Где используется электроэнергия кратко

Обновлено: 04.07.2024

Производство электроэнергии

Производится электроэнергия на электрических станциях в основном с помощью электромеханических индукционных генераторов.
Существует два основных типа электростанций: тепловые и гидроэлектрические.
Различаются эти электростанции двигателями, вращающими роторы генераторов.

На тепловых электростанциях источником энергии является топливо: уголь, газ, нефть, мазут, горючие сланцы.
Роторы электрических генераторов приводятся во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания.

Тепловые паротурбинные электростанции - ТЭС наиболее экономичны.


В паровом котле свыше 90% выделяемой топливом энергии передается пару.
В турбине кинетическая энергия струй пара передается ротору.
Вал турбины жестко соединен с валом генератора.
Паровые турбогенераторы весьма быстроходны: число оборотов ротора составляет несколько тысяч в минуту.

Тепловые электростанции — ТЭЦ позволяют значительную часть энергии отработанного пара использовать на промышленных предприятиях и для бытовых нужд.
В результате КПД ТЭЦ достигает 60—70%.
В России ТЭЦ дают около 40% всей электроэнергии и снабжают электроэнергией сотни городов.

На гидроэлектростанциях - ГЭС для вращения роторов генераторов используется потенциальная энергия воды.


Роторы электрических генераторов приводятся во вращение гидравлическими турбинами.
Мощность такой станции зависит от создаваемого плотиной напора и массы воды, проходящей через турбину в каждую секунду.

Гидроэлектростанции дают около 20% всей вырабатываемой в нашей стране электроэнергии.

Атомные электростанции - АЭС в России дают около 10% электроэнергии.

Использование электроэнергии

Главным потребителем электроэнергии является промышленность - 70% производимой электроэнергии.
Крупным потребителем является также транспорт.

Большая часть используемой электроэнергии сейчас превращается в механическую энергию, т.к. почти все механизмы в промышленности приводятся в движение электрическими двигателями.

Передача электроэнергии

Электроэнергию не удается консервировать в болыпих масштабах.
Она должна быть потреблена сразу же после получения.
Поэтому возникает необходимость в передаче электроэнергии на большие расстояния.

Передача электроэнергии связана с заметными потерями, так как электрический ток нагревает провода линий электропередачи. В соответствии с законом Джоуля — Ленца энергия, расходуемая на нагрев проводов линии, определяется формулой


где
R — сопротивление линии,
U — передаваемое напряжение,
Р — мощность источника тока.

При очень большой длине линии передача энергии может стать экономически невыгодной.
Значительно снизить сопротивление линии R практически весьма трудно, поэтому приходится уменьшать силу тока I.

Так как мощность источника тока Р равна произведению силы тока I на напряжение U, то для уменьшения передаваемой мощности нужно повысить передаваемое напряжение в линии передачи.

Для этого на крупных электростанциях устанавливают повышающие трансформаторы.
Трансформатор увеличивает напряжение в линии во столько же раз, во сколько раз уменьшает силу тока.

Чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Генераторы переменного тока настраивают на напряжения, не превышающие 16—20 кВ. Более высокое напряжение потребовало бы принятия сложных специальных мер для изоляции обмоток и других частей генераторов.

Далее для непосредственного использования электроэнергии потребителем необходимо понижать напряжение.


Это достигается с помощью понижающих трансформаторов.

Понижение напряжения (и соответственно увеличение силы тока) осуществляются поэтапно.

При очень высоком напряжении между проводами может начаться разряд, приводящий к потерям энергии.
Допустимая амплитуда переменного напряжения должна быть такой, чтобы при заданной площади поперечного сечения провода потери энергии вследствие разряда были незначительными.

Электрические станции объединены высоковольтными линиями электропередачи, образуя общую электрическую сеть, к которой подключены потребители.
Такое объединение, называемое энергосистемой, дает возможность распределять нагрузки потребления энергии.
Энергосистема обеспечивает бесперебойность подачи энергии потребителям.
Сейчас в нашей стране действует Единая энергетическая система европейской части страны.

Использование электроэнергии

Потребность в электроэнергии постоянно увеличивается как в промышленности, на транспорте, в научных учреждениях, так и в быту. Удовлетворить эту потребность можно двумя основными способами.

Первый — строительство новых мощных электростанций: тепловых, гидравлических и атомных.
Однако строительство крупной электростанции требует нескольких лет и больших затрат.
Кроме того, тепловые электростанции потребляют невозобновляемые природные ресурсы: уголь, нефть и газ.
Одновременно они наносят большой ущерб равновесию на нашей планете.
Передовые технологии позволяют удовлетворить потребности в электроэнергии другим способом.

Второй - эффективное использование электроэнергии: современные люминесцентные лампы, экономия освещения.

Большие надежды возлагаются на получение энергии с помощью управляемых термоядерных реакций.

Приоритет должен быть отдан увеличению эффективности использования электроэнергии, а не повышению мощности электростанций.

Производство, передача и использование электрической энергии. Физика, учебник для 11 класса - Класс!ная физика

Что происходит сейчас, и где человек использует электричество

В современном мире электричество играет наиболее важную роль, без него нельзя представить ни одну сферу нашей жизни. Вы просыпаетесь по будильнику, который звенит утром. А питается он как раз электроэнергией. А засыпаете, когда гасите ночник. На страже вашего спокойствия находится сигнализация, о приходе гостей оповестит дверной звонок, а потом вы включите электрический водонагреватель, чтобы принять утренний душ. Всё начинается с электричества, им же и заканчивается каждый день, вне зависимости от выходных и праздников. Но ваши бытовые потребности были бы не покрыты, если бы эта энергия не получила широкое распространение в промышленности.

Где применяется электричество

Рассмотрим основные укрупненные сферы, где электричество используется чаще всего:

  • Химическая промышленность. Реакции электролиза, постоянное осаждение и прочие взаимодействия между веществами проходят исключительно в присутствии высокого напряжения. Все любят обладать красивыми хромированными или никелированными предметами, но здесь также участвует электричество. Процедуры химической очистки, разделения и соединения делают в присутствии пары электродов. Подогрев субстанция производится мощнейшими ТЭН, позволяющими контролировать процесс с минимальной погрешностью.
  • Освещение. Чрезвычайная опасность костров, лучин и прочих открытых источников огня не оценивается до тех пор, пока мы щёлкаем выключателем, и загорается светодиодная лампочка. Ровный счёт с отрегулированными параметрами позволил сохранить зрение миллионам людей. Сейчас эффективность осветительных приборов несоразмерна прошлому поколению ламп с нитями накаливания. Продукция высоких технологий теперь доступна каждому человеку. Эти лампочки не представляют вреда для окружающей среды.

Освещение

Электроинструменты в строительстве

Пользуемся и наслаждаемся цивилизацией

Все, что имеется в вашем доме, обязательно создано при участии электроэнергии. Огромные фабрики работают круглосуточно, производя продукцию высшего качества, что позволяет существенно поднять уровень жизни. Мы не видим этого, но всё сразу станет заметно, если всё отобрать в один момент. Поэтому у человечества в этой сфере нет другого пути, кроме развития.


Что такое электроэнергия? Каковы ее особенностями развития на современном уровне? Кто является основными производителями электроэнергии в современном мире и в частности в России. А какие простые меры помогут сэкономить электроэнергию энергию в быту? Ответы на эти и не только вопросы вы найдете в данном видеоуроке.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Производство и использование электрической энергии"

Под генератором понимается устройство, преобразующее механическую энергию в электрическую.

В современной энергетике применяют индукционные генераторы, в которых используется явление электромагнитной индукции. Преимущество таких генераторов состоит в том, что они позволяют получать большие токи при достаточно высоком напряжении.

В настоящее время уровень производства и потребления энергии — один из важнейших показателей развития производственных сил общества. При этом ведущую роль играет электроэнергия — самая универсальная и удобная для использования форма энергии. Если потребление энергии в мире увеличивается вдвое примерно за 25 лет, то увеличение потребления электроэнергии в два раза происходит в среднем за 10 лет. Это означает, что все больше и больше процессов, связанных с расходованием энергоресурсов, переводится на электроэнергию.

Электроэнергетика — базовая инфраструктурная отрасль, снабжающая электричеством и теплом все остальные сектора хозяйства. С энергопотреблением прямо связаны и уровень социально-экономического развития, и общая деловая активность, и жизнь каждого человека.

Электроэнергетика имеет связи со всеми секторами экономики, снабжая их произведенными электричеством и теплом и получая от некоторых из них ресурсы для своего функционирования.

Особенностями развития энергетики на современном уровне являются резкое ужесточение экологических требований (в частности, Киотский протокол по выбросам парниковых газов), переход на высокоэффективные и ресурсосберегающие энергетические технологии и попытки поиска альтернативных (без использования традиционного органического топлива) источников энергии. Тем не менее, сегодня главный вклад в мировое производство электроэнергии дает уголь (40 %), заметно меньше — газ (19 %) и далее по 16 % атомная и гидроэнергетика.


И в будущем уверенное лидерство по приросту генерирующих мощностей будет принадлежать углю. Далее по приоритету идут газ, гидроэнергия с возобновляемыми источниками, и совсем небольшая роль отводится атомной энергии.

Производится электроэнергия на больших и малых электрических станциях в основном с помощью электромеханических индукционных генераторов. Основными производителями электроэнергии являются:

тепловые электростанции (ТЭС), где тепловая энергия, образующаяся при сжигании органического топлива (уголь, газ, мазут, торф, сланцы и т.д.), используется для вращения турбин, приводящих в движение электрогенератор.

гидроэлектростанции (ГЭС), где в электроэнергию преобразуется механическая энергия потока воды с помощью гидравлических турбин, вращающих электрогенераторы;

атомные электростанции (АЭС), где в электроэнергию преобразуется тепловая энергия, полученная при цепной ядерной реакции радиоактивных элементов в реакторе.


Три основных типа электростанций определяют виды используемых энергоресурсов. Их принято подразделять на первичные и вторичные, возобновляемые и невозобновляемые.

Некоторые виды ресурсов могут относительно быстро восстанавливаться в природе, они называются возобновляемыми: дрова, камыш, торф и прочие виды биотоплива, гидропотенциал рек. Ресурсы, не обладающие таким качеством, называются невозобновляемыми: уголь, сырая нефть, природный газ, нефтеносный сланец, урановая руда. По большей части они являются полезными ископаемыми. Энергия солнца, ветра, морских приливов относится к неисчерпаемым возобновляемым энергетическим ресурсам.

В настоящее время наиболее распространенным видом технологического топлива в мировой электроэнергетике выступает уголь, использующийся на тепловых электростанциях.


Помимо этого, транспортировка угля на значительные расстояния ведет к большим издержкам, что во многих случаях делает его использование нерентабельным. При производстве энергии с использованием угля высок уровень выброса в атмосферу загрязняющих веществ, что наносит существенный вред окружающей среде.

Давайте рассмотрим процесс производства электроэнергии на тепловых электростанциях.


Роторы электрических генераторов на тепловых электростанциях приводятся во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания. Конечно, наиболее экономичными являются крупные тепловые паротурбинные электростанции. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кинетическая энергия струй пара передается ротору, число оборотов которого достигает нескольких тысяч в минуту.

Из курса физики 10 класса известно, что коэффициент полезного действия тепловых двигателей увеличивается с повышением температуры нагревателя и соответственно начальной температуры рабочего тела (в нашем случае пара или газа). Поэтому пар, поступающий в турбину, доводится до относительно высоких параметров: его температура достигает 550 0 С, а давление составляет порядка 25 МПа.

Однако коэффициент полезного действия ТЭС остается не высоким — порядка 40%. Большая часть энергии теряется вместе с горячим отработанным паром.

Большую экономичность и практическое значение имеют тепловые электростанции — так называемые теплоэлектроцентрали (сокращенно ТЭЦ), которые позволяют значительную часть энергии отработанного пара использовать на промышленных предприятиях и для бытовых нужд (например, для отопления и горячего водоснабжения). В результате этого КПД ТЭЦ достигает 60–70 %. В настоящее время в России ТЭЦ дают около 40% всей электроэнергии и снабжают теплом и электроэнергией сотни городов.


Большое значение в структуре источников электроэнергии сохраняют гидроресурсы, хотя их доля за последние десятилетия несколько сократилась. Преимущества этого источника в его возобновляемости и относительной дешевизне. Но возведение гидростанций оказывает необратимое воздействие на окружающую среду, так как обычно требует затопления значительных территорий при создании водохранилищ. Кроме того, неравномерность распределения водных ресурсов на планете и зависимость от климатических условий ограничивают их гидроэнергетический потенциал.


На гидроэлектростанциях для вращения роторов генераторов используется потенциальная энергия воды. Роторы электрических генераторов приводятся во вращение гидравлическими турбинами. Мощность такой станции зависит от создаваемой плотиной разности уровней воды и от массы воды, проходящей через турбину каждую секунду.

У России большой гидроэнергетический потенциал, что подразумевает значительные возможности развития отечественной гидроэнергетики. В настоящее время, гидроэлектростанции дают около 20% всей вырабатываемой в нашей стране электроэнергии. На территории Российской Федерации сосредоточено около 9% мировых запасов гидроресурсов. По обеспеченности гидроэнергетическими ресурсами Россия занимает второе место в мире после Китая, опережая при этом США, Бразилию и Канаду.

Выработка электроэнергии российскими ГЭС обеспечивает ежегодную экономию 50 млн тонн условного топлива. За единицу условного топлива Международное энергетическое агентство приняло нефтяной эквивалент. Одна тонна нефтяного эквивалента равняется 11,63 МВт×ч энергии. Потенциал экономии составляет 250 млн тонн; позволяет снижать выбросы CO2 в атмосферу на величину до 60 млн тонн в год, что обеспечивает России практически неограниченный потенциал прироста мощностей энергетики в условиях жестких требований по ограничению выбросов парниковых газов.

Все большее распространение получает использование урана. Это топливо обладает колоссальной эффективностью по сравнению с прочими сырьевыми источниками энергии. Однако применение радиоактивных веществ сопряжено с риском масштабного загрязнения окружающей среды в случае аварии. Кроме того, возведение АЭС и утилизация отработанного топлива чрезвычайно капиталоёмкие. Развитие этого вида энергетики осложняется и тем, что пока немногие страны могут обеспечить подготовку научных и технических специалистов, способных разработать технологии и обеспечить квалифицированную эксплуатацию АЭС.


Россия обладает технологией ядерной электроэнергетики полного цикла от добычи урановых руд до выработки электроэнергии.

На сегодняшний день в нашей стране эксплуатируется 10 атомных электростанций (АЭС) — в общей сложности 33 энергоблока установленной мощностью 23,2 гигаватта, которые вырабатывают около 17% всего производимого электричества. В стадии строительства – еще 5 АЭС.

Растет внимание к возобновляемым источникам энергии. В частности, активно разрабатываются технологии использования энергии солнца и ветра, потенциал которых огромен. Правда, на сегодняшний день использование солнечной энергии в промышленных масштабах в большинстве случаев оказывается менее эффективным по сравнению с традиционными видами ресурсов. Что касается энергии ветра, в развитых странах (прежде всего под влиянием экологических движений) ее применение в электроэнергетике значительно увеличилось. Нельзя не упомянуть также геотермальную энергию, которая может иметь серьезное значение для некоторых государств,таких как Исландия, Новая Зеландияили отдельных регионов, как например, в России — для Камчатки, Ставропольского и Краснодарского краев, Калининградской области.




Так как же используется электроэнергия?

Главным ее потребителем является промышленность, на долю которой приходится около 70% производимой электроэнергии. Также крупным потребителем электроэнергии является транспорт. В настоящее время все большее количество железнодорожных линий переводится на электрическую тягу. Почти все деревни и села получают электроэнергию от электростанций для производственных и бытовых нужд. Электроэнергия применяется для освещения жилищ и в бытовых электроприборах.

Большая часть используемой электроэнергии сейчас превращается в механическую энергию. Почти все механизмы в промышленности приводятся в движение электрическими двигателями, т.к. они удобны, компактны и допускают возможность автоматизации процесса.

Помимо этого, около трети электроэнергии, потребляемой промышленностью, используется для технологических целей, таких как электросварка, электрический нагрев и плавление металлов, электролиз и тому подобное.


Таким образом, мы можем сделать вывод о том, что современная цивилизация немыслима без широкого использования электроэнергии. А нарушение снабжения электроэнергией крупного города при аварии парализует его жизнь.

В настоящее время потребность в электроэнергии постоянно увеличивается, как в промышленности, на транспорте, в научных учреждениях, так и в быту.

Возможности для более эффективного использования электроэнергииимеются, и немалые.

Приведем несколько основных способов экономии электроэнергии в быту.

Во-первых, всегда выключайте свет, выходя надолго из помещения. При выходе из дома выключайте из розеток все бытовые приборы, кроме холодильника. Даже если у вас телевизор или компьютер новейшей модели, то в месяц в режиме ожидания они потребляют, соответственно, 0,2 кВт и 3,6 кВт в месяц, а устаревшие модели в несколько раз больше.

Замените лампы накаливания на энергосберегающие. Они не только экономят электричество, но и служат в 5-8 раз дольше. Затраты на покупку энергосберегающих ламп окупаются менее чем за год. При покупке энергосберегающих ламп обратите внимание на свет, который они излучают – теплый или холодный. Теплый свет наиболее близкий к свету ламп накаливания или естественному солнечному свету, а холодный аналогичен свету люминесцентных ламп и иногда режет глаза. Лампы холодного света можно использовать на общей площадке или для освещения балкона.

Покупайте бытовую технику класса А, А+, А++. Благодаря этому, экономия электроэнергии в конце месяца будет очевидна. По сравнению с приборами более низкого класса энергопотребления, они потребляют электричества на 30-40% меньше.

Правильно используйте электрочайник. Он потребляет от 2 до 3 кВт электроэнергии. Чтобы сэкономить электроэнергию, придерживайтесь простых правил: кипятить столько воды, сколько нужно в данный момент, и своевременно удаляйте накипь в чайнике. Если у вас электроплита, то для приготовления супов, макаронов и варки овощей целесообразнее кипятить воду в электрочайнике и переливать в кастрюлю на электроплите, т.к. вода в электрочайнике закипает быстрее и на это затрачивается меньше электроэнергии.

Не допускайте нагрева холодильника прямыми солнечными лучами и не ставьте его у плиты или батареи отопления. Также для экономии электроэнергии необходимо своевременно размораживать холодильник и никогда не ставить в него горячие блюда.

Загружайте стиральную машину согласно инструкции. Слишком большая или слишком маленькая загрузка не позволяют экономно расходовать электричество. Перерасход электроэнергии может составлять до 30%.

Во время глажки старайтесь начинать и заканчивать процесс глажкой вещей, требующих низкого температурного режима. Тогда последние платки и косынки можно гладить уже выключенным утюгом.

Не забывайте менять или чистить фильтры пылесоса, ведь иначе они будут затрудняют его работу, уменьшают тягу воздуха и, как следствие, увеличивают его энергопотребление.

Используйте теплоотражающие экраны. Очень много электроэнергии поглощают обогревательные приборы, используемые в осенне-зимний период. Сократить их использование помогут теплоотражающие экраны из фольги или пенофола, установленные за батареями. Данная мера поможет повысить температуру в комнате на 2-3 градуса.

Помимо всего вышеперечисленного, можно экономить энергию, приняв простые меры по утеплению помещения. Во-первых, утеплите окна, заткнув все щели или поменяйте деревянные стеклопакеты на более качественные пластиковые. Через окна может уходить до 50% тепла. Во-вторых, повесьте на окна теплые плотные ночные занавески.

Замените старую проводку. Иногда, повышенное потребление электричества возникает из-за старости электропроводки. В этом случае достаточно заменить ее, получив не только возможность сэкономить, но и повысив пожарную безопасность помещения.

Включайте кондиционер лишь тогда, когда закрыты все окна и двери, иначе кондиционер будет охлаждать улицу или другие помещения.

Чаще мойте лампы, плафоны и окна. Грязь и пыль снижают освещенность в помещении на 30%. Еще не забудьте снять с подоконника большие растения и не задергивайте днем шторы, рационально используйте естественное освещение.

Люди используют различные виды энергии для всего, от собственных движений до отправки космонавтов в космос.

Существует два типа энергии:

  • способность совершить (потенциальная)
  • собственно работа (кинетическая)

Поставляется в различных формах:

  • тепла (тепловая)
  • свет (лучистая)
  • движение (кинетическая)
  • электрическая
  • химическая
  • ядерная энергия
  • гравитационная

виды энергии

Например пища, которую человек ест содержит химическую и тело человека хранит её пока он или она израсходует как кинетическую во время работы или жизни.

Классификация видов энергии

Люди используют ресурсы разных видов: электричество в своих домах, добываемое путем сжигания угля, ядерной реакции или ГЭС на реке. Таким образом, уголь, ядерная и гидро называются источником. Когда люди заполняют топливный бак бензином источником может быть нефть или даже выращивание и переработка зерна.

Источники энергии делятся на две группы:

Возобновляемые и невозобновляемые источники можно использовать в качестве первичных для получения пользы, такого как тепло или использовать для производства вторичных энергетических источников, таких, как электричество.

Когда люди используют электричество в своих домах, электроэнергия вероятно создается сжиганием угля или природного газа, ядерной реакции или ГЭС на реке, или из нескольких источников. Люди используют для топлива своих автомобилей сырую нефть (невозобновляемая), но могут и биотопливо (возобновляемая) как этанол, который производится из переработанной кукурузы

Возобновляемые

Есть пять основных возобновляемых источников энергии:

  • Солнечная
  • Геотермальное тепло внутри Земли
  • Энергия ветра
  • Биомасса из растений
  • Гидроэнергетика из проточной воды

Биомасса, которая включает древесину, биотопливо и отходы биомассы, является крупнейшим источником возобновляемой энергии, на которую приходится около половины всех возобновляемых и около 5% от общего объема потребления.

Невозобновляемые

Большая часть ресурсов, потребляемых в настоящее время из невозобновляемых источников:

  • Нефтепродукты
  • Углеводородный сжиженный газ
  • Природный газ
  • Уголь
  • Ядерная энергия

На невозобновляемые виды энергии приходится около 90% всех используемых ресурсов.

Электроэнергетическая система

Сырая нефть, природный газ и уголь представляют ископаемые виды топлива, поскольку они были сформированы в течение миллионов лет под действием Солнца, тепла от ядра земли и давления почвы на остатки (или окаменелости) из отмерших растений и существ как микроскопическая диатомия. Большинство нефтяных продуктов, потребляемых в мире изготовлены из сырой нефти, но нефтяные жидкости также могут быть сделаны из природного газа и угля.

Ядерная энергетика работает больше на уране, источнике невозобновляемого топлива, чьи атомы делятся (с помощью процесса, называемого ядерным делением) для создания тепла и, в конечном счете, электричества.

Основным видом энергии, потребляемой во многих странах являются нефтепродукты, природный газ, уголь, ядерное и возобновляемое топливо.

Основными пользователями этих запасов являются жилые и коммерческие здания, промышленность, транспорт и электроэнергетика. Характер использования топлива широко варьируется в зависимости от системы применения. Например, нефть обеспечивает 92% топлива, используемого для транспортировки, но обеспечивает лишь около 1% ресурсов, используемых для выработки электроэнергии. Понимание взаимосвязей между различными видами энергии и её использование дает представление о многих важных вопросах энергетики.

Первичная энергия

Первичная энергия как вид включает в себя нефть, природный газ, уголь, ядерная энергия и возобновляемые источники энергии.

Электричество является вторичным источником, который создается с помощью этих первичных форм. Например, уголь является первичным источником, который сжигается на электростанциях для выработки электроэнергии, которая является вторичным источником.

Первичные виды энергии обычно измеряются в различных единицах, например, баррелях нефти, кубометрах газа, тоннах угля. Также используется общая единица измерения британская тепловая единица, или БТЕ, для измерения содержания для каждого типа.

1 Вт = 859.8 кал/час

1 Вт = 3.412 BTU/час

BTU — британская тепловая единица (БТЕ) Россия потребляет квадриллионы БТЕ.

В терминах физических величин, один квадриллион составляет примерно 172 миллиона баррелей нефти, 51 млн. тонн угля или 1 трлн. куб. м газа.

На нефть приходится наибольшая доля в потреблении первичной энергии, затем природный газ, уголь, атомные электростанции и возобновляемые источники энергии (включая гидроэнергию, ветра, биомассы, геотермальные, солнечные).

Как распределяются виды энергии в каждой системе

Различные виды энергии используются в жилых и коммерческих зданиях, на транспорте, в промышленности и электроэнергетике. Электроэнергетическая система является крупнейшим потребителем первичной и используется для выработки электроэнергии. Почти вся электроэнергия используется в зданиях и промышленности. Общее количество электроэнергетической системы, используемой в жилых и коммерческих зданиях, промышленности и транспорте огромное.

Почти все ядерное топливо используется в электроэнергетической системе для выработки электроэнергии. Её доля в России составляет 18% от первичной энергии. Во Франции – 75%, Венгрии – 52% , Украине – 56%. В среднем в мире порядка 10%.

Смесь первичных источников широко варьируется в различных системах спроса. Энергетическая политика, призванная повлиять на использование конкретного основного источника с целью повлиять на окружающую среду, экономическую или энергетическую безопасность сосредоточивается на системах, которые являются основными пользователями этого типа энергии. Например, 71% нефти используется в транспортной системе, где она потребляет 92% от общего объема первичного энергопотребления.

Политика по сокращению потребления нефти чаще всего относится к транспортной системе. Эта политика обычно стремится увеличить эффективность автомобильного топлива или поощрять развитие альтернативных видов топлива.

Около 91% угля и только 1% из нефти, используется для выработки электроэнергии, что выявляет стратегию, влияющую на выработку электроэнергии, и имеет гораздо большее значение на использование угля, чем использование нефти.

Некоторые первичные виды энергии, такие как ядерная и угольная, полностью или преимущественно используются для добычи электричества. Другие, такие как природный газ и возобновляемые источники, более равномерно распределены по системам. Аналогичным образом сейчас транспорт почти полностью зависит от одного вида топлива (нефтяного).

Однако электроэнергетика с внедрением новых технологий больше использует различные источники энергии для выработки электричества. Например, идут практические реализации для получения электричества из биомассы.

Изменяется ли потребление топлива с течением времени

Источники потребляемой энергии с течением времени меняются, но изменения происходят медленно. Например, уголь когда-то широко использовался в качестве топлива для отопления домов и коммерческих зданий, однако конкретное использование угля для этих целей сократилось за последние полвека.

Хотя доля возобновляемого топлива от общего потребления первичной энергии еще относительно невелика, его использование растет во всех отраслях. Кроме того, использование природного газа в электроэнергетике возросло в последние годы из-за низких цен на природный газ, в то время как использование угля в этой системе сократилось.

Роль электроэнергетики в современном мире

История цивилизации — история изобретения все новых и новых методов преобразования энергии, освоения ее новых источников и в конечном итоге увеличения энергопотребления.

Первый скачок в росте энергопотребления произошел, когда человек научился добывать огонь и использовать его для приготовления пищи и обогрева своих жилищ. Источниками энергии в этот период служили дрова и мускульная сила человека. Следующий важный этап связан с изобретением колеса, созданием разнообразных орудий труда, развитием кузнечного производства. К XV в. средневековый человек, используя рабочий скот, энергию воды и ветра, дрова и небольшое количество угля, уже потреблял приблизительно в 10 раз больше, чем первобытный человек.

Особенно заметное увеличение мирового потребления энергии произошло за последние 200 лет, прошедшие с начала индустриальной эпохи, — оно возросло в 30 раз и достигло в 2001 г. 14,3 Гт у.т/год. Человек индустриального общества потребляет в 100 раз больше энергии, чем первобытный человек, и живет в 4 раза дольше.

В современном мире энергетика является основой развития базовых отраслей промышленности, определяющих прогресс общественного производства. Во всех промышленно развитых странах темпы развития энергетики опережали темпы развития других отраслей.

Специфической особенностью электроэнергетики является то, что ее продукция не может накапливаться для последующего и пользования, поэтому потребление соответствует производству электроэнергии и по размерам (разумеется, с учетом потерь) и во времени.

Представить себе жизнь без электрической энергии уже невозможно. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос, наш быт. Столь широкое распространение объясняется ее специфическими свойствами: возможностью превращаться практически во все другие виды энергии (тепловую, механическую, звуковую, световую и т.п.); способностью относительно просто передаваться на значительные расстояния в больших количествах; огромными скоростями протекания электромагнитных процессе способностью к дроблению энергии и образованию ее параметр (изменение напряжения, частоты).

В промышленности электрическая энергия применяется как для приведения в действие различных механизмов, так и непосредственно в технологических процессах. Работа современных средств связи (телеграфа, телефона, радио, телевидения) основана на применении электроэнергии. Без нее невозможно было бы развитие кибернетики, вычислительной техники, космической техники.

Огромную роль электроэнергия играет в транспортной промышленности. Электротранспорт не загрязняет окружающую cpeду. Большое количество электроэнергии потребляет электрифицированный железнодорожный транспорт, что позволяет повышать пропускную способность дорог за счет увеличения скорости движения поездов, снижать себестоимость перевозок, повышать экономию топлива. Электроэнергия в быту является основной частью обеспечения комфортабельной жизни людей. Электроэнергетика — важная часть жизнедеятельности человека. Уровень ее развития отражает уровень развития производительных сил общества и возможности научно-технического прогресса.

В то же время энергетика — один из источников неблагоприятного воздействия на окружающую среду и человека. Она влияет на атмосферу (потребление кислорода, выбросы газов, влаги и твердых частиц), гидросферу (потребление воды, создание искусственных водохранилищ, сбросы загрязненных и нагретых вод, жидких отходов), биосферу (выбросы токсичных веществ) и на литосферу (потребление ископаемых топлив, изменение ландшафта).

Несмотря на отмеченные факторы отрицательного воздействия энергетики на окружающую среду, рост потребления энергии не вызывал особой тревоги у широкой общественности, так как было ясно, каким образом с технической точки зрения можно уменьшить или вообще исключить это воздействие. Так продолжалось до середины 70-х годов прошлого века, когда в руках специалистов оказались многочисленные данные, свидетельствующие о сильном антропогенном давлении на климатическую систему, что таит угрозу глобальной катастрофы при неконтролируемом росте энергопотребления. С тех пор ни одна другая научная проблема не привлекает такого пристального внимания, как проблема настоящих, а в особенности предстоящих изменений климата.

Читайте также: