Достоверное событие это кратко

Обновлено: 02.07.2024

Теория вероятностей (разг. сокр. “тервер”) — это раздел математики, который занимается анализом случайных событий. С её помощью можно вычислить вероятность события — оно показывает насколько вероятно, что какое-то событие произойдёт. Это число всегда находится в интервале между 0 и 1, где 0 — означает невозможность, а 1 — оно точно произойдёт (достоверное событие).

Например: в мешке есть 6 шаров: 3 красных, 2 жёлтых и 1 синий. Какова вероятность вытащить красный?

Вероятность считается так: количество красных шаров поделить на общее количество шаров в мешке, т. е. 3/6 = 1/2.

Основные формулы теории вероятностей

Теоремы сложения и умножения вероятностей

Применение Формула
Сложение противоположных событий P(A) + P(A̅) = 1
Сложение несовместных событий P(A + B) = P(A) + P(B)
Сложение совместных событий P(A + B) = P(A) + P(B) — P(AB)
Умножение независимых событий P(AB) = P(A) × P(B)

Основные формулы вычисления

P(A) = m/n

An m=n!/(n-m)!

Cn m =n!/(m!(n-m)!)

P n = n!

Виды событий

В теории вероятностей события бывают невозможными, случайными и достоверными.

Невозможное событие

Это то, которое уже известно, что в ходе испытания НЕ произойдёт, т. е. вероятность данного события равна нулю. Например: при бросании одной игральной кости (один раз), какова вероятность того, что выпадет 7 очков?

Случайное событие

Это событие может произойти или нет, обычно оно именно случайное. Например: при бросании игральной кости, какова вероятность того, что выпадет чётное число очков?

Достоверное событие

Это то, которое в ходе испытания обязательно произойдёт, т. е. вероятность данного события равна 1. Например: при бросании игральной кости, какова вероятность того, что она не останется в воздухе, а упадёт?

Совместные и несовместные события

Несовместные события — это когда появление одного исключает появление другого (в одном и том же испытании). Например: при бросании одной игральной кости выпадет одновременно и "2" и "3"?

Совместные события могут произойти одновременно. Например: два спортсмена плывут одновременно, два студента сдают экзамен.

Противоположные события

Это два несовместимых события, которые образуют полную группу событий (третьего не существует). Например:

  • А — при подбрасывании монеты выпадет орёл, A̅ — при подбрасывании монеты выпадет решка;
  • D — из колоды карт будет извлечена дама, D̅ — из колоды карт будет извлечена не дама.

Алгебра событий

Логическое ИЛИ означает, что нужно произвести операцию сложения (сумма событий). Т. е. считаем возможность или событие А, или событие В, или оба (одновременно).

Логическое И — операция умножения (произведение событий). Т. е. считаем возможность и событие А, и событие В.

Задачи

Пример 1

В классе 27 учеников. Из них:

17 изучали немецкий язык,

Найти вероятность того, что случайно выбранный ученик изучал хотя бы один язык.

Что мы знаем:

Значит вместе это будет:

𝑃(N + A) = 𝑃(N) + 𝑃(A) − 𝑃(N ∙ A) = 17/27 + 6/27 − 2/27 = 21/27 = 7/9.

Пример 2

Лотерейные билеты пронумерованы от 1 до 100. Какова вероятность того, что в выбранном билете будет стоять число больше 40 или чётное число?

Что мы знаем:

P(>40) = 60/100 = 6/10 = 3/5

Логическое ИЛИ означает, что нам нужно произвести операцию сложения (т. е. сумма событий).

Нам понадобится формула сложения совместных событий P(A + B) = P(A) + P(B) — P(AB).

Для этого нам нужно узнать сколько будет P(>40 . Ch), для этого используем формулу P(AB) = P(A) . P(B).

P(>40 . Ch) = P(>40) . P(Ch) = ⅗ . ½ = 3/10

Теперь можем подставить всё в формулу P(A + B) = P(A) + P(B) — P(AB):

Пример 3

В финале международного турнира по стрельбе из лука участвовали 8 спортсменов: 3 американца, 1 англичанин, 1 немец, 1 француз и 2 русских. Какова вероятность того, что хотя бы один русский попадёт в тройку лучших, учитывая, что все спортсмены имеют равные условия для получения медали (золотой, серебряной и бронзовой).

Что мы знаем:

Когда в вопросе появляется "хотя бы один", можно "пойти от противного" — мы должны найти вероятность того, что этого не произойдёт (на пьедестале русских не будет), а затем вычесть это из 1.

P (никакой русский не выиграет золото) = 6/8 = 3/4

P (никакой русский не выиграет серебро) = 5/7 (убираем золотую медаль)

P (никакой русский не выиграет бронзу) = 4/6 = 2/3 (убираем золотую и серебряную медали)

P (на пьедестале не будет русских) = 3/4 x 5/7 x 2/3 = 30/84 = 5/14

P (хотя бы один русский на пьедестале) = 1 – 5/14 = 14/14 – 5/14 = 9/14.

Кто придумал теорию вероятностей

Основателями теории вероятностей являются два французских математика Блез Паскаль и Пьер Ферма. В 1654 г. французский писатель Антуан Гомбо (известный как Шевалье де Мере), интересовавшийся игрой и азартными играми, вызвал заинтересованность Паскаля насчёт популярной в то время игры в кости.

Кости бросались 24 раза, а вопрос стоял в том, стоит ли ставить деньги на выпадение хотя бы одной "двойной шестёрки". В то время считалось, что это было выгодно, но последующие расчёты показали прямо противоположное.

1. Предмет теории вероятностей.

2. Краткая историческая справка.

3. Виды случайных событий.

4. Определение вероятности.

5. Теорема сложения вероятностей.

6. Теорема умножения вероятностей.

1. Предмет теории вероятностей.

Наблюдаемые нами явления (события) можно разделить на 3 вида: достоверные, невозможные и случайные.

Достоверное событие - это событие, которое обязательно произойдет, если будет осуществлена определенная совокупность условий S .

Невозможное событие - это событие, которое заведомо не произойдет, если будет осуществлена совокупность условий S .

Случайное событие - это событие, которое при осуществлении условий S может либо произойти, либо не произойти.

Каждое случайное событие есть следствие действий многих случайных причин (сила, с которой брошена монета, форма монеты и т.д.). Учесть влияние всех этих причин невозможно, поскольку число их очень велико и законы их действия неизвестны. Поэтому, теория вероятностей не ставит перед собой задачу предсказать, произойдет единичное событие или нет. Она просто не в силах этого сделать.

По-иному обстоит дело, если рассматриваются случайные события, которые могут многократно повторяться и наблюдаться при осуществлении одних и тех же условий S . Достаточно большое число однородных случайных событий независимо от их природы подчиняется определенным закономерностям, а именно вероятностным закономерностям. Установлением этих закономерностей и занимается теория вероятностей.

Предметом теории вероятностей является изучение вероятностных закономерностей массовых однородных случайных событий.

Знание закономерностей, которым подчиняются массовые случайные события, позволяет предвидеть, как эти события будут протекать. Например, можно предсказать с небольшой погрешностью число появления герба при подбрасывании монеты большого числа раз.

2. Краткая историческая справка.

Эту задачу в 1654 году кавалер де Мере предложил для решения своему другу, знаменитому Блезу Паскалю. Тот решил ее и для более общего случая. Решив задачу сам, Паскаль предложил решить ее своему не менее знаменитому современнику Пьеру Ферма. Каждый из них решил задачу своим способом, и на основе этого у них завязалась переписка.

Таким образом, были положены основы математической теории вероятностей.

Страстный игрок в кости кавалер де Мере так же относится к числу основателей теории вероятностей. Заслуга его состоит в том, что он настойчиво заставлял известных математиков решать различные задачи, на которые наталкивался сам.

Таким образом, первые работы, в которых зарождались основные понятия теории вероятностей, представляли собой попытку создания теории азартных игр ( XVI - XVII вв).

В XIX - XX вв теория вероятностей стала стройной математической наукой. (П. Л. Чебышев, А. А. Марков, А. М. Липунов и т.д.)

3. Случайные события.

Случайные события или просто события принято обозначать заглавными буквами латинского алфавита А, В, С и т.д.

События называются несовместными, если появление одного из них исключает появление других событий в одном и том же испытании.

Полной группой случайных событий называется группа всевозможных, равновозможных и единственно-возможных событий.

События называются равновозможными, если есть основание считать, что ни одно из них не является более возможным, чем другое.

4. Определение вероятности.

4.1 Классическое определение вероятности (определяет количественные шансы наступления случайного события)

Вероятностью случайного события А называется отношение числа благоприятных случаев к общему числу всевозможных, равновозможных и единственно-возможных случаев.

Свойство 1: Вероятность достоверного события равна 1.

Доказательство: т.к. m = n , то:

Свойство 2: Вероятность невозможного события равна 0.

Доказательство: т.к. m =0, то:

Свойство 3: Вероятность случайного события есть положительно число, заключенное между 0 и 1.

Доказательство: Т.к. 0 m n , то 0 P ( A )

Свойство 4: Вероятность произвольного события определяется неравенством .

1. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найдите вероятность того, что набрана нужная цифра.

2. В партии из 10 изделий- 7 нестандартных. Найдите вероятность того, что среди 6-ти взятых наудачу изделий:

а) все шесть нестандартные;

б) 4- нестандартные?

Классическое определение вероятности предполагает, что число элементарных исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных исходов которых бесконечно. В таких случаях классическое определение неприменимо.

4.2 Статистическое определение вероятности (экспериментальное, опытное определение).

Статистической вероятностью события А называется отношение числа благоприятствующих исходов опытов к общему числу проведенных опытов (испытаний).

4.3 Геометрическое определение вероятности (вероятность попадания точки в заданную область).

Пример: На территории крытой военной базы стоит 4 цистерны. Какова вероятность прямого попадания с воздуха в одну из цистерн?

5. Теорема сложения вероятностей.

Суммой случайных событий А и В называется событие А+В, состоящее как из исходов, благоприятствующих событию А, так и из исходов, благоприятствующих событию В. (Исходы, благоприятствующие событиям А и В одновременно, считаются только один раз.)

Понятие суммы распространяется на любое число случайных событий А, В, С и т.д.

Теорема: Если случайные события А и В несовместны, то Р(А+В)=Р(А)+Р(В).

Пример: В урне имеется 30 шаров: 10- красных, 5- синих, 15- белых. Найдите вероятность появления цветного (не белого) шара.

Случайные события А и называются противоположными, если они несовместны и в сумме образуют достоверное событие.

Пример: Вероятность того, что день будет дождливым равна 0,7. Найдите вероятность того, что день будет не дождливым.

Решение: p =0,7, q =1- p =1-0,7=0,3.

Пример: В XVII веке во Франции страстный игрок в кости рыцарь де Мере хотел разбогатеть при помощи игры в кости и для этого он придумывал различные усложненные правила игры. Однажды, де Мере придумал следующие правила:

Первая игра де Мере: Игральная кость подбрасывается 4 раза. Рыцарь бился об заклад, что при этом хотя бы один раз выпадет 6 очков.

Решение: Пусть р- вероятность того, что при четырех бросках не выпадет 6 очков, q - вероятность того, что хотя бы один раз выпадет 6 очков (вероятность противоположного события).

Рыцарь стал часто выигрывать и с ним перестали играть. Тогда он придумал вторую игру.

Вторая игра де Мере: 2 игральные кости подбрасывают 24 раза. Рыцарь бился об заклад, что при этом хотя бы один раз выпадут две шестерки.

Эта игра его разорила.

Теорема: Если случайные события не совместны в совокупности, то

Следствие: Если случайные события образуют полную группу несовместных событий, то сумма их вероятностей равна…

. События образуют полную группу случайных событий.

Произведением случайных событий А и В называют событие A*B, состоящее из тех и только тех исходов, которые благоприятствуют одновременно и событию А, и событию В.

Теорема: Для любых случайных событий А и В справедливо равенство:

Доказательство: т.к. число A*B при суммировании исходов, благоприятствующих каждому из событий считается дважды, то один раз это число необходимо отнять.

Пример: Найдите вероятность того, что при бросании игральной кости выпадет грань с четным числом очков или числом очков кратным трем.

6. Теорема умножения вероятностей.

Случайное событие А называется независимым от события В, если вероятность наступления события А не зависит от того, произошло событие В или нет.

Пример: Подбросили 2 монеты. Появление герба на второй монете не зависит от того, что выпало на первой и наоборот. Это два независимых друг от друга события.

Вероятность случайного события А, вычисленная при условии, что событие В имело место, называется условной вероятностью и обозначается Р(А/В).

Если А и В- независимые случайные события, то Р(А/В)=Р(А) и Р(В/А)=Р(В).

Теорема: Вероятность произведения двух случайных событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место.

Доказательство: Пусть А и В зависимые случайные события. Событию А благоприятствует k исходов. Событию В благоприятствует l исходов. Событию A*B благоприятствует m исходов. Всего исходов – n . Р(А)=k/n . P(B/A)= m/k. P(A) * P(B/A)=m/n . ч . т . д .

В урне 15 белых шаров и 20- черных. Найдите вероятность того, что оба шара, вынутых наудачу- белые.

Теорема: Вероятность произведения нескольких случайных событий равна произведению вероятностей этих событий, причем вероятность каждого следующего по порядку события вычисляется при условии, что все предыдущие имели место.

Теорема: Вероятность произведения двух независимых случайных событий равна произведению вероятностей этих событий. P(A*B)=P(A)*P(B)

Доказательство: P(A*B)=P(A)*P(B/A)= P(A)*P(B), т.к. А и В- независимы. Ч.т.д.

Пример: В урне 7 белых шаров и 6- черных. Вынули первый шар, запомнили его цвет и вернули его обратно. После этого вынули второй шар. Найдите вероятность, что оба шара были белые.

Теорема: Вероятность произведения нескольких независимых случайных событий равна произведению их вероятностей.

Пример: Производится 3 выстрела по мишени. Вероятность попадания при первом выстреле равна 0,7, при втором- 0,8, при третьем- 0,9. Найдите вероятность того, что в результате этих трех выстрелов будет ровно одна пробоина.

Р(А)=0, 7*0,2 * 0,1+0,3 * 0,8 *0,1+0,3 * 0,2 * 0,9=0,014+0,024+0,054=0,092

Рассмотрим решение задачи кавалера де Мере.

Первый игрок может победить в первой же игре или во второй (потерпев в первой игре поражение). Тогда

Т.е. вероятность, что первый игрок одержит победу, равна 3/4. Для второго игрока эта вероятнсоть равна 1/3. Ставку необходимо разделить 3:1.

Старинные задачи:

1. По преданию, когда-то в сельской местности России среди девушек существовало гадание. Одна из подруг зажимала в руке 6 травинок так, чтобы концы травинок торчали сверху и снизу, а другая девушка связывала эти травинки попарно между собой сверху и снизу. Если при этом все шесть травинок оказывались связанными в одно кольцо, то это должно было означать, что девушка в текущем году выйдет замуж. Какова вероятность этого события?

Решение: Первую травинку можно завязать с одной из сторон с любой из пяти оставшихся травинок. Одну из оставшихся (4) травинок можно связать с любой из трех. И оставшиеся 2 можно теперь связать только одним способом. Имеем 5 3 1=15. Чтобы получилось кольцо, снизу первую травинку можно связать с любой из 4-ех, не связанной с ней сверху. Конец полученной четверки можно связать с одной из двух оставшихся травинок, не связанных с ней сверху. Далее, оставшиеся 2 конца можно связать только одним способом. Имеем 4 *2 *1=8.

Гадание чаще всего сбывалось, т.к. в этом возрасте действительно примерно 50 % девушек выходило замуж.

2. В XVII веке в Генуе возникла знаменитая лотерея. Генуэзская лотерея в XVIII веке разыгрывалась во Франции, Германии и других европейских странах. В лотерее разыгрывается 90 номеров, из которых выигрывают 5. По условию можно ставить ту или иную ставку на любой из 90 номеров или на любую совокупность 2-ух, 3-ех,4-ех или 5-ти номеров. Если участник лотереи ставит на один номер, то он получает при выигрыше в 15 раз больше ставки, если на 2 номера (амбо), то в 270 раз, если на 3 (терн)- в 5500 раз, если на 4 (катерн)- в 75000 раз, елс на 5 (квин)- в 1000000 раз. Какова вероятность выиграть в каждом из указанных 5-ти случаев.

Одно из базовых понятий тервера уже озвучено выше – это событие. События бывают достоверными, невозможными и случайными.

1) Достоверным называют событие, которое в результате испытания (осуществления определенных действий, определённого комплекса условий) обязательно произойдёт. Например, в условиях земного тяготения подброшенная монета непременно упадёт вниз.

2) Невозможным называют событие, которое в результате испытания заведомо не произойдёт. Пример невозможного события: в условиях земного тяготения подброшенная монета трах-тибидох улетит вверх.

Подчёркнутый критерий случайности очень важен – так, карточный шулер может очень ловко имитировать случайность и давать выигрывать клиенту, но ни о каких случайных факторах, влияющих на итоговый результат, речи не идёт.

Любой результат испытания называется исходом, который, собственно и представляет собой появление определённого события. В частности, при подбрасывании монеты возможно 2 исхода (случайных события): выпадет орёл, выпадет решка. Естественно, подразумевается, что данное испытание проводится в таких условиях, что монета не может встать на ребро или, скажем, зависнуть в невесомости.

События (любые) обозначают большими латинскими буквами либо теми же буквами с подстрочными индексами, например: . При этом стараются избегать буквы , которая зарезервирована под другие нужды.

Запишем следующие случайные события:

Важной характеристикой случайных событий является их равновозможность. Два или бОльшее количество событий называют равновозможными, если ни одно из них не является более возможным, чем другое. Например:

– выпадение орла или решки при броске монеты;
– выпадение 1, 2, 3, 4, 5 или 6 очков при броске игрального кубика;
– появление трефы, пики, бубны или червы при случайном извлечении карты из полной колоды.

Могут ли быть те же события НЕ равновозможными? Легко. Так, если у монеты или кубика смещён центр тяжести, то гораздо чаще будут выпадать вполне определённые грани. Если кто-то ловко спрятал в рукаве туза треф, то становится менее возможным, что оппоненту будет сдана трефа, и, главное, менее возможно, что будет сдан туз.

Полную и свежую версию этой книги в pdf-формате ,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!


Есть три группы событий: достоверные, невозможные и случайные. Часть из них можно объяснить при помощи математики и других точных наук. В этом материале расскажем про теорию вероятностей, рассмотрим формулы и примеры решения задач.

О чем эта статья:

Тема непростая, но если вы собираетесь поступать на факультет, где нужны базовые знания высшей математики, освоить материал — must have. Тем более, все формулы по теории вероятности пригодятся не только в универе, но и при решении 4 задания на ЕГЭ. Начнем!

Основные понятия

Французские математики Блез Паскаль и Пьер Ферма анализировали азартные игры и исследовали прогнозы выигрыша. Тогда они заметили первые закономерности случайных событий на примере бросания костей и сформулировали теорию вероятностей.

Когда мы кидаем монетку, то не можем точно сказать, что выпадет: орел или решка.


понятия

Теория вероятностей — это раздел математики, который изучает закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Событие и виды событий

Событие — это базовое понятие теории вероятности. События бывают достоверными, невозможными и случайными.

Достоверным является событие, которое в результате испытания обязательно произойдет. Например, камень упадет вниз.

Невозможным является событие, которое заведомо не произойдет в результате испытания. Например, камень при падении улетит вверх.

Случайным называется событие, которое в результате испытания может произойти, а может не произойти. Например, из колоды карт вытащили туза.

Обычно события обозначают большими латинскими буквами. Например, А — событие, при котором из колоды вытащили туза, D — событие, при котором из колоды вытащили семерку.

Несовместными называются события, в которых появление одного из событий исключает появление другого (при условии одного и того же испытания). Простейшим примером несовместных событий является пара противоположных событий. Событие, противоположное данному, обычно обозначается той же латинской буквой с черточкой вверху. Например:

A0 — в результате броска монеты выпадет орел;

Ā0 — в результате броска монеты выпадет решка.

Полная группа событий — это множество несовместных событий, среди которых в результате отдельно взятого испытания обязательно появится одно из этих событий.

Алгебра событий

Операция сложения событий означает логическую связку ИЛИ, а операция умножения событий — логическую связку И.

Сложение событий

Суммой двух событий A и B называется событие A+B, которое состоит в том, что наступит или событие A, или событие B, или оба события одновременно. В том случае, если события несовместны, последний вариант отпадает, то есть может наступить или событие A, или событие B.

Правило распространяется и на большее количество слагаемых, например, событие A1 + A2 + A3 + A4 + A5 состоит в том, что произойдет хотя бы одно из событий A1, A2, A3, A4, A5, а если события несовместны — то одно и только одно событие из этой суммы: или событие A1, или событие A2, или событие A3, или событие A4, или событие A5.

Событие (при броске игральной кости не выпадет 5 очков) состоит в том, что выпадет или 1, или 2, или 3, или 4, или 6 очков.

Событие B1,2 = B1 + B2 (выпадет не более двух очков) состоит в том, что появится 1 или 2 очка.

Событие BЧ = B2 + B4 + B6 (будет чётное число очков) состоит в том, что выпадет или 2 , или 4 , или 6 очков.

Умножение событий

Произведением двух событий A И B называют событие AB, которое состоит в совместном появлении этих событий. Иными словами, умножение AB означает, что при некоторых обстоятельствах наступит и событие A, и событие B. Аналогичное утверждение справедливо и для большего количества событий: например, произведение A1A2A3A10 подразумевает, что при определенных условиях произойдет и событие A1, и событие A2, и событие A3. и событие A10.

Рассмотрим испытание, в котором подбрасываются две монеты, и следующие события:

A1 — на 1-й монете выпадет орел;

Ā1 — на 1-й монете выпадет решка;

A2 — на 2-й монете выпадет орел;

Ā2 — на 2-й монете выпадет решка.

событие A1A1 состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет орел;

событие Ā2Ā2 состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет решка;

событие A1Ā2 состоит в том, что на 1-й монете выпадет орел и на 2-й монете решка;

событие Ā1A2 состоит в том, что на 1-й монете выпадет решка и на 2-й монете орел.

Классическое определение и формула вероятности

Вероятностью события A в некотором испытании называют отношение:

P (A) = m/n, где n — общее число всех равновозможных, элементарных исходов этого испытания, а m — количество элементарных исходов, благоприятствующих событию A.

Вероятность достоверного события равна единице.

Вероятность невозможного события равна нулю.

Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Таким образом, вероятность любого события удовлетворяет двойному неравенству 0 ≤ P(A) ≤ 1.

Как решать задачи по теории вероятности

Пример 1. В пакете 15 конфет: 5 с молочным шоколадом и 10 — с горьким. Какова вероятность вынуть из пакета конфету с белым шоколадом?

Так как в пакете нет конфет с белым шоколадом, то m = 0, n = 15. Следовательно, искомая вероятность равна нулю:

Пример 2. Из колоды в 36 карт вынули одну карту. Какова вероятность появления карты червовой масти?

Вспоминаем основную формулу теории вероятности, которую мы привели выше. Количество элементарных исходов, то есть количество карт равно 36 (n). Число случаев, благоприятствующих появлению карты червовой масти (А) равно 9 (m).

Читайте также: