Биогеохимические циклы это в экологии кратко

Обновлено: 06.07.2024

Я есть совокупность воды, кальция и органических молекул, называемая Карлом Саганом. Вы представляете собой почти такую же систему молекул с другим совокупным названием. И только-то? Неужели в нас нет ничего, кроме молекул? Кое-кому кажется, что это унижает человеческое достоинство. Лично я нахожу вдохновляющим то, что наш мир позволяет развиваться столь тонким и сложным молекулярным машинам, какими являемся мы с вами.
Карл Саган

Земная жизнь построена на весьма сложной химической основе. Для ее существования необходимы многие химические элементы (рис. 2.4.1). Хотя главное соединение в составе организмов — вода, для жизнедеятельности совершенно необходимы органические вещества, состоящие из разнообразных атомов. Из элементов, являющихся важными ресурсами для биосферы, важнейшими являются так называемые биогенные элементы или биогены. К биогенам относится примерно половина из 54 встречающихся в земной коре элементов. Особенно важны макроэлементы — C, H, N, O, P, S, Ca, K и Mg, и некоторые микроэлементы — Fe, Cl, Na, Zn, V, Mo, B, Co, Cu, Si, Se, Cr, Ni, I, F, Sn и As.


Рис. 2.4.1. Элементы, важные для живых организмов, в таблице Д.И. Менделеева

Роли, которые выполняют биогены, разнообразны. Четыре из них (так называемые элементы-органогены: углерод, водород, азот и кислород), составляют структурную основу органических молекул. В состав нуклеиновых кислот обязательно входит фосфор, а в состав некоторых аминокислот (а значит, и белков) — сера. Ионы кальция, калия, натрия и хлора являются важными для жизнедеятельности живых клеток. Многие металлы входят в состав важнейших органических молекул. Так, в состав молекулы хлорофилла входит магний, а одной из частей гема (составной части гемоглобина — переносящего кислород белка крови, а также некоторых других белков) является ион железа.

Для того, чтобы организмы могли включать в свой состав эти элементы, они должны находиться в доступной форме в населенной организмами среде. Единожды попав в состав живых организмов, один и тот же атом может переходить из одной молекулы в другую, из одного существа в другое. Однако со временем любой атом любого биогена покинет состав живого вещества и возвратится в окружающую среду. Чтобы организмы могли восполнить возникающий при этом недостаток необходимых им элементов, в среде должны действовать биогеохимические циклы.

Вероятно, начало изучения БГХ-циклов связано с именем шотландского геолога Джеймса Геттона (в более привычной транслитерации — Хаттона, 1726–1797). До Геттона в геологии господствовали представления нептунизма, рассматривающие особенности геологического строения Земли как следствия библейского потопа. Геттон противопоставил им плутонизм — представление о том, что земное вещество разрушается в результате эрозии, образует новые породы на морском дне, проходит через недра, преобразуется и опять поднимается наверх, где снова подвергается эрозии. Господствовавшему в геологии катастрофизму Геттон противопоставил актуализм — представление о длительной геологической истории, в течение которой действовали те же процессы, что действуют и сейчас. Для мышления XVIII века взгляды Геттона можно считать настоящей революцией. Его можно считать и предшественником представлений Вернадского о биосфере, и даже предтечей гипотезы Геи. Дело в том, что активность Земли Геттон сравнивал с жизнедеятельностью организма.

Биогеохимическим циклом (БГХ-циклом) называется совокупность относительно замкнутых путей перемещения веществ через живые организмы и среду их обитания. Биогеохимические циклы называются так потому, что в их обеспечении участвуют как биологические, так и геохимические процессы. Конечно, совершенно необязательно, чтобы, передвигаясь по БГХ-циклу, элементы двигались по какому-то кругу. Однако по мере перехода из одной молекулы в другую в составе организмов и окружающей среды один и тот же атом может раз за разом возвращаться в какое-то определенное состояние. В этом и проявляется цикличность биогеохимических процессов.

Рассматривая приведенные далее схемы, на которых изображены БГХ-циклы, можно убедиться, что в их составе выделяют фонды и потоки. Фонды — совокупности веществ, содержащих рассматриваемый элемент в определенной форме. Потоки — пути преобразования элемента, переводящие его из одного фонда в другой.

В составе разных фондов элементы сменяются с разной скоростью. Рассмотрите гидрологический цикл (рис. 2.5.1). То количество водяного пара, которое содержится в атмосфере в каждый момент времени, успевает за год пройти через нее несколько раз. В то же время за миллионы лет сменяется лишь незначительное количество воды, связанной в литосфере. Именно поэтому в БГХ-циклах выделяют резервные и обменные фонды.

Выделяют несколько типов циклов, главные из которых — циклы газообразных веществ с резервными фондами в атмосфере и гидросфере и осадочные циклы с резервным фондом в литосфере. Те биогеохимические циклы, у которых есть фонды в атмосфере (циклы углерода, азота, воды, а также по отдельности кислорода и водорода), могут регулироваться организмами намного лучше, чем циклы, все фонды которых расположены в литосфере. БГХ-циклы различаются по степени зарегулированности живыми организмами Необходимо отметить, что зарегулированность осадочных циклов хуже. Если спуск элемента в кору идет быстрее его подъема из нее, возникает недостача, лимитирующая круговорот, но замедляющая спуск. Тот элемент, которого недостает для круговорота, будет сильнее удерживаться живым веществом и медленнее выводиться из круговорота.

Роль живых организмов в удержании биогенов была наглядно показана в ходе эксперимента, проведенного на американской биостанции в местности Хаббард-Брук (рис. 2.4.2). Был выбран небольшой участок территории (ущелье), ограниченный водоразделом. На вытекавшем из этого участка ручье была поставлена измерительная аппаратура. После того, как вся растительность на экспериментальном участке была уничтожена, экспериментаторы зарегистрировали не только двукратное увеличение количества вытекавшей воды (до эксперимента она задерживалась почвой и растениями и в ходе транспирации возвращалась в атмосферу), но и увеличение содержания биогенов в этой воде.


Рис. 2.4.2. Одним из последствий уничтожения леса на американской экспериментальной станции в Хаббард-Брук стало многократное (более, чем на порядок) увеличение выноса нитратов с территории, на которой была уничтожена вся растительность (обратите внимание на разрыв на шкале ординат!)

Например, хотя такие металлы как Ca, K, Na, Mg обычно не входят в состав органических молекул, они совершенно необходимы для жизнедеятельности клеток. Они очень подвижны в экосистемах. Поступление катионов в экосистему связано с геологическим и биологическим выветриванием материнских пород, приносом с пылью и осадками. Убыль катионов происходит в связи с их выносом поверхностными и грунтовыми водами. Биологическое сообщество активно задерживает вынос, повышая количество катионов в обменных фондах. После уничтожения участка леса в Хаббард-Брук вынос биогенов усилился во много раз (кальция — в три, азота — в 15).

В тропическом лесу подавляющая часть биогенов заключена в растительной биомассе, в умеренном лесу — в опаде.

Человек — мощный геологический фактор. Человечество использует в своей деятельности почти все элементы, в том числе применяемые только для нужд техносферы (уран, плутоний, ртуть и другие). Мы интенсивно вмешиваемся в цикл биогенов за счет производства удобрений, что обусловило биогенное загрязнение значительной части биосферы.

Природоохранные усилия должны быть направлены на превращение ациклических процессов в циклические. На Филиппинах есть районы, где на полях, разделенных священными лесами, рис возделывается более 1000 лет. Увы, среди искусственных экосистем таких примеров очень немного.

Один из методов изучения БГХ-циклов связан с радиационной экологией. Например, добавив в водоем некоторое количество меченого фосфора (т.е. вещества, содержащего радиоактивный изотоп фосфора), можно изучать пути и динамику его фиксации живым веществом и осадками. Для изучения подземных вод очень полезным оказался дейтерий (изотоп водорода), выброшенный в атмосферу в результате испытаний водородных бомб. Количество дейтерия в современных осадках известно; по тому, сколько его оказывается в подземных водах, можно узнать, с какой скоростью они пополняются водами, поступающими с поверхности.

В экосистемах очень важна роль биогеохимических циклов. Биогенные элементы – C, O2, N2, P, S, CO2, H2O и другие – в отличие от энергии удерживаются в экосистемах и совершают непрерывный круговорот из внешней среды в организмы и обратно во внешнюю среду. Эти замкнутые пути называют биогеохимическими циклами. В каждом круговороте различают два фонда: резервный, включающий большую массу движущихся веществ, в основном небиологических компонентов, и подвижный, или обменный, фонд – по характеру более активный, но менее продолжительный, отличительной особенностью которого является быстрый обмен между организмами и их непосредственным окружением.

Биогеохимические циклы можно подразделять на два типа: 1) круговорот газообразных веществ с резервным фондом в атмосфере и гидросфере (океан); 2) осадочный цикл с резервным фондом в земной коре.

Из 90 с лишним элементом, встречающихся в природе, 30-40 необходимы для живых организмов. Человек уникален не только тем, что его организм нуждается в 40 элементах, но и тем, что в своей деятельности использует почти все другие имеющиеся в природе элементы.

Круговорот азота. Азот составляет около 80% атмосферного воздуха и является крупнейшим резервуаром и предохранительным клапаном атмосферы. Однако большинство организмов не могут усваивать азот из воздуха. Между тем азот участвует в построении всех белков и нуклеиновых кислот. Усваивать азот из воздуха способны только некоторые организмы – бактерии, которые существуют в симбиозе с бобовыми растениями (горох, фасоль, соя). Они поселяются на корнях бобовых растений, образуя клубеньки, в которых и происходит химическая фиксация азота. Азот могут усваивать также сине-зеленые водоросли, называемые цианобактериями. Они образуют симбиоз с плавающим папоротником, который растет на заливаемых водой рисовых полях и до высадки рассады риса удобряет эти поля азотом. Первый этап фиксации атмосферного азота приводит к образованию аммиака и называется аммонификацией. Аммиак используется растениями для синтеза аминокислот, из которых состоят белки. Второй этап фиксации азота микроорганизмами – нитрификация, при этом образовавшийся аммиак преобразуется в соли азотной кислоты – нитраты. Нитраты усваиваются корнями растений и транспортируются в листья, где происходит синтез белков. Процесс разложения белков, осуществляемый особой группой бактерий, называется денитрификацией. Распад идет сначала с образованием нитратов, потом аммиака и, наконец, молекулярного азота. Содержание азота в живых тканях составляет около 3% его содержания в обменных фондах экосистем. Общее время круговорота азота – примерно 100 лет.

Круговорот углерода. Круговороты углекислоты и воды в глобальном масштабе – самые важные для человечества биогеохимические круговороты.

В круговороте СО2 атмосферный фонд невелик по сравнению с запасами углерода в океанах, ископаемом топливе и других резервуарах земной коры. До наступления индустриальной эры потоки углерода между атмосферой, материками и океанами были сбалансированы. Но в ХХ в. содержание СО2 постоянно растет в результате новых техногенных поступлений (сжигание горючих ископаемых, деградация почвенного слоя, сведение лесов и т.д.). В 1800 г. в атмосфере Земли содержалось 0,29% СО2; в 1958 – 0,315%, а к 1980 г. его содержание выросло до 0,335%. Если концентрация СО2 вдвое превысит доиндустриальный уровень, что может случиться в середине ХХI в., то температура поверхности Земли и нижних слоев атмосферы в среднем повысится на 3 0 . В результате подъем уровня моря и перераспределение осадков могут погубить сельское хозяйство.


Рис.1. Основные биохимические этапы круговорота азота

Биологический круговорот углерода достаточно прост; в нем участвуют только органические соединения и СО2. Весь потребленный в процессе фотосинтеза углерода включается в углеводы, а в процессе дыхания весь углерод, содержащийся в органических соединениях, превращается в СО2. Растения потребляют ежегодно около 100 млрд.т углерода, 30 млрд.т возвращаются в атмосферу в результате дыхания растений. Остальные 70 млрд.т обеспечивают дыхание и продукцию животных, бактерий и грибов в различных трофических цепях. Растения и животные ежегодно пропускают через себя 0,25-0,30% углерода, содержащегося в атмосфере и океанах. Весь обменный фонд углерода совершает круговорот каждые 300-400 лет.

Кроме СО2 в атмосфере присутствует в небольших количествах окись углерода – СО (примерно 0,1 части на миллион). Однако в городах с сильным автомобильным движением содержание СО может достигать 100 частей на миллион, что представляет уже угрозу для здоровья человека. Для сравнения можно привести другой пример: курильщик, потребляющий в день пачку сигарет, получает до 400 частей на миллион, что часто является причиной анемии и других сердечно – сосудистых заболеваний.

Другое соединение углерода в атмосфере – метан (СН4). Его содержание составляет 1,6 частей на миллион. Считается, что метан поддерживает стабильность озонового слоя в атмосфере.

Круговорот воды. Вода составляет значительную часть живых существ: в теле человека — по весу 60%, а в растительном организме достигает 95%. На круговорот воды на поверхности Земли затрачивается около трети всей поступающей на Землю солнечной энергии. Испарение с водных пространств создает атмосферную влагу. Влага конденсируется в форме облаков, охлаждение облаков вызывает осадки в виде дождя и снега; осадки поглощаются почвой или стекают в моря и океаны.

Для человечества важны фазы круговорота в пределах экосистем. Здесь происходят четыре процесса:

• перехват. Растительность перехватывает часть выпадающей в осадках воды до того, как она достигает почвы. Перехваченная вода испаряется в атмосферу. Величина перехвата в умеренных широтах может достигать 25% общей суммы осадков, это — физическое испарение;

• транспирация — биологическое испарение воды растениями.

Это не дождевая вода, а вода, заключенная в растении, т.е. экосистемная. Растения, потребляя около 40% общего количества осадков, играют главную роль в круговороте воды;

• инфильтрация — просачивание воды в почве. При этом часть инфильтрованной воды задерживается в почве тем сильнее, чем значительнее в ней коллоидальный комплекс, соответствующий накоплению в почве перегноя;

• сток. В этой фазе круговорота избыток выпавшей с осадками воды стекает в моря и океаны.

Отличие циклов углерода и азота от круговорота воды состоит в том, что в экосистемах два названных элемента накапливаются и связываются, а вода проходит через экосистемы почти без потерь. Биосфера ежегодно использует на формирование биомассы 1% воды, выпавшей в виде осадков.

Круговорот фосфора. Фосфор — один из наиболее важных биогенных компонентов. Он входит в состав нуклеиновых кислот, клеточных мембран, систем аккумуляции и переноса энергии, костной ткани и дентина. Круговорот фосфора всецело связан с деятельностью организмов.

В отличие от азота и углерода резервуаром фосфора служат не атмосфера, а горные породы и отложения, образовавшиеся в прошлые геологические эпохи. Круговорот фосфора — типичный пример осадочного цикла.

Круговорот второстепенных элементов. Второстепенные элементы подобно жизненно важным мигрируют между организмами и средой, хотя и не представляют ценности для организмов. Но в окружающую среду часто попадают побочные продукты промышленности, содержащие высокие концентрации тяжелых металлов, радиоактивные элементы и ядовитые органические соединения.

Радиоактивный Sr-90 крайне опасен для человека и животных. По химическим свойствам он похож на кальций и поэтому, попав в организм, накапливается в костях и оказывается в опасном контакте с костным мозгом — кровеносной тканью.

Радиоактивный Cs-137 — по свойствам схож с калием и поэтому быстро циркулирует по пищевым цепям.

Sr-90 и Cs-137 — новые вещества, которые не существовали в природе до того, как человек расщепил атом. Они характеризуются длительными периодами полураспада. Аккумуляция этих радиоактивных изотопов в организме человека создает постоянный источник облучения, приводящего к канцерогенезу.

Для того, чтобы количественно определить повторно используемую часть вещества в обороте, предложен коэффициент рециркуляции — отношение суммарных количеств вещества, циркулирующих между разными отделами системы, к общему потоку вещества через всю систему: CI = TSTс/TST, где СI — коэффициент рециркуляции, TSTC рециркулируемая доля потока через систему и TST общий поток вещества через систему. .

Элементы, которые человек считает ценными (платина, золото), повторно используются на 90% и более. Однако коэффициент рециркуляции энергии равен нулю.

1. Что такое биогеохимические циклы?

2. Как происходит круговорот биогенных элементов?

3. Что такое коэффициент рециркуляции?

4. Какие существуют фазы круговорота в пределах экосистем?

5. Круговороты каких соединений особенно важны для человечества?

1. Что такое биогеохимические циклы?

а) круговорот веществ из внешней среды в организмы;

б) замкнутый круговорот биогенных элементов;

в) непрерывный круговорот биогенных элементов из внешней среды в организмы и обратно во внешнюю среду.

2. Дайте определение природной среды.

а) совокупность объектов природы;

б) совокупность условий природы;

в) совокупность объектов и условий природы, где происходит деятельность какого-либо субъекта.

3. Охарактеризуйте резервный фонд круговорота веществ.

а) фонд, включающий большую массу движущихся веществ;

б) фонд, включающий массу движущихся биологических компонентов;

в) фонд, включающий большую массу движущихся небиохимических компонентов.

4. Охарактеризуйте подвижный (обменный) фонд круговорота веществ.

а) фонд, отличительной особенностью которого является быстрый обмен между организмами;

б) фонд, включающий большое количество биогенных элементов;

в) фонд, отличительной особенностью которого является быстрый обмен между организмами и их непосредственным окружением.

5. Что показывает коэффициент рециркуляции?

а) рециркулируемую долю потока через систему;

б) общий поток вещества через систему;

в) отношение суммарных количеств вещества, циркулирующих между разными отделами системы, к общему потоку вещества через всю систему.

Необходимое для существования жизни на Земле вещество, как правило, может использоваться неоднократно. Именно этот процесс среди биологических наук и принято называть круговоротом веществ или биогеохимическими циклами.

Основным поставщиком энергии на нашу планету является Солнце, а механизмы которые обеспечивают вовлечение веществ в круговорот, преимущественно основаны на биологических процессах.

Структура биогеохимических циклов

В круговороте веществ принято выделять два фонда:

  • резервный - представляющий собой большую массу медленно движущихся веществ, преимущественно в небиологической сфере;
  • обменный - меньший по размеру, но более активный, характерной особенностью которого является быстрый обмен между организмами и окружающей средой.

Как правило, резервный фонд хранится в относительно рассеянном и подвижном виде, доступ к которому имеет большинство живых организмов, независимо от их местоположения.

Для обеспечения круговорота веществ, как известно, лучше всего подходит атмосфера и гидросфера, которые выполняют роль так называемых буферных зон, соединяющих друг с другом различные формы жизни. Следует отметить, что почва является менее подвижной зоной. Именно буферные зоны источниками питательных веществ для организмов, которые пополняют их своими продуктами жизнедеятельности.

Готовые работы на аналогичную тему

Основные типы биогеохимический циклов

В экологии биогеохимические циклы принято разделять на два типа:

  • круговорот газообразных веществ, резервный фонд которых сосредоточен в атмосфере или гидросфере;
  • осадочный цикл, резервный фонд которого сосредоточен в земной коре.

Круговороты газообразных веществ являются более совершенными. Причиной тому является наличие большого обменного фонда и, как следствие, способности к быстрой саморегуляции.

Что касается круговорота осадочного цикла, то он является менее совершенным, но более инертным, в связи с тем, что основная масса вещества сосредоточена в резервном фонде земной коры в недоступном живым организмам виде. Отличительной особенностью осадочных круговоротов является то, что они легко нарушаются от различного рода воздействий и часть обмениваемого материала выходит из круговорота.

Вернуться в круговорот эта часть материала может лишь в результате геологических процессов или путем извлечения живым веществом, однако извлечь необходимые для живых организмов вещества из литосферы гораздо сложнее, чем из атмосферы.

Как правило, часть вещества в процессе круговорота выходит из него в захоронения в виде угля, нефти, торфа, осадочных пород и т.д. Однако в результате протекания тектонических и геологических процессов, а также вследствие антропогенной деятельности большинство веществ вновь вовлекается в круговорот.

Для обеспечения процесса синтеза вещества клеток живым организмам необходимо примерно 40 элементов, из которых самыми важными являются углерод, азот, водород, кислород, фосфор и сера.

Схема биогеохимической цикличности в биосфере. Справа на схеме — разрез дерново-подзолистой почвы под хвойным (по А. Г. Назарову).

Полезное

Смотреть что такое "БИОГЕОХИМИЧЕСКИЕ ЦИКЛЫ" в других словарях:

БИОГЕОХИМИЧЕСКИЕ ЦИКЛЫ — биогеохимические круговороты веществ, обмен в вом и энергией между разл. компонентами биосферы, обусловленный жизнедеятельностью организмов и носящий циклич. характер. Основы представлений о биогеохим. цикличности заложены В. И. Вернадским в… … Сельско-хозяйственный энциклопедический словарь

биогеохимические циклы — биогеохимические циклы, биогеохимические круговороты веществ, обмен веществом и энергией между различными компонентами биосферы, обусловленный жизнедеятельностью организмов и носящий цикличный характер. Основы представлений о биогеохимической… … Сельское хозяйство. Большой энциклопедический словарь

ПРОЦЕССЫ БИОГЕОХИМИЧЕСКИЕ — процессы, происходящие в неживых и живых системах (биоценозах), и взаимосвязь между ними. Поддерживают биотический круговорот веществ и поток энергии, т. е. биогеохимические циклы. См. также Биогеохимические принципы Вернадского. Экологический… … Экологический словарь

ЗАГРЯЗНЕНИЕ БИОСФЕРЫ — комплекс разнообразных воздействий человеческого общества на биосферу, приводящих к увеличению уровня содержания вредных веществ в биосфере, появлению новых хим. соединений, частиц и чужеродных предметов, чрезмерному повышению темп ры (тепловое 3 … Биологический энциклопедический словарь

ВЕЩЕСТВО ЖИВОЕ — совокупность живых организмов биосферы. Обладает массой, элементарными химический составом, биогеохимической энергией. В живом веществе обнаружено около 40 химических элементов, которые в результате его деструкции попадают во внешнюю : среду, в… … Экологический словарь

БИОСФЕРА — оболочка Земли, в пределах которой существует жизнь. Биосфера включает нижнюю часть атмосферы (15 20 км), верхнюю часть литосферы и всю гидросферу. Нижняя граница опускается в среднем на 2 3 км на суше и на 1 2 км ниже дна океана. Термин биосфера … Энциклопедия Кольера

КРУГОВОРОТ ВЕЩЕСТВ — в природе, относительно повторяющиеся взаимосвязанные физические, химические и биологические процессы превращения и перемещения вещества в природе. До создания В. И. Вернадским биогеохимии и учения о биосфере в науке бытовало представление о… … Биологический энциклопедический словарь

Геохимический цикл углерода — Схема геохимического цикла углерода показывает количество углерода в атмосфере, гидросфере и геосфере Земли, а также годовой перенос углерода между ними. Все величины в гигатоннах (миллиардах тонн). В результате сжи … Википедия

ЭКОЛОГИЧЕСКАЯ ПРОБЛЕМА — (от греч. oikos обиталище, дом и logos учение) в широком смысле весь комплекс вопросов, вызванных противоречивой динамикой внутреннего саморазвития природы. В основе специфического проявления Э.п. на биологическом уровне организации материи лежит … Философская энциклопедия

Читайте также: