Движение космических аппаратов кратко

Обновлено: 04.07.2024

Проанализируйте записанные формулы и сделайте выводы.

Космические скорости для поверхностей других небесных тел зависят от масс небесных тел и их радиусов.

Траекторией движения тел является:

  • а) окружность
  • б) парабола относительно Земли
  • в) гипербола относительно Земли и парабола относительно Солнца

а) первая космическая скорость для Луны:

б) вторая космическая скорость для Луны:

$v_1=\sqrt·v_1;$ $v_1=\sqrt·1,68=2,38$ км/с

Нет, так как наименьший период обращения искусственного спутника Земли равен $84,4$ мин, что видно из следующего расчёта:

Орбита — траектория, по которой движется небесное тело в космическом пространстве в поле тяготения других небесных тел и их систем.

Апогей — наиболее удалённая от Земли точка орбиты Луны или искусственного спутника Земли.

Перигей — ближайшая к Земле точка орбиты Луны или искусственного спутника Земли.

Эксцентриситет орбиты — мера сплюснутости эллипса, равная отношению расстояния между фокусами к большей оси эллипса.

Траектория космического аппарата состоит из двух основных участков: активного и пассивного. Движение на активном участке определяется в основном тягой реактивных двигателей и притяжением Земли. Пассивный участок траектории начинается с момента выключения двигателя последней ступени. На пассивном участке космический аппарат движется под действием притяжения Земли и других тел Солнечной системы (Луны, Солнца, планет). При предварительном расчете космических траекторий пользуются приближенной методикой, которая заключается в следующем. Если скорость аппарата в начале пассивного участка равна (или больше) параболической скорости (2.20) относительно Земли, то, если пренебречь возмущениями, космический аппарат будет двигаться относительно Земли по параболе (или по гиперболе) до тех пор, пока он не выйдет из сферы действия Земли или не войдет в сферу действия другого небесного тела. Сферой действия тела с массой т относительно другого тела с массой т' называется область, внутри которой выполняется условие где g и g' — гравитационные ускорения в поле тяготения тел т и т', a Dg и Dg' — возмущающие ускорения соответственно со стороны т' и т. Радиус сферы действия равен где r — расстояние между телами т и m'. Например, радиус сферы действия Земли относительно Солнца — 930 000 км, а радиус сферы действия Луны относительно Земли — 66 000 км. Говорить в указанном смысле о сфере действия Солнца можно, строго говоря, лишь как об области пространства, определенной по отношению к звездам. Ниже мы для простоты будем понимать под сферой действия Солнца просто область околосолнечного пространства, за исключением сфер действия планет относительно Солнца. Войдя в сферу действия другого небесного тела, космический аппарат будет двигаться дальше под действием силы притяжения этого тела. Притяжение Земли перестанет оказывать на движение аппарата существенное влияние и будет играть роль возмущающей силы. Характер дальнейшего движения космического аппарата зависит от величины его скорости на границе сферы действия небесного тела. Если эта скорость относительно небесного тела равна нулю, то космический аппарат упадет на него. Если скорость аппарата относительно небесного тела будет больше нуля, но меньше параболической скорости, то при некоторых дополнительных условиях аппарат может стать искусственным спутником этого тела и будет обращаться вокруг него по круговой или эллиптической орбите. Наконец, если скорость космического аппарата будет равна или больше параболической скорости, то аппарат, описав относительно небесного тела отрезок параболы или гиперболы, удалится от него, а затем выйдет из его сферы действия. Таким образом, космический аппарат может упасть на поверхность любого тела Солнечной системы, может стать его искусственным спутником и может выйти из пределов Солнечной системы. В последнем случае он должен иметь на границе сферы действия Земли с Солнцем скорость, равную или большую параболической скорости относительно Солнца. Первой искусственной планетой стала советская космическая ракета, запущенная 2 января 1959 г. Для того чтобы космический аппарат преодолел притяжение Земли и ушел в космическое пространство, необходимо в начале пассивного участка сообщить ему скорость, равную или большую скорости (2.28) где h — линейная высота начальной точки пассивного участка. У поверхности Земли h = 0 и Скорость v2к называется второй космической скоростью относительно Земли. Параболическая скорость на высоте h меньше второй космической скорости v2к и определяется из уравнения (2.28) или по формуле Скорость космического аппарата в любой точке на пассивном участке (без учета возмущений) определяется по формуле (2.29) Для того чтобы космический аппарат, преодолев притяжение Земли и войдя в сферу действия Солнца, не упал на его поверхность, он должен иметь в этот момент скорость относительно Солнца, отличную от нуля. Разность гелиоцентрической скорости аппарата V (определяющей форму его орбиты относительно Солнца) и гелиоцентрической скорости Земли V3 называется дополнительной скоростью аппарата Vдоп. С этой скоростью аппарат покидает сферу действия Земли относительно Солнца. Начальная скорость космического аппарата v0, согласно формуле (2.29), определяется из уравнения Скорость аппарата на расстоянии r = r (где r — радиус сферы действия Земли), т. е. дополнительная скорость аппарата Vдоп, согласно той же формуле (2.29) определится из уравнения Из двух последних уравнений получим Первый член в правой части, согласно формуле (2.28), равен vп2, а второй при r ® ¥ обращается в нуль. Тогда начальная скорость космического аппарата определится по формуле (2.30) Воспользуемся формулой (2.30) и рассчитаем, какова должна быть начальная скорость, чтобы космический аппарат, запущенный с поверхности Земли, покинул пределы Солнечной системы. В этом случае гелиоцентрическая скорость аппарата V должна быть равна параболической скорости относительно Солнца. Круговая скорость Земли относительно Солнца Vc = 29,8 км/сек (см. § 40). Параболическая скорость относительно Солнца на расстоянии Земли от Солнца равна Vп = = 42,l км/сек. Следовательно, гелиоцентрическая скорость космического аппарата должна быть равна V = Vп = 42,1 км/сек. Если за гелиоцентрическую скорость Земли V3 принять ее круговую скорость Vc, т. е. V3 = Vc = 29,8 км/сек, то при выходе космического аппарата из сферы действия Земли в направлении орбитального движения Земли его дополнительная скорость будет такой: Vдоп = Vп — Vc = (42,1 — 29,8) км/сек = 12,3 км/сек. а при выходе в сторону, противоположную орбитальному движению Земли, Vдоп = Vп + Vc = 71,9 км/сек. Тогда начальная скорость космического аппарата, согласно формуле (2.30), в первом случае будет равна а во втором случае Следовательно, скорость, при которой запущенный с Земли космический аппарат может уйти за пределы Солнечной системы, сильно зависит от направления выхода аппарата из сферы действия Земли по отношению к направлению орбитального движения Земли и лежит в пределах 16,6 км/сек £ v0 £ 72,8 км/сек. Минимальная скорость v3к = 16,6 км/сек называется третьей космической скоростью относительно Земли.

  • Главная /
  • Обучение /
  • Астрономия /
  • Движение космических аппаратов

Читайте нас в vkontakte

Смотрите также


Эхолот

Заболевания и несчастные случаи, связанные с пребыванием в водной среде

Условия и уравнения равновесия подводной лодки

Добавить комментарий

Самое читаемое

Изолирующий дыхательный аппарат ИДА-59М

Устройство ИДА-59М Изолирующий дыхательный аппарат ИДА-59М (рис. 9) предс­тавляет собой автономный дыхательный аппарат регенеративного типа с замкнутым циклом дыхания. Аппарат изолирует органы…

Методика проведения искусственной вентиляции легких и закрытого массажа сердца

При различных несчастных случаях, когда у пострадавшего отсутствуют дыхание и признаки сокращения сердца, необходимо как можно раньше приступить к искусственной вентиляции легких и к закрытому…

RSS поток Podlodka.info

изель-электрическая подводная лодка Б-603 Волхов проекта 636.3

ДЭПЛ "Волхов" провела в Японском море пуск из подводного положения крылатой ракеты "Калибр" по наземной цели

Многоцелевая атомная подводная лодка Братск на транспортном судне Transshelf голландской компании Dосkwise

Атомная подлодка "Братск" признана непригодной к ремонту и восстанавливать ее не будут

Головная многоцелевая атомная подводная лодка усовершенствованного проекта 885М (шифр Ясень-М) Казань

Головную многоцелевую атомную подлодку усовершенствованного проекта 885М (шифр "Ясень-М") "Казань", передадут Военно-Морскому Флоту России осенью 2020 года

Подводные силы Тихоокеанского флота отмечают 115-ую годовщину со дня образования

115 лет подводным силам Тихоокеанского флота

Россия отметила 115-ую годовщину со Дня образования подводных сил Тихоокеанского флота. Во Владивостоке в 1905 году появился первый отряд подлодок "миноносцев"

Подводная лодка проекта 877 Дмитров в море

Экипаж дизель-электрической подводной лодки Балтийского флота "Дмитров" приступил к выполнению учебно-боевых задач и отработке нормативов

Траектория космического аппарата состоит из двух основных участков: активного и пассивного. Движение на активном участке определяется в основном тягой реактивных двигателей и притяжением Земли. Пассивный участок траектории начинается с момента выключения двигателя последней ступени. На пассивном участке космический аппарат движется под действием притяжения Земли и других тел Солнечной системы (Луны, Солнца, планет). Если скорость аппарата в начале пассивного участка равна (или больше) параболической скорости то аппарат будет двигаться относительно Земли по параболе (или по гиперболе) до тех пор, пока он не выйдет из сферы действия Земли или не войдет в сферу действия другого небесного тела. Войдя в сферу действия другого небесного тела, космический аппарат будет двигаться дальше под действием силы притяжения этого тела.

Если эта скорость относительно небесного тела равна нулю, то космический аппарат упадет на него.

Если скорость аппарата относительно небесного тела будет больше нуля, но меньше параболической скорости.

Наконец, если скорость космического аппарата будет равна или больше параболической скорости, то аппарат, описав относительно небесного тела отрезок параболы или гиперболы, удалится от него, а затем выйдет из его сферы действия. Таким образом, космический аппарат может упасть на поверхность любого тела Солнечной системы, может стать его искусственным спутником и может выйти из пределов Солнечной системы

Первая космическая скорость, или круговая скорость V1 - скорость, необходимая для обращения спутника по круговой орбите вокруг Земли или другого космического объекта. Если R - радиус орбиты, а G - гравитационная постоянная. Для Земли V1=7.9 км/с.

Вторая космическая скорость, называемая также скоростью убегания, или параболической скоростью V2 - минимальная скорость, которую должно иметь свободно движущееся тело на расстоянии R от центра Земли или другого космического тела, чтобы, преодолев силу гравитационного притяжения, навсегда покинуть его. Для Земли V2 = 11.2 км/с.

Кроме этих общепринятых существуют еще две редко употребимые величины: 3-я и 4-ая космические скорости - это скорости ухода, соответственно, из Солнечной системы и Галактики. Их точные значения нельзя определить по ряду причин. Например, 3-ю космическую скорость обычно определяют как V3 = 16,7 км/с. Но при старте с поверхности Земли или с околоземной орбиты необходимо преодолеть еще притяжение планеты. аппарат может при старте иметь 3-ю космическую скорость всего 16.6 км/с, а для полета в неблагоприятном направлении его необходимо разогнать до 72.8 км/с

Траектория космического аппарата состоит из двух основных участков: активного и пассивного. Движение на активном участке определяется в основном тягой реактивных двигателей и притяжением Земли. Пассивный участок траектории начинается с момента выключения двигателя последней ступени. На пассивном участке космический аппарат движется под действием притяжения Земли и других тел Солнечной системы (Луны, Солнца, планет). Если скорость аппарата в начале пассивного участка равна (или больше) параболической скорости то аппарат будет двигаться относительно Земли по параболе (или по гиперболе) до тех пор, пока он не выйдет из сферы действия Земли или не войдет в сферу действия другого небесного тела. Войдя в сферу действия другого небесного тела, космический аппарат будет двигаться дальше под действием силы притяжения этого тела.

Если эта скорость относительно небесного тела равна нулю, то космический аппарат упадет на него.

Если скорость аппарата относительно небесного тела будет больше нуля, но меньше параболической скорости.

Наконец, если скорость космического аппарата будет равна или больше параболической скорости, то аппарат, описав относительно небесного тела отрезок параболы или гиперболы, удалится от него, а затем выйдет из его сферы действия. Таким образом, космический аппарат может упасть на поверхность любого тела Солнечной системы, может стать его искусственным спутником и может выйти из пределов Солнечной системы

Первая космическая скорость, или круговая скорость V1 - скорость, необходимая для обращения спутника по круговой орбите вокруг Земли или другого космического объекта. Если R - радиус орбиты, а G - гравитационная постоянная. Для Земли V1=7.9 км/с.




Вторая космическая скорость, называемая также скоростью убегания, или параболической скоростью V2 - минимальная скорость, которую должно иметь свободно движущееся тело на расстоянии R от центра Земли или другого космического тела, чтобы, преодолев силу гравитационного притяжения, навсегда покинуть его. Для Земли V2 = 11.2 км/с.

Кроме этих общепринятых существуют еще две редко употребимые величины: 3-я и 4-ая космические скорости - это скорости ухода, соответственно, из Солнечной системы и Галактики. Их точные значения нельзя определить по ряду причин. Например, 3-ю космическую скорость обычно определяют как V3 = 16,7 км/с. Но при старте с поверхности Земли или с околоземной орбиты необходимо преодолеть еще притяжение планеты. аппарат может при старте иметь 3-ю космическую скорость всего 16.6 км/с, а для полета в неблагоприятном направлении его необходимо разогнать до 72.8 км/с


В этом видеоуроке мы расскажем, почему искусственные спутники не падают на поверхность Земли при своём движении вокруг неё. Дадим определения первой, второй и третьей космическим скоростям. Выясним, по каким орбитам могут двигаться космические аппараты в зависимости от их начальной скорости. А также дадим определение гомановским орбитам и покажем их преимущества.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Движение искусственных спутников Земли и космических аппаратов"

На основании закона всемирного тяготения Ньютон первым теоретически обосновал возможность создания искусственного спутника Земли. Давайте вспомним, что искусственными спутниками называют космические аппараты, созданные людьми, которые позволяют наблюдать за планетой, около которой они вращаются, а также другими астрономическими объектами из космоса.


Чтобы понять, при каких условиях тело способно стать искусственным спутником Земли, обратимся к размышлениям Ньютона. Их суть такова: если бросить с высокой горы камень в горизонтальном направлении, то, двигаясь по ветви параболы, он со временем упадёт на Землю. Сообщив ему большую скорость, он упадёт дальше. Поскольку Земля имеет шарообразную форму, то одновременно с продвижением камня по его траектории поверхность Земли удаляется от него. Значит, можно подобрать такое значение скорости камня, при котором поверхность Земли из-за её кривизны будет удаляться от камня ровно на столько, на сколько камень приближается к Земле под действием силы тяжести. Тогда тело будет двигаться на постоянном расстоянии от поверхности Земли, то есть станет её искусственным спутником.


Так как за пределами атмосферы силы сопротивления движению спутнику отсутствуют, то на него будет действовать только сила притяжения к Земле. Поэтому спутник движется как свободно падающее тело с ускорением свободного падения.


Искусственным спутником Земли может стать любое тело произвольной массы. Важно, чтобы ему сообщили за пределами земной атмосферы горизонтальную скорость, при которой оно начнёт двигаться по окружности вокруг Земли.

Скорость, при достижении которой космический аппарат, запускаемый с Земли, может стать её искусственным спутником, называется первой космической скоростью:


По этой же формуле мы можем рассчитать и первую космическую скорость спутника для любой планеты, заменив в ней радиус и массу Земли на радиус и массу исследуемой планеты.

Вблизи поверхности Земли первую космическую скорость можно определить, как:


Приняв радиус равным 6371 км, а ускорение свободного падения — 9,8 м/с 2 , получим, что для Земли первая космическая скорость равна 7,9 км/с.

Именно такую скорость в горизонтальном направлении нужно сообщить телу на небольшой, сравнительно с радиусом Земли, высоте, чтобы оно не упало на Землю, а стало её спутником, движущимся по круговой орбите.

Примем для простоты расчётов, что ускорение свободного падения равно 10 м/с 2 , а скорость спутника — 8 км/с. Тогда за одну секунду свободного падения спутник пройдёт по направлению к Земле 5 метров и одновременно с этим переместиться перпендикулярно этому направлению на 8 километров. В результате этих двух движений спутник и движется по своей орбите.


Так, например, наша Луна уже более 4,5 миллиардов лет обращается вокруг Земли.

Восемь километров в секунду — это почти 29 000 километров в час! Сообщить телу такую скорость, конечно, не просто. Только в 1957 году советским учёным впервые в истории человечества удалось с помощью мощной ракеты сообщить телу массой около 85 килограмм первую космическую скорость, и оно стало первым искусственным спутником Земли.


Если телу сообщить скорость, большую, чем первая космическая на данной высоте, то орбита спутника будет представлять собой эллипс. И чем больше сообщённая телу скорость, тем более вытянутой будет его орбита.

Скорость, при достижении которой космический аппарат, запускаемый с Земли, может преодолеть земное притяжение и осуществить полёт к другим планетам Солнечной системы, называется второй космической скоростью.

Расчёты показывают, что для преодоления земного притяжения скорость космического аппарата должна быть больше первой космической скорости в корень из двух раз (без учёта сопротивления воздуха):


Третья космическая скорость, или гиперболическая скорость, — это наименьшая начальная скорость, с которой тело должно преодолеть земное притяжение и выйти на околосолнечную орбиту со скоростью, необходимой для того, чтобы навсегда покинуть пределы Солнечной системы:



В формуле — это орбитальная скорость нашей планеты.

Если в это уравнение подставить все известные величины и произвести вычисления, получим, что тело должно иметь минимальную скорость, примерно равную 16,7 км/с, чтобы начать двигаться по гиперболе и покинуть пределы Солнечной системы.

Конечно же, по записанным нами формулам можно рассчитывать космические скорости не только для Земли, но и других тел Солнечной системы. Для примера давайте определим первую и вторую космические скорости для Луны, если известна её масса и средний радиус.


Как мы уже упоминали, что практически осуществить запуск первого искусственного спутника Земли удалось 4 октября 1957 года, то есть спустя два с половиной столетия после открытия Ньютона. Сейчас же в околоземном пространстве движутся тысячи искусственных спутников Земли, запущенных учёными разных стран. Они обеспечивают непрерывный мониторинг погоды, различных природных явлений, трансляцию телевидения и так далее. А, например, спутниковая навигационная система ГЛОНАСС и другие системы глобального позиционирования позволяют определить координаты любой точки Земли с высокой степенью точностью.

Для полётов космических аппаратов к другим планетам и телам Солнечной системы необходимо производит очень точные расчёты траекторий с использованием законов небесной механики. При их запуске исходят из трёх основных соображений. Во-первых, геоцентрическая скорость космического аппарата при выходе на орбиту относительно Земли должна превышать вторую космическую скорость. Во-вторых, после преодоления притяжения Земли гелиоцентрическая орбита аппарата должна пересекаться с орбитой данной планеты (или другого небесного тела). А также необходимо подобрать такой момент запуска, чтобы орбита аппарата была наиболее оптимальной с точки зрения сроков полёта, затрат топлива и ряда других требований.

Одним из классов межпланетных траекторий являются энергетически оптимальные орбиты, которые соответствуют наименьшей геоцентрической скорости космических аппаратов в момент достижения границы сферы действия Земли.

Рассмотрим одну такую орбиту на примере Марса. Для простоты будем считать, что орбиты Марса и Земли являются круговыми. Для оптимального запуска нужно выбрать такой момент, когда орбитальная скорость Земли и скорость космического аппарата будут сонаправлены. При этом запускаемый аппарат и Марс, двигаясь по своим орбитам, должны одновременно достигнуть точки встречи.

Полученная нами орбита называется полуэллиптической или гомановской, в честь немецкого астронома Вальтера Гомана, занимавшегося теорией межпланетных полётов.


Теперь давайте рассчитаем время полёта Марса по этой полуэллиптической орбите, если его большая полуось равна 1,52 а. е.


Конструкция и оборудование современных космических аппаратов обеспечивают возможность совершения ими весьма сложных манёвров — выход на орбиту спутника планеты, посадка на планету и передвижение по её поверхности и т. п.

§ 14. Д вижение небесных тел под действием сил тяготения

1. Закон всемирного тяготения

С огласно закону всемирного тяготения, изученному в курсе физики,

все тела во Вселенной притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними:


F = G ,


где m 1 и m 2 — массы тел; r — расстояние между ними; G — гравитационная постоянная.

Открытию закона всемирного тяготения во многом способствовали законы движения планет, сформулированные Кеплером, и другие достижения астрономии XVII в. Так, знание расстояния до Луны позволило Исааку Ньютону (1643—1727) доказать тождественность силы, удерживающей Луну при её движении вокруг Земли, и силы, вызывающей падение тел на Землю.

Ведь если сила тяжести меняется обратно пропорционально квадрату расстояния, как это следует из закона всемирного тяготения, то Луна, находящаяся от Земли на расстоянии примерно 60 её радиусов, должна испытывать ускорение в 3600 раз меньшее, чем ускорение силы тяжести на поверхности Земли, равное 9,8 м/с 2 . Следовательно, ускорение Луны должно составлять 0,0027 м/с 2 .

В то же время Луна, как любое тело, равномерно движущееся по окружности, имеет ускорение

где ω — угловая скорость Луны; r — радиус её орбиты. Если считать, что радиус Земли равен 6400 км, то радиус лунной орбиты будет составлять r = 60 • 6 400 000 м = 3,84 • 10 8 м. Звёздный период обращения Луны T = 27,32 суток, в секундах составляет 2,36 • 10 6 с. Тогда ускорение орбитального движения Луны

a = • r = • 3,84 • 10 8 м = 0,0027 м/с 2 .

Равенство этих двух величин ускорения доказывает, что сила, удерживающая Луну на орбите, есть сила земного притяжения, ослабленная в 3600 раз по сравнению с действующей на поверхности Земли.

Можно убедиться и в том, что при движении планет, в соответствии с третьим законом Кеплера, их ускорение и действующая на них сила притяжения Солнца обратно пропорциональны квадрату расстояния, как это следует из закона всемирного тяготения. Действительно, согласно третьему закону Кеплера отношение кубов больших полуосей орбит d и квадратов периодов обращения T есть величина постоянная:

= = = . = const.

Ускорение планеты равно

a = = = 4 π 2 .

Из третьего закона Кеплера следует

= ,

поэтому ускорение планеты равно


a = 4 π 2 • const .

Итак, сила взаимодействия планет и Солнца удовлетворяет закону всемирного тяготения.

2. Возмущения в движении тел Солнечной системы

З аконы Кеплера строго выполняются, если рассматривается движение двух изолированных тел (Солнце и планета) под действием их взаимного притяжения. Однако в Солнечной системе планет много, все они взаимодействуют не только с Солнцем, но и между собой. Поэтому движение планет и других тел не в точности подчиняется законам Кеплера. Отклонения тел от движения по эллипсам называются возмущениями .

Возмущения эти невелики, так как масса Солнца гораздо больше массы не только отдельной планеты, но и всех планет в целом. Наибольшие возмущения в движении тел Солнечной системы вызывает Юпитер, масса которого в 300 раз превышает массу Земли. Особенно заметны отклонения астероидов и комет при их прохождении вблизи Юпитера.

3. Масса и плотность Земли

З акон всемирного тяготения позволил определить массу нашей планеты. Исходя из закона всемирного тяготения, ускорение свободного падения можно выразить так:


g = G .

Подставим в формулу известные значения этих величин: g = 9,8 м/с 2 , G = 6,67 • 10 –11 Н • м 2 /кг 2 , R = 6370 км — и получим, что масса Земли M = 6 • 10 24 кг.

Зная массу и объём земного шара, можно вычислить его среднюю плотность: 5,5 • 10 3 кг/м 3 . С глубиной за счёт увеличения давления и содержания тяжелых элементов плотность возрастает.

4. Определение массы небесных тел

Б олее точная формула третьего закона Кеплера, которая была получена Ньютоном, даёт возможность определить одну из важнейших характеристик любого небесного тела — массу. Выведем эту формулу, считая (в первом приближении) орбиты планет круговыми.

Пусть два тела, имеющие массы m 1 и m 2 , взаимно притягивающиеся и обращающиеся вокруг общего центра масс, находятся от центра масс на расстоянии r 1 и r 2 и обращаются вокруг него с периодом T . Расстояние между их центрами R = r 1 + r 2 . На основании закона всемирного тяготения ускорение каждого из этих тел равно:

a 1 = G , a 2 = G .


Угловая скорость обращения вокруг центра масс составляет ω = . Тогда центростремительное ускорение выразится для каждого тела так:

a 1 = r 1 , a 2 = r 2 .

Приравняв полученные для ускорений выражения, выразив из них r 1 и r 2 и сложив их почленно, получаем:

G = = ( r 1 + r 2 ),

= .

Поскольку в правой части этого выражения находятся только постоянные величины, оно справедливо для любой системы двух тел, взаимодействующих по закону тяготения и обращающихся вокруг общего центра масс, — Солнце и планета, планета и спутник. Определим массу Солнца, для этого запишем выражение:

= ,

где M — масса Солнца; m 1 — масса Земли; m 2 — масса Луны; T 1 и a 1 — период обращения Земли вокруг Солнца (год) и большая полуось её орбиты; T 2 и a 2 — период обращения Луны вокруг Земли и большая полуось лунной орбиты.

Пренебрегая массой Земли, которая ничтожно мала по сравнению с массой Солнца, и массой Луны, которая в 81 раз меньше массы Земли, получим:

= .

Подставив в формулу соответствующие значения и приняв массу Земли за единицу, мы получим, что Солнце примерно в 333 тыс. раз по массе больше нашей планеты.

Массы планет, не имеющих спутников, определяют по тем возмущениям, которые они оказывают на движение астероидов, комет или космических аппаратов, пролетающих в их окрестностях. Об определении массы звёзд см. в § 23.

П од действием взаимного притяжения частиц тело стремится принять форму шара. Если эти тела вращаются, то они деформируются, сжимаются у полюсов.

Кроме того, изменение их формы происходит и под действием взаимного притяжения, которое вызывают явления, называемые приливами . Давно известные на Земле, они получили объяснение только на основе закона всемирного тяготения.


Рис. 3.13. Схема лунных приливов

Рассмотрим ускорения, создаваемые притяжением Луны в различных точках земного шара (рис. 3.13). Поскольку точки A , B и O находятся на различных расстояниях от Луны, ускорения, создаваемые её притяжением, будут различны.

Разность ускорений, вызываемых притяжением другого тела в данной точке и в центре планеты, называется приливным ускорением.

Приливные ускорения в точках A и B направлены от центра Земли. В результате Земля, и в первую очередь её водная оболочка, вытягивается в обе стороны по линии, соединяющей центры Земли и Луны. В точках A и B наблюдается прилив, а вдоль круга, плоскость которого перпендикулярна этой линии, на Земле происходит отлив. Тяготение Солнца также вызывает приливы, но из-за большей его удалённости они меньше, чем вызванные Луной. Приливы наблюдаются не только в гидросфере, но и в атмосфере и в литосфере Земли и других планет.

Вследствие суточного вращения Земля стремится увлечь за собой приливные горбы, в то же время вследствие тяготения Луны, которая обращается вокруг Земли за месяц, полоса приливов должна перемещаться по земной поверхности значительно медленнее. В результате между огромными массами воды, участвующей в приливных явлениях, и дном океана возникает приливное трение. Оно тормозит вращение Земли и вызывает увеличение продолжительности суток, которые в прошлом были значительно короче (5—6 ч). Тот же эффект ускоряет орбитальное движение Луны и приводит к её медленному удалению от Земли. При этом приливы со стороны Земли на Луне затормозили её вращение, и она теперь обращена к Земле одной стороной. Такое же медленное вращение характерно для многих спутников Юпитера и других планет. Сильные приливы, вызываемые на Меркурии и Венере Солнцем, по-видимому, являются причиной их крайне медленного вращения вокруг оси.

6. Движение искусственных спутников Земли и космических аппаратов к планетам


В озможность создания искусственного спутника Земли теоретически обосновал ещё Ньютон. Он показал, что существует такая горизонтально направленная скорость , при которой тело, падая на Землю, тем не менее на неё не упадёт, а будет двигаться вокруг Земли, оставаясь от неё на одном и том же расстоянии. При такой скорости тело будет приближаться к Земле вследствие её притяжения как раз на столько, на сколько из-за кривизны поверхности нашей планеты оно будет от неё удаляться (рис. 3.14). Эта скорость, которую называют первой космической (или круговой), известна вам из курса физики:


v 1 = = 7,9 • 10 3 м/с = 7,9 км/с.


Рис. 3.14. Орбита искусственного спутника Земли

Практически осуществить запуск искусственного спутника Земли оказалось возможно лишь через два с половиной столетия после открытия Ньютона — 4 октября 1957 г. За время, прошедшее с этого дня, который нередко называют началом космической эры человечества, искусственные спутники самого различного устройства и назначения заняли важное место в нашей повседневной жизни. Они обеспечивают непрерывный мониторинг погоды и других природных явлений, трансляции телевидения и т. п. Спутниковая навигационная система ГЛОНАСС и другие системы глобального позиционирования позволяют в любой момент с высокой степенью точности определить координаты любой точки на Земле. Пожалуй, нет в наши дни ни одной глобальной проблемы, в решении которой не принимали участие искусственные спутники Земли (ИСЗ).

Космические аппараты (КА), которые направляются к Луне и планетам, испытывают притяжение со стороны Солнца и согласно законам Кеплера так же, как и сами планеты, движутся по эллипсам. Скорость движения Земли по орбите составляет около 30 км/с. Если геометрическая сумма скорости космического аппарата, которую ему сообщили при запуске, и скорости Земли будет больше этой величины, то КА будет двигаться по орбите, лежащей за пределами земной орбиты. Если меньше — то внутри орбиты Земли. В первом случае, если аппарат летит к Марсу (рис. 3.15) или другой внешней планете, энергетические затраты будут наименьшими, если КА достигнет орбиты этой планеты при своём максимальном удалении от Солнца — в афелии. Кроме того, необходимо так рассчитать время старта КА, чтобы к этому моменту в ту же точку своей орбиты пришла планета. Иначе говоря, начальная скорость и день запуска КА должны быть выбраны таким образом, чтобы КА и планета, двигаясь каждый по своей орбите, одновременно подошли к точке встречи. Во втором случае — для внутренней планеты — встреча с КА должна произойти в перигелии его орбиты (рис. 3.16). Такие траектории полётов называются полуэллиптическими . Большие оси этих эллипсов проходят через Солнце, которое находится в одном из фокусов, как и полагается по первому закону Кеплера.


Рис. 3.15. Траектория полёта KA к Марсу

Рис. 3.16. Траектория полёта KA к Венере

Конструкция и оборудование современных КА обеспечивают возможность совершения ими весьма сложных манёвров — выход на орбиту спутника планеты, посадка на планету, передвижение по её поверхности и т. п.


В опросы 1. Почему движение планет происходит не в точности по законам Кеплера? 2. Как было установлено местоположение планеты Нептун? 3. Какая из планет вызывает наибольшие возмущения в движении других тел Солнечной системы и почему? 4. Какие тела Солнечной системы испытывают наибольшие возмущения и почему? 5. По каким траекториям движутся космические аппараты к Луне; к планетам? 6*. Объясните причину и периодичность приливов и отливов. 7*. Будут ли одинаковы периоды обращения искусственных спутников Земли и Луны, если эти спутники находятся на одинаковых расстояниях от них?


У пражнение 12 1. Определите массу Юпитера, зная, что его спутник, который отстоит от Юпитера на 422 000 км, имеет период обращения 1,77 суток. Для сравнения используйте данные для системы Земля—Луна. 2. Ускорение силы тяжести на Марсе составляет 3,7 м/с 2 , на Юпитере — 25 м/с 2 . Рассчитайте первую космическую скорость для этих планет. 3. Сколько суток (примерно) продолжается полёт КА до Марса, если он проходит по эллипсу, большая полуось которого равна 1,25 а. е.?

Читайте также: