Доверительная вероятность и доверительный интервал кратко

Обновлено: 18.05.2024

Доверительные интервалы (англ. Confidence Intervals) одним из типов интервальных оценок используемых в статистике, которые рассчитываются для заданного уровня значимости. Они позволяют сделать утверждение, что истинное значение неизвестного статистического параметра генеральной совокупности находится в полученном диапазоне значений с вероятностью, которая задана выбранным уровнем статистической значимости.

Нормальное распределение

Когда известна вариация (σ 2 ) генеральной совокупности данных, для расчета доверительных пределов (граничных точек доверительного интервала) может быть использована z-оценка. По сравнению с применением t-распределения, использование z-оценки позволит построить не только более узкий доверительный интервал, но и получить более надежные оценки математического ожидания и среднеквадратического (стандартного) отклонения (σ), поскольку Z-оценка основывается на нормальном распределении.

Формула

Для определения граничных точек доверительного интервала, при условии что известно среднеквадратическое отклонение генеральной совокупности данных, используется следующая формула

где X – математическое ожидание выборки, α – уровень статистической значимости, Zα/2 – Z-оценка для уровня статистической значимости α/2, σ – среднеквадратическое отклонение генеральной совокупности, n – количество наблюдений в выборке. При этом, σ/√ n является стандартной ошибкой.

Таким образом, доверительный интервал для уровня статистической значимости α можно записать в виде

Пример

Предположим, что размер выборки насчитывает 25 наблюдений, математическое ожидание выборки равняется 15, а среднеквадратическое отклонение генеральной совокупности составляет 8. Для уровня значимости α=5% Z-оценка равна Zα/2=1,96. В этом случае нижняя и верхняя граница доверительного интервала составят

А сам доверительный интервал может быть записан в виде

Таким образом, мы можем утверждать, что с вероятностью 95% математическое ожидание генеральной совокупности попадет в диапазон от 11,864 до 18,136.

Методы сужения доверительного интервала

Допустим, что диапазон [11,864; 18,136] является слишком широким для целей нашего исследования. Уменьшить диапазон доверительного интервала можно двумя способами.

  1. Снизить уровень статистической значимости α.
  2. Увеличить объем выборки.

Снизив уровень статистической значимости до α=10%, мы получим Z-оценку равную Zα/2=1,64. В этом случае нижняя и верхняя граница интервала составят

А сам доверительный интервал может быть записан в виде

В этом случае, мы можем сделать предположение, что с вероятностью 90% математическое ожидание генеральной совокупности попадет в диапазон [12,376; 17,624].

Если мы хотим не снижать уровень статистической значимости α, то единственной альтернативой остается увеличение объема выборки. Увеличив ее до 144 наблюдений, получим следующие значения доверительных пределов

Сам доверительный интервал станет иметь следующий вид

Таким образом, сужение доверительного интервала без снижения уровня статистической значимости возможно только лишь за счет увеличения объема выборки. Если увеличение объема выборки не представляется возможным, то сужение доверительного интервала может достигаться исключительно за счет снижения уровня статистической значимости.

Построение доверительного интервала при распределении отличном от нормального

В случае если среднеквадратичное отклонение генеральной совокупности не известно или распределение отлично от нормального, для построения доверительного интервала используется t-распределение. Это методика является более консервативной, что выражается в более широких доверительных интервалах, по сравнению с методикой, базирующейся на Z-оценке.

Формула

Для расчета нижнего и верхнего предела доверительного интервала на основании t-распределения применяются следующие формулы

где X – математическое ожидание выборки, α – уровень статистической значимости, tα – t-критерий Стьюдента для уровня статистической значимости α и количества степеней свободы (n-1), σ – среднеквадратическое отклонение выборки, n – количество наблюдений в выборке.

Сам доверительный интервал может быть записан в следующем виде

Распределение Стьюдента или t-распределение зависит только от одного параметра – количества степеней свободы, которое равно количеству индивидуальных значений признака (количество наблюдений в выборке). Значение t-критерия Стьюдента для заданного количества степеней свободы (n) и уровня статистической значимости α можно узнать из справочных таблиц.

Пример

Предположим, что размер выборки составляет 25 индивидуальных значений, математическое ожидание выборки равно 50, а среднеквадратическое отклонение выборки равно 28. Необходимо построить доверительный интервал для уровня статистической значимости α=5%.

В нашем случае количество степеней свободы равно 24 (25-1), следовательно соответствующее табличное значение t-критерия Стьюдента для уровня статистической значимости α=5% составляет 2,064. Следовательно, нижняя и верхняя граница доверительного интервала составят

А сам интервал может быть записан в виде

Таким образом, мы можем утверждать, что с вероятностью 95% математическое ожидание генеральной совокупности окажется в диапазоне [38,442; 61,558].

Использование t-распределения позволяет сузить доверительный интервал либо за счет снижения статистической значимости, либо за счет увеличения размера выборки.

Снизив статистическую значимость с 95% до 90% в условиях нашего примера мы получим соответствующее табличное значение t-критерия Стьюдента 1,711.

В этом случае мы можем утверждать, что с вероятностью 90% математическое ожидание генеральной совокупности окажется в диапазоне [40,418; 59,582].

Если мы не хотим снижать статистическую значимость, то единственной альтернативой будет увеличение объема выборки. Допустим, что он составляет 64 индивидуальных наблюдения, а не 25 как в первоначальном условии примера. Табличное значение t-критерия Стьюдента для 63 степеней свободы (64-1) и уровня статистической значимости α=5% составляет 1,998.

Это дает нам возможность утверждать, что с вероятностью 95% математическое ожидание генеральной совокупности окажется в диапазоне [43,007; 56,993].

Выборки большого объема

К выборкам большого объема относятся выборки из генеральной совокупности данных, количество индивидуальных наблюдений в которых превышает 100. Статистические исследования показали, что выборки большего объема имеют тенденцию быть нормально распределенными, даже если распределение генеральной совокупности отличается от нормального. Кроме того, для таких выборок применение z-оценки и t-распределения дают примерно одинаковые результаты при построении доверительных интервалов. Таким образом, для выборок большого объема допускается применение z-оценки для нормального распределения вместо t-распределения.

Подведем итоги

В таблице собраны рекомендации по выбору методики построения доверительных интервалов для различных ситуаций.

Вспомним первый урок по теме (там же внизу оглавление) и основной метод математической статистики. Он состоит в том, что для изучения генеральной совокупности объёма из неё производится выборка, состоящая из элементов, которая хорошо характеризует всю совокупность (свойство представительности). И на основании исследования этой выборочной совокупности мы с высокой достоверностью можем оценить генеральные характеристики. Чаще всего требуется выявить закон распределения генеральной совокупности (о чём пойдёт речь позже) и оценить его важнейшие числовые параметры, такие как генеральная средняя , генеральная дисперсия и среднее квадратическое отклонение .

Очевидно, что для оценки этих параметров нужно вычислить соответствующие выборочные значения. Так, выборочная средняя позволяет нам оценить генеральную среднюю , причём, оценить её точечно. Почему точечно? Потому что – это отдельно взятое, конкретное значение. Если из той же генеральной совокупности мы будем проводить многократные выборки, то в общем случае у нас будут получаться различные выборочные средние, и каждая из них представляет собой точечную оценку генерального значения .

Аналогично, несмещённой точечной оценкой генеральной дисперсии является исправленная выборочная дисперсия , и соответственно, стандартного отклонения – исправленное стандартное отклонение .

…что-то не понятно / недопонятно в терминах? Срочно изучать предыдущие уроки!

Недостаток точечных оценок состоит в том, что при небольшом объёме выборки (как оно часто бывает), мы можем получать выборочные значения, которые далеки от истины.
И в этих случаях логично потребовать, чтобы выборочная характеристика (средняя, дисперсия или какая-то другая) отличалась от генерального значения не более чем на некоторое положительное значение . А точнее, менее.

Значение называется точностью оценки, и озвученное выше требование можно записать с помощью модуля:

А теперь я раскрою модуль:

и сформулирую суть:

На данном уроке будут рассмотрены:

  • доверительный интервал для… – заголовок параграфа в поле зрения; – быстрая ссылка для опытных читателей.

Доверительный интервал для оценки генеральной средней
нормально распределённой генеральной совокупности

…да-да, пример уже 21-й!

Известно, что генеральная совокупность распределена нормально со средним квадратическим отклонением . Найти доверительный интервал для оценки математического ожидания с надежностью 0,95, если выборочная средняя , а объем выборки .

Внимание! Важное замечание: если в задаче указан тип выборки (повторная / бесповторная), то решение будет иметь свои особенности – читайте 10-ю статью об оценках по повторной и бесповторной выборке.

А теперь принципиальный момент непосредственно по задаче:

здесь известно стандартное отклонение генеральной совокупности.

Дело в том, что в похожих задачах оно бывает не известно, и тогда решение будет отличаться!

Но сейчас решение таково, разбираемся в ситуации:

– из генеральной совокупности попугаев проведена выборка в особей и по её результатам найдена выборочная средняя: (средняя масса попугая, например).

Выборочная средняя – это точечная оценка неизвестной нам генеральной средней . Как отмечалось выше, недостаток точечной оценки состоит в том, что она может оказаться далёкой от истины. И по условию, требуется найти интервал , которой с вероятностью накроет истинное значение .

Именно так! Здесь будет неверным сказать, что попадёт в этот интервал.

Решаем. Точность оценки рассчитывается по формуле , где – коэффициент доверия. Этот коэффициент отыскивается из соотношения , где – функция Лапласа.

В данном случае , следовательно:

И по таблице значений функции Лапласа либо пользуясь расчётным макетом (пункт 5*), выясняем, что значению соответствует аргумент .

Таким образом, точность оценки:

и искомый доверительный интервал:

Этот интервал с вероятностью (надёжностью) накрывает истинное генеральное значение среднего веса попугая. Но всё же остаётся 5%-ная вероятность, что генеральная средняя окажется вне найденного интервала.

Ответ: .

И тут возникает светлая мысль уменьшить этот интервал – чтобы получить более точную оценку. Что для этого можно сделать? Давайте посмотрим на формулу .

Очевидно, что чем меньше стандартное отклонение (мера разброса значений), тем короче доверительный интервал. Но это в отдельно взятой задаче ни на что не влияет – ведь нам известно конкретное значение , и изменить его нельзя.

, то есть о том, что этот более узкий интервал накроет генеральную среднюю, мы теперь можем утверждать лишь с вероятностью 68,26%. Что, конечно, неудовлетворительно, для серьёзного статистического исследования.

Поэтому для уменьшения доверительного интервала (при том же значении ) остаётся увеличивать объём выборки . Что совершенно понятно и без формулы , ведь чем больше объём выборки, тем точнее она характеризует генеральную совокупность (при прочих равных условиях). Об объёме мы поговорим на уроке об оценках по повторной и бесповторной выборке, ну а пока продолжаем.

Творческая задача для самостоятельного решения:

По результатам выборочного исследования объектов найдена выборочная средняя .

1) С какой вероятностью можно утверждать, что генеральная средняя отличается от найденного значения менее чем на 3, если известно, что генеральная совокупность распределения нормально с дисперсией 400?

2) Определить доверительный интервал, который с надежностью накроет истинное значение генеральной средней.

Расчётный макет (пункты 5 и 5*) – в помощь. Краткое решение в конце урока.

И тут, наверное, у вас назрели вопросы – а откуда известно, что генеральная совокупность распределена нормально, и тем более, откуда известно её стандартное отклонение?

Обычно эта информация известна из предыдущих исследований. Классический пример – измерительный прибор. Очевидно, что его случайные погрешности удовлетворяют условию теоремы Ляпунова, а значит, распределены нормально. Кроме того, производитель, как правило, тестирует прибор, и указывает в его паспорте стандартное отклонение случайных погрешностей измерений, которое можно принять за .

Но если установить нормальность распределения достаточно просто (в том числе статистическими методами), то с генеральным значением всё сложнее – зачастую вычислить его трудно или невозможно.

В такой ситуации остаётся ориентироваться на исправленное стандартное отклонение , и решение несколько изменится. Ещё одна классическая задача, которая уже встретилась ранее:


В результате 10 независимых измерений некоторой величины , выполненных с одинаковой точностью, полученные опытные данные, которые представлены в таблице:

Предполагая, что результаты измерений подчинены нормальному закону распределения вероятностей, оценить истинное значение величины при помощи доверительного интервала, покрывающего это значение с доверительной вероятностью 0,95.

Не путать со случайными ошибками измерительного прибора! Здесь речь идёт об измерениях и помимо технических, велико влияние других, в частности, человеческого фактора, особенно, если вы используете махрово-аналоговый прибор – что-нибудь вроде механического секундомера или линейки.

Теперь построим доверительный интервал для оценки истинного (генерального) значения величины .

Если генеральное стандартное отклонение не известно

(наш случай), то этот интервал строится по похожей формуле:

, с той поправкой, что коэффициент доверия рассчитывается с помощью распределения Стьюдента. В рамках курса теорвера я не рассказывал об этом распределении, и поэтому ограничусь технической стороной вопроса.

Значение можно найти с помощью таблицы значений распределения Стьюдента, в частности, популярна таблица, специально адаптированная для данной задачи*. И, согласно этой таблице, доверительной вероятности и объёму выборки соответствует коэффициент доверия:

* В стандартной же таблице приводятся значения для так называемого уровня значимости и числа степеней свободы .

Вычислим точность оценки:

Таким образом, искомый доверительный интервал:

– данный интервал с вероятностью накрывает истинное значение измеряемой величины .

Ответ:

Для самостоятельного решения:

На основании испытаний установлено, что в среднем для изготовления шавермы полупроводникового диода требуется секунд, а исправленное среднее квадратическое отклонение составляет секунд. Предположив, что время изготовления диода есть нормальная случайная величина, определить с надежностью доверительный интервал для оценки среднего времени изготовления диода

Краткое решение и ответ в конце урока – расчётный макет (Пункт 10б) – в помощь.

Итак, что главное в разобранных задачах? Главное, обратить внимание, генеральное ли нам дано отклонение или исправленное выборочное . От этого зависит, какую формулу нужно использовать, эту:
, где ,
или эту:
, где отыскивается с помощью распределения Стьюдента.

И быстренько более редкая задача:

Доверительный интервал для оценки
генеральной дисперсии и стандартного отклонения

Этот интервал можно построить несколькими способами, которые я постараюсь уместить буквально в пару экранов. И сейчас последует продолжение той же задачи об измерениях:

По равноточным измерениям найдено исправленное среднее квадратическое отклонение . Предполагая, что результаты измерений распределены нормально, построить доверительный интервал для оценки истинного значения (генерального стандартного отклонения) с надёжностью .

Обратите внимание, что для решения этой задачи нам не обязательно знать выборочную среднюю (хотя в Примере 23 мы её нашли).

Данный интервал с вероятностью (надёжностью) накрывает истинное значение . И если из всех частей неравенства извлечь корни, то получим соответствующий интервал для оценки генерального стандартного отклонения:

Значения известны, и осталось разобраться с нижним этажом. Во-первых, вычислим:

и теперь, по таблице критических значений распределения или с помощью расчётного макета (Пункт 11б) находим:

Способ второй. Другой, более простой подход состоит в построении симметричного интервала по формуле:
, где значение отыскивается по соответствующей таблице.

Согласно таблице, доверительной вероятности и объёму соответствует значение , таким образом:

В результате мы получили примерно такой же по размаху интервал. Для малых выборок может даже получиться , в таких случаях принимают ещё более грубую интервальную оценку:

Ответ: 1) , 2) .

Как и для распределения Стьюдента, при увеличении распределение хи-квадрат стремится к нормальному, и уже при можно использовать приближенную формулу:
, где коэффициент доверия определяется из знакомого лапласовского соотношения .

Точнее завершаю, и ради исследовательского интереса предлагаю продолжить вам – экзаменационный Пример 20:

В результате обработки экспериментальных данных объёма мы получили следующие выборочные характеристики: .

В предположении о нормальном распределении генеральной совокупности, с надёжностью определить доверительные интервалы:

1) для оценки неизвестной генеральной средней ;

2) для оценки генерального среднего квадратического отклонения двумя способами – с помощью распределения хи-квадрат: и приближённо, по формуле , где .

Краткое решение и примерный образец оформления в конце урока, который подошёл к концу. В следующей небольшой статье я разберу частную, но весьма популярную задачку по этой же теме – Оценка вероятности биномиального распределения, ну а если вам не терпится, то сразу к послеследующей статье.

До скорых встреч!

Решения и ответы:

Пример 22. Решение:

1) По условию, точность оценки равна и дисперсия .
Из формулы найдём коэффициент доверия:

Вычислим соответствующую доверительную вероятность:
– таким образом, с вероятностью 86,64% можно утверждать, что генеральная средняя отличается от менее чем на (т.е. находится в доверительном интервале от 90 до 96)

2) Для доверительной вероятности :
– этому значению функции Лапласа соответствует аргумент: .
Вычислим точность оценки:

Определим доверительный интервал:

– данный интервал с вероятностью 99% накрывает истинное значение .

Пример 24. Решение: доверительный интервал для оценки истинного значения измеряемой величины имеет вид:

Для заданного уровня доверительной вероятности и количества степеней свободы по таблице распределения Стьюдента находим: .

Вычислим точность оценки:
сек.

Таким образом, искомый доверительный интервал:

– данный интервал с вероятностью 99,9% накрывает истинное значение среднего времени изготовления одного диода.

Пример 26. Решение: вычислим исправленное среднеквадратическое отклонение:

1) Определим доверительный интервал , где .
Для уровня доверительной вероятности и объёма выборки по соответствующей таблице найдём .
Вычислим точность оценки:

Таким образом:

– с вероятностью данный интервал накроет генеральное среднее значение .

2) Найдём доверительный интервал для генерального стандартного отклонения .

а) С помощью распределения :

Вычислим и с помощью соответствующей функции Экселя (Пункт 11б) найдём:

Таким образом:

– искомый интервал, накрывающий генеральное значение с вероятностью .

б) Дадим интервальную оценку приближенно, с помощью формулы:

Коэффициент доверия найдём из соотношения . В данном случае:
, и с помощью таблицы или расчётного макета (Пункт 5*), выясняем, что .
Таким образом:

– искомый интервал.

Ответ:
1) ,
2) с помощью распределения и приближённо.

Автор: Емелин Александр

(Переход на главную страницу)

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

Точечные оценки имеют тот недостаток, что по ним нельзя судить о точности полученных оценок. Поэтому возникает задача определения на основании выборочных значений такого интервала, который покрывал бы неизвестной значение параметра с заданной вероятностью.

В отличие от точечной оценки, интервальная оценка позволяет получить вероятностную характеристику точности оцениваемого параметра.

Выборочные параметры являются случайными величинами, их отклонения от генеральных (т.е. погрешности их определения) также будут случайными. Оценка этих отклонений носит вероятностный характер – можно лишь указать вероятность той или иной погрешности. Для этого в математической статистике пользуются доверительными интервалами и доверительными вероятностями.

Доверительный интервал – интервал, который с заданной вероятностью накроет неизвестное значение оцениваемого параметра распределения.

Доверительная вероятность – вероятность того, что доверительный интервал накроет действительное значение параметра, оцениваемого по выборочным данным.

Оценивание с помощью доверительного интервала – способ оценки, при котором с заданной доверительной вероятностью устанавливают границы доверительного интервала.

Пусть для генерального параметра a получена из опыта несмещенная оценка a*. Нужно оценить возможную при этом ошибку. Назначим достаточно большую вероятность β – такую, что событие с этой вероятностью можно считать практически достоверным, и найдем такое значение ε для которого

(5.8.1)


При этом диапазон практически возможных значений ошибки, возникающей при замене а на а* , будет , большие по абсолютной величине ошибки будут появляться только с малой вероятностью

α=1-β

называемой уровнем значимости или риском. Уровень значимости часто выражают в процентах. Иначе формулу ( (5.8.1* ) можно интерпретировать как вероятность того, что истинное значение параметра а лежит в пределах


Вероятность β называется доверительной вероятностью, доверительным уровнем или надежностью, т.к. она характеризует надежность полученной оценки.

Интервал называется доверительным интервалом. Границы интервала и доверительными границами. Доверительный интервал при данной доверительной вероятности определяет точность оценки параметра.

При этом отметим следующее. Ранее мы рассматривали вероятность попадания случайной величины на заданный (неслучайный) интервал. В данном случае дело обстоит иначе: величина ане случайна, зато случаен интервал I b . Случайно его положение на числовой прямой, определяемое его центром а * , случайна и длина интервала 2 e, так как величина e вычисляется, как правило, по опытным данным, т.е. по результатам эксперимента. Поэтому в рассматриваемом случае удобно толковать интервал I как вероятность того, что случайный интервал I b накроет величину а.

Величина доверительного интервала зависит от доверительной вероятности, с которой гарантируется нахождение параметра внутри доверительного интервала: чем больше величина β, тем больше и ε (т.е. с чем большей вероятностью мы хотим гарантировать полученный результат, тем в большем интервале он должен находиться).

Увеличение числа опытов проявляется в сокращении доверительного интервала при постоянной доверительной вероятности или в повышении доверительной вероятности при сохранении доверительного интервала.

Обычно на практике фиксируется на определенном уровне значение доверительной вероятности (0.9, 0.95, 0.99, 0.999). Исходя из этого значения, определяют доверительный интервал результата Iβ .

ППри построении доверительного интервала решается задача об абсолютном отклонении:


(5.8.2.)

Таким образом, если известен закон распределения оценки a*, то задача определения доверительного интервала решается довольно просто.

Рассмотрим построение доверительного интервала для математического ожидания нормально распределенной случайной величины с известным генеральным стандартом σх.

Понятие генерального стандарта тесно связано с понятием точности прибора. Класс точности прибора – это выраженная в процентах относительная предельная погрешность измерения величины, равной пределу измерения прибора. В измерительной технике в большинстве отраслей промышленности под предельной погрешностью понимается величина, равная двум среднеквадратическим отклонениям

(ПРИМЕР: класс точности прибора K = abs ( a max – a *)/ amax =0.01 (1%) манометр с максимальным значением давления по шкале 100 кгс/см 2 , абсолютная погрешность прибора Δ a = abs ( a - a *) =100*0.01=1ат Δ a =2σх, следовательно, σх=0,5 ат).

Пусть имеется выборка объема n значений случайной величины. Оценкой mx является среднее выборки:


Для построения доверительного интервала необходимо знать распределение этой оценки. Для выборок из генеральной совокупности, распределенной нормально можно показать, что также имеет нормальное распределение с математическим ожиданием mx и средним квадратическим отклонением . Тогда


. (5.8.3.)


Задавшись доверительной вероятностью, определим по таблице значение функции Лапласа . Тогда доверительный интервал для математического ожидания будет иметь вид

или

Из оценки видно, что уменьшение доверительного интервала обратно пропорционально квадратному корню из числа наблюдений. Следовательно, если надо уменьшить возможную ошибку в два раза надо увеличить число наблюдений в 4 раза.

Если закон распределения оценки не известен, то в математической статистике применяют обычно два метода:

1) приближенный – при n более 50 заменяют неизвестные параметры их оценками;

2) от случайной величины a * переходят к другой случайной величине, закон распределения которой не зависит от оцениваемого параметра а, а зависит только от объема выборки n и от вида распределения величины Х. Такого рода величины наиболее подробно изучены для нормального закона. В качестве доверительных границ берут симметричные квантили


,

Если выразить через р,


.

На практике, как правило, число измерений конечно и не превышает 10…30. При малом числе измерений фактическая дисперсия неизвестна, поэтому для построения доверительного интервала математического ожидания используют выборочную дисперсию и приведенную случайную величину:


t – случайная величина, имеющая распределение, отличное от нормального, зависящее от числа степеней свободы(t – распределение или распределение Стьюдента). При больших значениях n распределение Стьюдента приближается к стандартному нормальному распределению. И, по аналогии, получаем построение доверительного интервала


Оценка, определяемая одним числом, называется точечной. Оценка, определяемая двумя числами - концами интервалов, называется интервальной.

Доверительной вероятностью (надежностью) оценкиПараметраНазывается вероятностьС которой осуществляется неравенство, т. е.


Эта формула означает следующее: вероятность того, что интервал заключает в себе (покрывает) неизвестный параметрРавнаИнтервал Который покрывает неизвестный параметрС заданной надежностьюНазывается доверительным интервалом. Концы доверительного интервала называю т доверительными границами.

Если случайная величинаИмеет нормальное распределение с заданным средним квадратическим отклонениемИ неизвестным математическим ожиданием а, то


(36.10)


(36.11)

Т. е. доверительный интервал


(36.12)

Покрывает неизвестный параметрС надежностью. ЗначениеЗадано заранее; числоОпределяется второй из формуя (36.11); значениеНаходится с помощью таблиц значений функции Лапласа; точность оценкиВыражается первой из формул (36.11).


Пример 36.2. Найти доверительный интервал для оценки математического ожидания а нормальной случайной величины с надежностьюЗная выборочную

Среднюю, объем выборки, среднее квадратическое отклонение

Доверительный интервал определяется формулой (36.12). Чтобы найти концы доверительного интервала, необходимо знать значение(значенияЗада

Ны). Второе из равенств (36.11) примет видОткудаПо


Таблице значений функции Лапласа находимПодставляя значения


В выражения для концов доверительного интервала, получаем

Читайте также: