Графен свойства и применение кратко

Обновлено: 02.07.2024

Графен (G) представляет революционный материал, который открывает широкие перспективы. Это самый электропроводящий, легкий и прочный вариант углеродного соединения. G — был открыт Андреем Геймом и Константином Новоселовым, которые работают в Университете Манчестера. Русских ученых за это открытие наградили Нобелевской премией. На исследование свойств графена только на сегодняшний день выделено свыше десяти миллиардов долларов.

Что это графен

G — представляет двумерную модификацию углерода, в которой атомы объединены в гексагональную кристаллическую решетку, а его толщина составляет всего один атом.

При этом материал обладает уникальными свойствами:

  • Рекордно большая теплопроводность.
  • Большая механическая жесткость, он прочнее стали в сотни раз.
  • Высокая гибкость.
  • Большая электропроводимость.
  • Его температура плавления находится выше 3000 градусов.
  • Непроницаемость для большинства газов и жидкостей.
  • Прозрачность.

Если сложить 3-и миллиона листов графена, то можно получить толщину порядка 1 мм.

Чтобы объяснить самым простым способом, что такое G, можно сказать: данный материал состоит из мягкого слоистого материала, используемого в грифелях. Однако графен, в отличие от графита, имеет иную структуру. Так же, как графит и алмаз являются формами углерода, они существенно кардинально отличаются по прочности. Так и графен очень твердый в виду того, что его атомы имеют гексагональное расположение.

Чудеса начинаются, когда начинается выделение графена из графита. Благодаря толщине в один атом он представляет первый 2D-материал из когда-либо обнаруженных. К тому же он обладает многочисленными полезными и удивительными свойствами. Сегодня не существует такой области применения, где графен не был бы интересен. Именно поэтому проводятся многочисленные интенсивные исследования, которые направлены на изучение сфер, где потенциально можно было бы внедрить указанный материал. Для ученых открываются невероятные возможности, ведь G особенно широко можно использовать в развитии технологий и науки.

Устройство

Начиная с 2004 года, когда новейший наноматериал был открыт, ученые смогли освоить целый спектр методов его получения. Но основными из них являются следующие способы:
  • Химическое перофазное охлаждение, то есть CVD-процесс.
  • Эпитаксиальный рост в вакууме.
  • Механическая эксфолиация.
Последний метод является наиболее простым. Создание графена при помощи механической эксфолиации осуществляется следующим образом:
  • Выполняется нанесение специального графита на специальную клейкую поверхность изоляционной ленты.
  • Затем основу, словно лист бумаги, начинают разгибать и сгибать, отделяя необходимый материал.

При использовании указанного способа G получается наиболее высокого качества. Но подобные действия не подойдут для массового производства, указанного наноматериала.

При применении метода эпитаксиального роста:
  • Используют тонкие кремниевые пластины, у которых поверхностный слой состоит из карбида кремния.
  • Затем данный материал нагревают при весьма высокой температуре, достигающей 1000 К.
  • Вследствие химической реакции осуществляется отделение атомов кремния от атомов углерода, при этом первые испаряются. На пластинке остается лишь чистый G.

Среди минусов данного метода можно отметить необходимость применения высоких температур, при которых обеспечивается сгорание атомов углерода.

Наиболее простым и надежным способом, который применяется для массового производства графена, считается CVD-процесс. Данный метод представляет способ, при котором протекает химическая реакция между углеводородными газами и металлическим покрытием-катализатором.

В результате указанных методов получается двумерная аллотропная модификация углерода, которая образована слоем атомов углерода толщиной в один атом, которые соединены в гексагональную двумерную кристаллическую решетку посредством σ- и π-связей. Носители заряда графена обладают высокой подвижностью, самой большой среди всех известных материалов. Благодаря этому G является перспективным материалом для возможной замены кремния в интегральных микросхемах и будущей основы нано электроники.

Применения и особенности

Рынок применения графена непосредственно связан с прогрессом в производстве графена со свойствами, которые требуются для конкретного его использования. На текущий момент развиваются и применяются десятки методов по получению графена различного качества, формы и размера.

Среди методов, которые могут быть использованы, можно выделить три класса, получаемого графена:
  1. Хлопьевидный восстановленный оксид графена, который применяется для проводящих красок, композитных материалов и так далее.
  2. Плоский G, применяемый для создания высокопроизводительных электронных устройств.
  3. Плоский G, применяемый для создания неактивных и низкопроизводительных устройств.

Свойства конкретного класса графена, а значит и функционал приложений, где можно его задействовать, очень сильно зависят от качества подложки, материала, типа дефектов и тому подобное. А это в первую очередь определяется методом производства.

Графен в зависимости от метода производства сегодня применяется в следующих направлениях:

  • При механическом отслаивании графен применяется для исследований. Подвижность носителей заряда составляет 2×105 и 106 (при низкой температуре) см²В-1с-1.
  • При химическом отслаивании G применяется для создания композитных материалов, покрытий, красок, чернил, биоприложений, конденсаторов, прозрачных проводящих слоев. Подвижность носителей заряда составляет 100 см²В-1с-1.
  • При химическом отслаивании через оксид графена материал применяется для создания композитных материалов, покрытий, красок, чернил, биоприложений, конденсаторов, прозрачных проводящих слоев. Подвижность носителей заряда составляет 1 см²В-1с-1;
  • При методе CVD G применяется для создания наноэлектроники, фотоники, биоприложений, сенсоров, прозрачных проводящих слоев. Подвижность носителей заряда составляет 1000 см²В-1с-1;
  • При методе SiC G применяется для создания электронных устройств, высокочастотных транзисторов и иных устройств. Подвижность носителей заряда составляет 1000 см²В-1с-1.

На текущий момент изучаются и другие сферы применения графена:

— наноплазмоника и оптоэлектроника;
— спинтроника;
— баллистическая электроника.

— газовые сенсоры;
— хранение водорода.

— композитные материалы;
— графеновые мембраны.

— холодные катоды;
— суперконденсаторы и электрические батареи;
— квантовые точки;
— НЭМС (наноэлектромеханические системы);
— прозрачные покрытия и проводящие электроды.

Так или иначе, но уникальные свойства, которыми обладает графен, смогут обеспечить внимание разработчиков и ученых к нему на десятки лет. Возможно, данный материал начнет вытеснять кремний из электронной промышленности.

Достоинства и недостатки
К достоинствам графена можно отнести следующее:
  • Высокая электропроводность . G — может проводить электричество как обычная медь. На его основе можно создавать различные электрические приборы.
  • Отличная оптическая чистота . G — может поглощать только чуть более двух процентов видимого света вне зависимости от характеристик излучения. Вследствие этого данный материал практически бесцветен. Сторонний наблюдатель может назвать его невидимым.
  • Высокая механическая прочность . G — по прочности превосходит алмаз.
  • Гибкость .G — является более гибким, чем кремний. По данным параметрам он даже превосходит резину. Благодаря однослойной структуре можно изменять форму и растягивать графен по мере необходимости.
  • Способность противостоять внешним воздействиям .
  • Рекордная теплопроводность . G — по данному показателю превосходит медь в десять раз.
К недостаткам графена можно отнести следующее:
  • На данный момент трудно получать G большой площади в промышленных масштабах с заданными высоко-химическими характеристиками. Удается получить лишь небольшие по размерам листы графена.
  • Промышленный G по своим свойствам в большинстве случаев проигрывает экземплярам, которые получены в научных лабораториях. Поэтому достичь аналогичных характеристик при применении промышленных средств на данный момент не удается, несмотря на совершенствование технологий.
  • Производство графена требует значительных затрат, что ограничивает его применение.

Тем не менее, эти трудности вполне преодолимы, что открывает широкие перспективы.

Фото: BONNINSTUDIO / Shutterstock

Впервые о графене заговорили в 2004 году, когда Андрей Гейм и Константин Новоселов — британские ученые российского происхождения — опубликовали статью в журнале Science [1]. В ней говорилось о новом материале, который получили с помощью обычного карандаша и скотча. Ученые просто снимали клейкой лентой слой за слоем, пока не дошли до самого тонкого — в один атом. В 2010-м за это их наградили Нобелевской премией. С тех прошло уже десять лет.

Что такое графен и чем он так уникален?

Углерод — это материал, состоящий из кристаллической решетки, которую образуют шестиугольники атомов. Графен — это один слой решетки толщиной в 1 атом.

Отсюда — его первое уникальное свойство: самый тонкий.

  • Графен в 60 раз тоньше мельчайшего из вирусов.
  • В 3 тыс. раз тоньше бактерии.
  • В 300 тыс. раз тоньше листа бумаги.

Так выглядит структура углерода. Если отделить один из слоев — получим графен

Такую структуру графен приобретает за счет sp2-гибридизации. Дело в том, что на внешней оболочке атома углерода расположены четыре электрона. При sp2-гибридизации три из них вступают в связь с соседними атомами, а четвертый находится в состоянии, которое образовывает энергетические зоны. В результате графен еще и прекрасно проводит электрический ток.

Уникальность графена в том, что он обладает такой же структурой, как и полупроводники, при этом он сам проводит электричество — как проводники. А еще у него высокая подвижность носителей заряда внутри материала. Поэтому графен в фото- и видеотехнике обнаруживает сигналы намного быстрее, чем другие материалы.

Графен обладает хорошей теплопроводностью, гибкостью и упругостью, он на 97% прозрачный. При этом, графен — самый прочный из известных материалов: прочнее стали и алмаза.

Миф о токсичности графена

Влияние графена на человеческий организм до конца не изучено, но и токсичность графена никто не доказал. Единственную опасность представляет графен, который получают путем размешивания графита или углерода в воде: попадая в клетку, такие мельчайшие частицы действительно могут ее убить [2].

Однако сейчас в биоэлектронике используют другой способ получения графена — путем химического осаждения из газовой фазы. Частицы получаются достаточно крупными. Потом их закрепляют на подложке, и проникнуть сквозь клеточную мембрану они уже не могут.

Где уже используют графен?

Сейчас графен успешно применяют в электронике. Самый массовый продукт — это пауэрбанк [3]: производители обещают, что сам он заряжается за 20 минут, а топовый смартфон заряжает наполовину за полчаса.

Существуют также графеновые куртки и платья. Последние, в частности, оснащены светодиодами [4], которые реагируют на дыхание и температуру тела, меняя цвет.

Теннисные ракетки с графеном весят до 300 грамм меньше, чем обычные, при той же силе удара.

Наконец, машинное масло с графеном призвано снизить износ двигателя.

Где можно применять графен в будущем?

Есть и еще одно свойство графена: он биосовместим, то есть взаимодействует с живыми клетками. Ученые обещают, что материал поможет диагностировать и лечить рак [5]. Это делают с помощью чипа с графеном, который придает повышенную чувствительность. На поверхность чипа высаживают раковые клетки и тестируют на них различные лекарства.

Такие чипы можно использовать и для тестирования других лекарств, а также — определения биомаркеров: иммуноглобулина, ДНК, нейрональных биорецепторов.

Из графена также планируют делать дешевые солнечные батареи, опресняющие устройства для морской воды, гибкие дисплеи, сверхпрочные бронежилеты, сверхчувствительные микропроцессоры, элементы для беспилотников и космических ракет, телефоны с бесконечной зарядкой и умную одежду.

Для России самым перспективным применением графена могут стать нефте- и газодобыча. На основе графена делают жидкости, которые позволят управлять толщиной и свойствами фильтрационной корки буровых растворов. А еще можно делать полимерные трубы и покрытия для нефте- и газопроводов с применением графена.

Фото:Юлия Спиридонова для РБК

Графеновый бум

За 7 лет после вручения премии вышло больше 130 тыс. научных работ, посвященных графену и его свойствам. Доля таких исследований среди всех остальных выросла с 0,2% в 2010 году до 1% в 2016-м.

В научном сообществе тестирование свойств графена стало почти мемом. Доходит до того, что в графен добавляют куриный помет, чтобы проверить, как это отразится на его качествах [6].

В Китае исследованиями занимаются государственные вузы. В 2013 году здесь создали Инновационный альянс графеновой промышленности, который пророчит Китаю в этой сфере долю в 80% от общемировой.

В остальных странах в графен активно вкладываются коммерческие компании. В Евросоюзе за это отвечает проект Graphene Flagship с инвестициями в €1 млрд [7]. В США — Национальная графеновая ассоциация, в консультативный совет которой входят представители Apple, IBM и Cisco.

В графене заинтересованы гиганты аэрокосмической отрасли: Boeing, Lockheed Martin, Airbus и Thales. Они рассчитывают, что новые материалы позволят им в разы снизить расход топлива — как композиты, которые экономят до 30% горючего в Boeing 787. Электронные корпорации включились в графеновую гонку в надежде, что это принесет им лидерство на рынке смартфонов и аксессуаров к ним.

Среди них — Samsung [8]: компания уже скупила десятки патентов, которых хватит на целую линейку продуктов с графеном. В частности, она представила новый тип аккумуляторов, которые можно будет заряжать за рекордные 12 минут. Такие появятся в новых смартфонах бренда не позднее 2021-го года. Их главный конкурент — Apple — запатентовала акустические диафрагмы с графеном для использования в устройствах следующих поколений. И это, судя по всему — только начало.

В России тоже занимаются изучением графена и даже патентуют электронные устройства на его основе — на базе в Центра фотоники и двумерных материалов МФТИ. Двое ученых-выпускников этого вуза — гендиректор ведущего производителя Graphene 3D Lab Inc. Елена Полякова и профессор Свободного университета Берлина Кирилл Болотин — входят в ту самую американскую ассоциацию.

Почему же графен до сих пор не изменил нашу жизнь?

Во-первых, он все еще очень дорогой. При этом пока нельзя однозначно посчитать, сколько его нужно и для каких целей. Для этого материала нет единой шкалы измерения, так как он может иметь разную структуру — в зависимости от способа получения.

  • 1 грамм чистого графена, который используют в электронике, стоит около $28 млрд.
  • 1 грамм графена, смешанного с пылью — около $1 тыс.

Во-вторых, массовое производство графена пока не налажено, потому что нет технологий, которые бы позволили бы это: например, сложные электронные устройства с графеном делают вручную. Для графена нужна какая-то подложка — например, кварцевая — которая и определяет свойства конечного продукта. При этом пока еще не совсем понятно, какие именно это должны быть свойства.

Вокруг графена было много ажиотажа — и среди ученых, и среди бизнеса. Но графен так и не стал нашей повседневной реальностью. Разбираемся, почему так произошло.

Что такое графен и чем он так уникален?

Углерод — это материал, состоящий из кристаллической решетки, которую образуют шестиугольники атомов. Графен — это один слой решетки толщиной в 1 атом. Отсюда — его первое уникальное свойство: он очень тонкий.

  • графен в 60 раз тоньше мельчайшего из вирусов.
  • в 3 тыс. раз тоньше бактерии.
  • в 300 тыс. раз тоньше листа бумаги.

Графен, к тому же, еще и прекрасный проводник электрического тока, хотя обладает структурой полупроводника. Графен обладает хорошей теплопроводностью, гибкостью и упругостью, он на 97% прозрачный. При этом, графен — самый прочный из известных материалов: прочнее стали и алмаза.

Нобелевская премия за графен

Впервые о графене заговорили в 2004 году, когда Андрей Гейм и Константин Новоселов — британские ученые российского происхождения — опубликовали статью в журнале Science. В ней говорилось о новом материале, который получили с помощью обычного карандаша и скотча. Ученые просто снимали клейкой лентой слой за слоем, пока не дошли до самого тонкого — в один атом. В 2010-м за это их наградили Нобелевской премией. С тех прошло уже десять лет.

Миф о токсичности графена

Влияние графена на человеческий организм до конца не изучено, но и токсичность графена никто не доказал. Единственную опасность представляет графен, который получают путем размешивания графита или углерода в воде: попадая в клетку, такие мельчайшие частицы действительно могут ее убить .

Однако сейчас в биоэлектронике используют другой способ получения графена — путем химического осаждения из газовой фазы. Частицы получаются достаточно крупными. Потом их закрепляют на подложке, и проникнуть сквозь клеточную мембрану они уже не могут.

Где уже используют графен?

Сейчас графен успешно применяют в электронике. Самый массовый продукт — это пауэрбанк : производители обещают, что сам он заряжается за 20 минут, а топовый смартфон заряжает наполовину за полчаса.

Существуют также графеновые куртки и платья . Последние, в частности, оснащены светодиодами , которые реагируют на дыхание и температуру тела, меняя цвет.

Теннисные ракетки с графеном весят до 300 грамм меньше, чем обычные, при той же силе удара.

Наконец, машинное масло с графеном призвано снизить износ двигателя.

С помощью графена можно лечить рак

Есть и еще одно свойство графена: он биосовместим, то есть взаимодействует с живыми клетками. Ученые обещают, что материал поможет диагностировать и лечить рак . Это делают с помощью чипа с графеном, который придает повышенную чувствительность. На поверхность чипа высаживают раковые клетки и тестируют на них различные лекарства.

Такие чипы можно использовать и для тестирования других лекарств, а также — определения биомаркеров: иммуноглобулина, ДНК, нейрональных биорецепторов.

Что еще можно делать из графена

Из графена также планируют делать дешевые солнечные батареи, опресняющие устройства для морской воды , гибкие дисплеи, сверхпрочные бронежилеты, сверхчувствительные микропроцессоры, элементы для беспилотников и космических ракет, телефоны с бесконечной зарядкой и умную одежду .

Для России самым перспективным применением графена могут стать нефте- и газодобыча. На основе графена делают жидкости, которые позволят управлять толщиной и свойствами фильтрационной корки буровых растворов. А еще можно делать полимерные трубы и покрытия для нефте- и газопроводов с применением графена.

Зачем ученые добавляют в графен куриный помет

После вручения премии вышло больше 130 тыс. научных работ, посвященных графену и его свойствам. Доля таких исследований среди всех остальных выросла с 0,2% в 2010 году до 1% в 2016-м.

В научном сообществе тестирование свойств графена стало почти мемом. Доходит до того, что в графен добавляют куриный помет , чтобы проверить, как это отразится на его качествах.

В Китае исследованиями занимаются государственные вузы. В 2013 году здесь создали Инновационный альянс графеновой промышленности, который пророчит Китаю в этой сфере долю в 80% от общемировой.

Кто вкладывается в изучение графена

В остальных странах в графен активно вкладываются коммерческие компании. В Евросоюзе за это отвечает проект Graphene Flagship с инвестициями в €1 млрд [7]. В США — Национальная графеновая ассоциация, в консультативный совет которой входят представители Apple, IBM и Cisco.

В графене заинтересованы гиганты аэрокосмической отрасли: Boeing, Lockheed Martin, Airbus и Thales. Они рассчитывают, что новые материалы позволят им в разы снизить расход топлива — как композиты, которые экономят до 30% горючего в Boeing 787. Электронные корпорации включились в графеновую гонку в надежде, что это принесет им лидерство на рынке смартфонов и аксессуаров к ним.

Samsung и графен

Компания уже скупила десятки патентов, которых хватит на целую линейку продуктов с графеном. В частности, она представила новый тип аккумуляторов, которые можно будет заряжать за рекордные 12 минут. Такие появятся в новых смартфонах бренда не позднее 2021-го года. Apple, их главный конкурент, запатентовала акустические диафрагмы с графеном для использования в устройствах следующих поколений. И это, судя по всему, только начало.

Будущее графена в России

В России тоже занимаются изучением графена и даже патентуют электронные устройства на его основе — на базе в Центра фотоники и двумерных материалов МФТИ. Двое ученых-выпускников этого вуза — гендиректор ведущего производителя Graphene 3D Lab Inc. Елена Полякова и профессор Свободного университета Берлина Кирилл Болотин — входят в ту самую американскую ассоциацию.

Почему графеновая революция не произошла

Во-первых, графен очень дорогой. При этом пока нельзя однозначно посчитать, сколько его нужно и для каких целей. Для этого материала нет единой шкалы измерения, так как он может иметь разную структуру — в зависимости от способа получения.

  • 1 грамм чистого графена, который используют в электронике, стоит около $28 млрд.
  • 1 грамм графена, смешанного с пылью — около $1 тыс.

Во-вторых, массовое производство графена пока не налажено, потому что нет технологий, которые бы позволили бы это: например, сложные электронные устройства с графеном делают вручную. Для графена нужна какая-то подложка — например, кварцевая — которая и определяет свойства конечного продукта. При этом пока еще не совсем понятно, какие именно это должны быть свойства.

Что такое графен и чем он интересен

Что такое графен?

Графен — это двумерная аллотропная форма углерода, в которой объединённые в гексагональную кристаллическую решётку атомы образуют слой толщиной в один атом. Графен был открыт в 2004 году двумя выходцами из России — Андреем Геймом и Константином Новосёловым — которые, как это часто бывает, не смогли реализовать свой научный потенциал в родной стране и уехали работать в Нидерланды и Великобританию соответственно. За открытие графена Гейм и Новосёлов в 2010 году получили Нобелевскую премию по физике.

Что такое графен и чем он интересен-2

Открыватели графена Андрей Гейм и Константин Новосёлов

Чем он интересен?

Необычные свойства графена сулят этому материалу блестящее будущее. Мы перечислим лишь некоторые из них, которые на наш взгляд, представляют максимальный интерес.

Что такое графен и чем он интересен-3

Гибкая подложка с графеновыми электродами

Ещё одно возможное применение графена — создание гибкой электроники и, в частности, гибких дисплеев. Сейчас в экранах (как жидкокристаллических, так и OLED) в качестве прозрачного проводника используется оксид индия-олова, который относительно дорог и при этом хрупок. В этом смысле высокая прочность и гибкость графена делают его идеальным кандидатом на замену. Широкое распространение графена наверняка даст хороший стимул развитию носимой электроники, поскольку позволит встраивать чипы в одежду, бумагу и другие повседневные вещи.

Что такое графен и чем он интересен-4

Что такое графен и чем он интересен-5

Схема работы графенового фильтра

Также графеновая плёнка, как оказалось, является отличным фильтром для воды, поскольку она пропускает молекулы воды и при этом задерживает все остальные. Возможно, в будущем это поможет снизить стоимость опреснения морской воды. Несколько месяцев назад компания Lockheed Martin представила графеновый фильтр для воды под названием Perforene, которые, по утверждению производителя, на 99% снижает энергетические затраты на опреснение.

В сухом остатке

У каждой эпохи есть своё ключевое открытие, которое задаёт темпы и направление прогресса на много лет вперёд. Например, металлургия стала основой промышленной революции, а изобретение полупроводникового транзистора в XX веке сделало возможным появление современного мира в том виде, каким мы его знаем. Станет ли графен таким чудо-материалом XXI века, который позволит создавать устройства, о которых мы сейчас и не догадываемся? Вполне может быть. Пока же нам остаётся только с интересом следить за исследованиями в этой области.

Подписывайтесь на наш нескучный канал в Telegram, чтобы ничего не пропустить.

Читайте также: