуктивности подключена к источнику напряжения через ключ. При замыкании ключа на индуктивность подается напряжение, вызывающее быстрое изменение протекающего через нее тока. Когда приложенное напряжение увеличивается от нуля до пикового значения (за короткое время), индуктивность противодействует изменяющемуся через нее току, индуцируя напряжение, противоположное по полярности приложенному напряжению. Индуцированное напряжение при подаче питания на катушку индуктивности называется обратной ЭДС и определяется по формуле 1:

VL = – L*(di/dt), (1)
где:
VL – напряжение (обратная ЭДС), индуцированная на катушке;
L – индуктивность катушки;
di/dt – скорость изменения тока во времени.

Рис.20 Переходной процесс в цепи с индуктивностью

Рис.20 Переходной процесс в цепи с индуктивностью

Картинка неправильная. В правильном варианте при отключении источника, подключался резистор и цепь оставалась замкнутой.

Рассмотрим следующую цепь

Рис.21 Цепь с индуктивностью и переключателем

Рис.21 Цепь с индуктивностью и переключателем

Вопрос на засыпку: Чему будет равно напряжение на индуктивности в первый момент после переключения ключа S из верхнего положения в нижнее?

Hint: Не надо выносить себе мозг, пытаясь сообразить с каким там знаком возникнет ЭДС самоиндукции и что с ней будет дальше. Надо применять простое правило:
Ток в индуктивности в первый момент времени после переключения сохраняется неизменным.
Дальше применять закон Ома.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Индуктивность

Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC — метра.

Что такое индуктивность? Если через провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

линии магнитного поля

В — магнитное поле, Вб

А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение

И у нас получится вот такая картина с магнитными силовыми линиями:

катушка индуктивности магнитное поле

Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

С научной же точки зрения, индуктивность — это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается , то магнитное поле сжимается.

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома:

I — сила тока в катушке , А

U — напряжение в катушке, В

R — сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности — источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть в разы больше, чем было до размыкания цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником. Снизу на фото катушка с немагнитным сердечником.

Но где у нее сердечник? Воздух — это немагнитный сердечник :-). Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:

В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

Для катушек средней индуктивности используются ферритовые сердечники:

Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.

Дроссель

Также есть особый вид катушек индуктивностей. Это так называемые дроссели. Дроссель — это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.

Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:

Также существует еще один особый вид дросселей — это сдвоенный дроссель. Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.

Что влияет на индуктивность?

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов. Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC — метр мне показывает ноль.

LC-метр и катушка индуктивности

Имеется ферритовый сердечник

Катушка индуктивности

Начинаю вводить катушку в сердечник на самый край

катушка индуктивности измеряем индуктивность

LC-метр показывает 21 микрогенри.

Ввожу катушку на середину феррита

Катушка индуктивности

35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита

Катушка индуктивности

20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине. Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности в переменных катушках индуктивности:

1 — это каркас катушки

2 — это витки катушки

3 — сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.

Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки

Катушка индуктивности

Индуктивность стала почти 50 микрогенри!

А давайте-ка попробуем расправим витки по всему ферриту

Убавим витки катушки в два раза. Было 24 витка, стало 12.

Катушка индуктивности

Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз. Вывод: чем меньше количество витков — тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

Давайте поэкспериментируем с ферритовым кольцом.

тороидальная катушка индуктивности

Катушка индуктивности

Отдалим витки катушки друг от друга

Катушка индуктивности

Катушка индуктивности

Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.

Катушка индуктивности

Катушка индуктивности

Офигеть! Увеличил количество витков в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Обозначение на схемах

Последовательное и параллельное соединение катушек индуктивности

При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.

А при параллельном соединении получаем вот так:

При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек. Это может привести к неправильным показаниям общей индуктивности.

Резюме

Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные фильтры для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:


В однородное магнитное поле перпендикулярно его направлению поместим прямолинейный проводник (см. рисунок) и подведем к нему постоянное напряжение . Т.к. в проводнике возникает ток, то на него действует электромагнитная сила. Направление этой силы определяется по правилу левой руки. Под действием силыпроводник будет скользить пко медным шинам А и Б, пересекать силовые линии магнитного поля. В результате в проводнике возникает ЭДС индукции, где- скорость движения проводника. Пользуясь правилом правой руки, можно установить, что индуцируемая ЭДС направлена навстречу току, а следовательно, и приложенному напряжению. Поэтому ток в цепи, где- сопротивление движущегося проводника. Из данной формулы следуетили.

Умножив обе части последнего уравнения на ток I, получим, где- мощность источника питания;- механическая мощность, развиваемая проводником;- мощность, теряемая на нагревание проводника. Т.о. при движении проводника с током в магнитном поле под действие его сил происходит преобразование электрической энергии в тепловую и механическую. На этом явлении основана работа электродвигателей.

Рассмотрим устройство простейшего двигателя постоянного тока. На якоре двигателя укладывается обмотка якоря, которая состоит из проводников. Ток в обмотку якоря поступает через щетки и коллектор. Для создания магнитного поля на полюсных наконечниках размещается обмотка возбуждения. Она соединяется последовательно, параллельно или смешанно с обмоткой якоря. После включения рубильника ток в обмотке якоря взаимодействует с магнитным полем, которое создается током обмотки возбуждения. В результате возникают силы Fи якорь приходи во вращение. В момент пуска встречная ЭДС в обмотке якоряи токзначительно больше номинального. Для уменьшения тока последовательно с обмоткой якоря включают пусковой реостат. После того как якорь придет в движение и в обмотке возникнет встречная ЭДС, пусковой реостат выводят. Электродвигатели преобразуют электрическую энергию в механическую и приводят в движение различные машины, станки и т.д.

Понятие о потокосцеплении


Потокосцеплением называют алгебраическую сумму магнитных потоков, пронизывающих отдельные витки:


Если магнитные потоки, пронизывающие витки, одинаковы, т.е. , то есть потокосцепление будет равно. ЭДС катушки.

Понятие об индуктивности


Замкнутый контур в цепи всегда пронизывается магнитным потоком, созданным протекающим по этой цепи током. Причем, величина магнитного потока пропорциональна току.

Алгебраическая сумма магнитных потоков, пронизывающих витки


катушки , которые обусловлены током в этой цепи, называют потокосцеплением самоиндукции.


Отношение потокосцепления с самоиндукцией к току в этой катушке является постоянной величиной и называется индуктивностью.


Индуктивность кольцевой и цилиндрической катушки




Т.к. магнитных поток пронизывает все витки катушки, то потокосцепление самоиндукции:

Тогда индуктивность катушки будет равна:


.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Читайте также: