Архитектоника коры больших полушарий кратко

Обновлено: 05.07.2024

Кора большого мозга разделяется на новую, древнюю, старую и промежуточную, существенно сличающиеся но строению.

Новая кора (neocortex) занимает около 96 % всей поверхности полушарий большого мозга и включает затылочную, нижнюю теменную, верхнюю теменную, постцентральную, прецентральную, лобную, височную, островковую и лимбическую области.

Новая кора большого мозга характеризуется шестислойным строением:

I слой – молекулярная пластинка (lamina molecularis);

II – наружная зернистая пластинка (lamina granularis externa);

III – наружная пирамидная пластинка (lamina pyramidalis externa);

IV – внутренняя зернистая пластинка (lamina granularis interna);

V – внутренняя пирамидная пластинка (lamina pyramidalis interna);

VI – мультиформная пластинка (lamina multiformis).

Это гомотипическая кора. Но в некоторых полях коры количество слоев уменьшается вследствие исчезновения того или иного слоя или увеличивается за счет разделения слоя на подслои (гетеротипическая кора).

Цитоархитектонические особенности различных участков коры большого мозга обусловлены шириной поперечника коры и ее отдельных слоев, величиной клеток, плотностью их расположения в различных слоях, выраженностью горизонтальной и вертикальной исчерченности, разделением отдельных слоев на подслои, какими-либо специфическими признаками строения данного поля и т.д. Эти особенности лежат в основе разделения коры большого мозга на области, подобласти, поля и подполя.

Важным критерием для классификации областей и полей коры большого мозга являются закономерности их развития в онто– и филогенезе. Эволюционный подход, который был успешно использован для изучения цитоархитектоники коры большого мозга, позволил создать современную классификацию полей коры большого мозга.

Затылочная область связана с функцией зрения, она характеризуется густоклеточностью, просветленным V слоем, нечетким разделением II и III слоев. Нижняя теменная область характеризуется большой шириной коры, густоклеточностью, выраженностью II и IV слоев, радиальной исчерченностью, проходящей через все слои. Эта область имеет отношение к наиболее сложным ассоциативным, интегративным и аналитическим функциям, при ее повреждении нарушаются письмо, чтение, сложные формы движений и т.д. Верхняя теменная область также участвует в сложных интегративных и ассоциативных функциях, она характеризуется горизонтальной исчерченностью, средней шириной коры, крупными клетками в III и V слоях, хорошо видимыми II и IV слоями. Постцентральная область связана с чувствительностью, при этом восприятие раздражений с различных участков тела организовано соматотопически. Эта область имеет небольшую ширину коры, выраженный II и IV слои, большое число клеток во всех слоях, светлый V слой. Прецентральная область характеризуется слабой выраженностью II слоя, отсутствием IV слоя, наличием очень крупных пирамидных клеток в V слое, сравнительно большой шириной коры. Эта область определяет произвольные движения, ее отдельные участки связаны с определенными мышцами. Лобная область связана с высшими ассоциативными и интегративными функциями, играет наиболее важную роль в высшей нервной деятельности. Она характеризуется широкой корой, выраженностью II и IV слоев, широкими III и V слоями, разделенными на подслои. Височная область имеет отношение к слуховому анализатору. Она разделяется на четыре подобласти, каждая из которых имеет свои особенности архитектоники. Островковая область связана с функцией речи, частично – с анализом обонятельных и вкусовых ощущений. Она характеризуется сравнительно большой шириной коры, широким IV слоем, выраженной горизонтальной исчерченностыо. Лимбическая кора связана с вегетативными функциями, цитоархитектонически характеристика ее представляется весьма сложной, и характерные признаки для всех ее полей отсутствуют.

Древняя кора (paleocortex) включает обонятельный бугорок, диагональную область, прозрачную перегородку, периамигдалярную и препириформную области. Характерно для древней коры слабое отграничение ее от подлежащих подкорковых образований.

Старая кора (archicortex) включает аммонов рог, subiculum, зубчатую фасцию и taenia tecta. Старая кора отличается от древней коры тем, что она четко отделена от подкорковых образований.

Как старая, так и древняя кора не имеет шестислойного строения. Она представлена трехслойными или однослойными структурами. Между древней, старой корой и окружающими их формациями располагаются промежуточные зоны – перипалеокортикальные формации.

Древняя, старая и промежуточная кора занимает 4,4 % коры большого мозга.

ПОРАЖЕНИЯ ЗАТЫЛОЧНОЙ ДОЛИ КОРЫ ГОЛОВНОГО МОЗГА

ПОРАЖЕНИЯ ЗАТЫЛОЧНОЙ ДОЛИ КОРЫ ГОЛОВНОГО МОЗГА Данная область связана с функцией зрения; ее поражения вызывают разнообразные зрительные расстройства. Если патологический процесс затрагивает значительные области затылочных полей (особенно при поражении наружной

10. Характерная симптоматика поражения отдельных участков коры головного мозга

10. Характерная симптоматика поражения отдельных участков коры головного мозга Симптомы поражения отдельных участков коры головного мозга зависят от места локализации патологического процесса. Могут отмечаться не симптомы поражения, а симптомы раздражения отдельных

ЛЕКЦИЯ № 7. Высшие мозговые функции. Речь, гнозис, праксис. Синдромы поражения коры больших полушарий головного мозга

ЛЕКЦИЯ № 7. Высшие мозговые функции. Речь, гнозис, праксис. Синдромы поражения коры больших полушарий головного мозга 1. Головной мозг и его структура Головной мозг состоит из двух полушарий, которые разделены между собой глубокой бороздой, доходящей до мозолистого тела.

24. Нервная система. Кора большого мозга. Цитоорхитектоника коры большого мозга

24. Нервная система. Кора большого мозга. Цитоорхитектоника коры большого мозга Кора большого мозга. Представлена слоем серого веществаЦитоархитектоника коры большого мозга. Нейроны коры весьма разнообразны по форме, они являются мультиполярными клетками. Они делятся

25. Нервная система коры большого мозга. Миелоархитехтоника коры

25. Нервная система коры большого мозга. Миелоархитехтоника коры Миелоархитектоника коры. В больших полушарий можно выделить следующие типы волокон: ассоциативные волокна, комиссуральные и проекционные волокна – как афферентные, так и эфферентные (связывают кору с

Глава 29 ПСИХИЧЕСКИЕ РАССТРОЙСТВА ПРИ СИФИЛИТИЧЕСКОМ ПОРАЖЕНИИ МОЗГА (СИФИЛИС МОЗГА И ПРОГРЕССИВНЫЙ ПАРАЛИЧ)

Глава 29 ПСИХИЧЕСКИЕ РАССТРОЙСТВА ПРИ СИФИЛИТИЧЕСКОМ ПОРАЖЕНИИ МОЗГА (СИФИЛИС МОЗГА И ПРОГРЕССИВНЫЙ ПАРАЛИЧ) Сифилитическая инфекция, как известно, поражает все органы и ткани, в том числе и головной мозг. В клинической психиатрии традиционно различают два отдельных

Электрическая активность коры головного мозга

Электрическая активность коры головного мозга Мембранный потенциал пирамидных клеток составляет от 50 до 80 мкВ, потенциал – действия 60–100 мкВ. Частота ПД – около 100 Гц. Он возникает в аксонном холмике нейронов коры, регистрируется с помощью микроэлектродной техники. При

Аналитическая и синтетическая деятельность коры головного мозга

Аналитическая и синтетическая деятельность коры головного мозга Деятельность коры головного мозга обеспечивает постоянный анализ и синтез сигналов, поступающих из окружающей и внутренней среды организма. Анализ и синтез неразрывно связаны между собой и не могут

1.4.7. Кора большого мозга

1.4.7. Кора большого мозга Полушария большого мозга разделены глубокой бороздой, которая доходит до мозолистого тела – массивного слоя волокон, соединяющих оба полушария. Каждое полушарие имеет три полюса: лобный, затылочный и височный. Макроскопически в каждом полушарии

8.5. Метод транскраниальной магнитной стимуляции двигательных зон коры большого мозга

8.5. Метод транскраниальной магнитной стимуляции двигательных зон коры большого мозга Магнитная стимуляция головного мозга – неинвазивный метод оценки функционального состояния пирамидного пути – проводится с помощью магнитного стимулятора при интенсивности

13.1.1. Опухоли полушарий большого мозга

13.1.1. Опухоли полушарий большого мозга При опухолях полушарий большого мозга отмечается разнообразная симптоматика, обусловленная спецификой тех областей, в которых они располагаются. Прежде чем перейти к описанию отдельных опухолей полушарий большого мозга,

Меридианы головного мозга (перикарда) и спинного мозга (тройного обогревателя)

Меридианы головного мозга (перикарда) и спинного мозга (тройного обогревателя) Тот, кто более или менее знаком с литературой по китайской традиционной медицине, наверное, сразу обратил внимание на некоторое несоответствие в названиях данных меридианов. Дело в том, что в

Значение, роль коры больших полушарий головного мозга человека

В статье мы рассмотрим локализацию функций, участки, анализаторы, поля, участки, области зоны коры больших полушарий головного мозга человека (мужчины, женщины). Неврологи, невропатологи, рефлексотерапевты, рефлексологи выделяют 4 основных положения, применительно к практической деятельности невропатолога, современного учения о локализации функций в коре головного мозга.

1. Очень сложная морфологическая и функциональная дифференциация коры больших полушарий головного мозга. Лобная доля больше отвечает за двигательные функции. Теменная, затылочная и височная зоны больше отвечают за чувствительные функции.

2. Динамичность и относительность локализаций функций коры головного мозга. Определенный участок коры головного мозга, обеспечивая какую-то одну функцию, в то же время в разнообразных сочетаниях с другими ее полями может участвовать в осуществлении различных корковых функций и образовывать новые кортикальные связи. Это имеет значение в процессах компенсации при таких состояниях, как поражение коры головного мозга, нарушение коры головного мозга, смерть или повреждение коры головного мозга, отмирание, незрелость коры головного мозга.

3. Формирование специальных корковых областей в процессе практической деятельности.

Функция творит центр

Локализация функций и симптомов

Проводя топическую диагностику рефлексотерапевт, невролог, невропатолог, микроневропатолог, детский невролог, взрослый невролог определяет не только локализацию поражения корковых центров, но и локализацию симптомов. Простые корковые функции связаны с проекционными пластинками коры (пятой и четвертой), имеющими непосредственную связь с периферией и являющимися корковыми отделами анализаторов. Сложные корковые функции связаны с ассоциативными слоями коры (вторым и третьим). Последние слои соединены горизонтальными волокнами с другими участками коры головного мозга в пределах одного полушария и не имеют прямого выхода на периферию. Большое значение в обеспечении сложных корковых функций имеют также комиссуральные связи между полушариями, проходящими через мозолистое тело.

Простые корковые функции обычно представлены в обоих полушариях головного мозга. Сложные корковые функции чаще имеют асимметричное представительство в правом или левом полушарии головного мозга. Итак, какие бывают поля, участки, области, типы коры головного мозга, отделы, анализаторы, части коры головного мозга?

Двигательная кора головного мозга, двигательные центры головного мозга, двигательные анализатор, моторный

Главным корковым отделом двигательного анализатора, его первичным полем, является предцентральная извилина, в верхних отделах которой находится проекционная область мышц стопы, голени, бедра, в средней части – туловища и руки, в нижней трети – лица. Двигательная иннервация построена по соматотопическому принципу. На этом уровне осуществляются тонкие дифференцированные движения. Кроме того, имеются дополнительные двигательные зоны – это вторичные поля двигательного анализатора и третичные поля двигательного анализатора. Дополнительные двигательные зоны обеспечивают сложные автоматизированные двигательные акты. Например, в парацентральной дольке находятся корковые центры тазовых органов. В задних отделах верхней лобной извилины находится переднее адверсивное поле. Заднее адверсивное поле располагается на границе верхней теменной дольки и затылочной области. Задние отделы средней лобной извилины отвечают за сочетанный поворот головы и глаз в противоположную сторону. Задние отделы нижней лобной извилины осуществляет движения типа орального автоматизма – глотание, жевание, лизание.

Чувствительная кора головного мозга, чувствительные центры головного мозга, чувствительный анализатор

Главным корковым отделом поверхностных и глубоких видов чувствительности является постцентральная извилина, где также имеется соматотопическое представительство участков периферии, аналогичное вышеуказанному. К поверхностной чувствительности относятся температурная чувствительность, болевая чувствительность, тактильная чувствительность.

Стереогноз, стереогнозис

Сложные виды чувствительности локализованы в коре полушарий головного мозга на уровне верхней теменной дольки, где отсутствует соматотопика. К сложным видам чувствительности относятся стереогностическая чувствительность (стереогноз, стереогнозис), двумерно-пространственная чувствительность, чувство локализации и дискриминации. Зрительная проекционная зона (зрительная зона коры) занимает область шпорной борозды – внутренняя поверхность затылочной доли. Слуховая проекционная зона (слуховая зона коры) занимает центр верхней височной извилины и извилину Гешля. Вестибулярная проекционная зона находится рядом со слуховой. Обонятельная проекционная зона локализуется на внутренней поверхности височной доли, в извилине гиппокампа. Вкусовая проекционная зона находится рядом с последней, а также в области покрышки и островка Reili.

Теперь остановимся на локализации сложных корковых функций.

Обычно сложные корковые функции локализуются в левом полушарии головного мозга у правшей и в правом полушарии головного мозга у левшей.

Речевой анализатор, центр Вернике, центр Брока, функция речи - сенсорный центр

Функцию речи обеспечивает сенсорный центр (центр Вернике), который располагается в заднем отделе верхней височной извилины. При поражении центра Вернике наблюдается сенсорная афазия. Также функцию речи обеспечивает двигательный центр (центр Брока), который располагается в области задних отделов нижней лобной извилины. При поражении центра Брока наблюдается моторная афазия. При патологии на стыке височной и затылочной долей формируется амнестическая афазия и семантическая афазия. Речевые зоны коры головного мозга.

Лексический анализатор, центр лексии, функция чтения

Функции чтения обеспечивает лексический центр (центр лексии). Центр лексии располагается в угловой извилине.

Графический анализатор, центр графии, функция письма

Функции письма обеспечивает графический центр (центр графии). Центр графии располагается в заднем отделе средней лобной извилины.

Счетный анализатор, центр калькуляции, функция счета

Функции счета обеспечивает счетный центр (центр калькуляции). Центр калькуляции располагается на стыке теменно-затылочной области.

Праксис, праксический анализатор, центр праксиса

Гностический центр, центр гнозиса

В правом полушарии у правшей, в левом полушарии головного мозга у левшей представлены многие гностические функции. При поражении преимущественно правой теменной доли может возникать анозогнозия, аутопагнозия, конструктивная апраксия. С центром гнозиса также связаны музыкальный слух, ориентация в пространстве, центр смеха.

Память, мышление

Наиболее сложные корковые функции – это память и мышление. Эти функции не имеют четкой локализации.

Память, функция памяти

В реализации функции памяти участвуют различные участки. Лобные доли обеспечивают активную целенаправленную мнестическую деятельность. Задние гностические отделы коры связаны с частными формами памяти - зрительной, слуховой, тактильно-кинестической. Речевые зоны коры осуществляют процесс кодирования поступающей информации в словесные логико-грамматические системы и словесные системы. Медиобазальные отделы височной доли, в частности гиппокамп, переводят текущие впечатления в долговременную память. Ретикулярная формация обеспечивает оптимальный тонус коры, заряжая ее энергией.

Мышление, функция мышления

Функция мышления – это результат интегративной деятельности всего головного мозга, особенно лобных долей, которые участвуют в организации целенаправленной сознательной деятельности человека, мужчины, женщины. Происходят программирование, регуляция и контроль. При этом у правшей левое полушарие является основой преимущественно абстрактного словесного мышления, а правое полушарие связано главным образом с конкретным образным мышлением.

Развитие корковых функций начинается с первых месяцев жизни ребенка, достигает своего совершенства к 20 годам.

Зоны коры головного мозга

В последующих статьях мы остановимся на актуальных вопросах неврологии: зоны коры головного мозга, зоны больших полушарий, зрительная, зона коры, слуховая зона коры, моторные двигательные и чувствительные сенсорные зоны, ассоциативные, проекционные зоны, моторные и функциональные зоны, речевые зоны, первичные зоны коры головного мозга, ассоциативные, функциональные зоны, фронтальная кора, соматосенсорная зона, опухоль коры, отсутствие коры, локализация высших психических функций, проблема локализации, мозговая локализация, концепция динамической локализации функций, методы исследования, диагностики.


другом несколько позже — появляется тек-тогенетическая шестислойная кора. Но она формируется не всюду: есть участки коры большого мозга, к-рые через этот стадий развития не проходят, т. е. в них шесть слоев или не образуются или они недоразвиваются Наружная поверхность

Рисунок 3. Ареальная карта Brodmann'a. Названия полей: 1—a. postcentralis Intermedia; 2—a. postcentralis caudalis; 3—a. postcentralis oralis; 4—a. prae-centralis gigantopyramydalis; 5—a. praeparietalis; 6—a. frontalis agranularis; 7—a. parietalis superior; 8—a. trontalis intermedia; 9—a. frontalis granuiaris; 10—a. frontopolaris; 11—a. praefrontalis; 17—a. striata; J*—a. occipitalis; 19—a. praeoccipitalis; 20—a. temp oralis infer.; 21—a. tempor. media; 22—a. temper. sup.; 23—a. limbica post, ventralis; 24—a. limb. ant. ventr.; 26—a. subge-nualis; 26—a. ectosplenialis; 27—a. praesubicularis; 28—a. entorhinalis ventralis; 29—a. retrolimbica granuiaris; 30—a. retrolimbica agranularis; 31—a. limbica post, dorsalis; 32—a. limb. ant. dors.; 33—a. praegranularis; 34—a. entorhinalis dors.; 35—a. perirhinalis; 36—a. ectorhinalis; 37—a. occipito-temporalis; 38—a. temporopolaris; 39—a. pariet. inf. post. s. angularis; 40—a. pariet. inf. ant. s. supragranularis; 41—a. tempor. transversa ant.; 42—a. temp, transv. post.; 43 —a. subcentralis; 44 — a. opercularis; 45 — a. triangularis; 46 — a. frontalis media; 4 7—a. orbitalis.

Верхняя поверхность FE


Рисунок 5. Ареальиые карты Economo и Koskinas. Regio praerolandica: area praecentralis (FA); a. Irontalis agranularis (FB); a. frontalis intermedia (FC) и др. Regio frontalis: a. frontalis granularis (FB); a. frontopolaris (FE) и др. Regio orbitalis: a. orbitalis (granularis) (FF); a. gyri recti (FG); a. praefrontalis (FH); a. frontoinsularis (FT); a. pi-riformis frontalis (FK); a. parolfactoria (FL); a. geniculata (FM); a. praecommissuralis (FN). Hegio limbica sup. ant.; a. limb. ant. agr. a. ultracingularis ant. (LB,); a. indusei (.LB,). Regio limb. sup. post.: a. cingularis post, dorsalis (LC,); a. cingularis post, ventral. (LCS); a. cingularis lim. post. (LC,). Subregio retrosplenialis; a. retrosplenial. agranularis (LD); a. retrosplemalis granulosa (LE); a. ultracingularis post. (LFJ; a. (ultracingularis) obtecta (LF2). Lobus insulae: a. insul. praecentralis (JA); a. insulae postcentralis (JB); a. orbito-insularis (JC); a. insularis piriformis (JD). Regio postcentralis (parietalis ant.): a. postcentralis gigantopyrami-dalis (PAJ; a. postcentralis oralis simplex (PB); a. postcentr. intermedia (PC); a. postcentr. caudalis (PD). Regio parietalis sup.: a. parietal, sup. (PE). Regio parietal, inf.: a. supramarginalis (PF); a. angularis (PG). Regio parietalis basalis: a. pariet. (temporo-occipitalis) basalis (PH). Lobus occipitalis: a. peristriata (OA); a. parastriata (OB); a. striata (granulosa) (ОС). Regio supratemporalis: a. temp. sup. (ТА); a. supratempor. magnoc. simplex (ТВ); a. supratemporalis granulosa (TC); a. supratemp. intercalata (TD). Regio tempor. propria: a. tempor. propria (ТЕ). Regio fusiformis: a. fusiformis (TF); a. hippocam-potemporalis (TH). Regio temporopolaris: a. temporopolaris (TG); a. piriformis tempor. (TG); a. subst. pert. post. (TH). Lobus limbicus inferior: a. uncinata (HA); a. parauncinata (ЯВ); a. rhinalis limitans (HC); a. praesubicular. granul. (HD); a. pyramidalis (HE); a. fasciae dentatae (HF).

обособленность клеток полей при распределении их по слоям, в действительности они тесно сплетаются друг с другом своими отростками и образуют один неврональный комплекс. В этом комплексе каждая своеобразно диференцированиая клетка или каждый слой имеют свои биол. функции, и все они, в свою очередь, покрываются нек-рой биологической же функцией ареального целого. Данные физиологии о локализации в коре отдельных отправлений мозга в общем соответствуют делению коры на области и поля. Чтобы убедиться в этом, достаточно сравнить ареальные и локализационные карты. При этом ни у кого не возникает сомнения в том, что нек-рые проявления мозговой деятельности локализуются в тех или других областях. Спорным является только вопрос о том, совпадает ли какая-либо мозговая функция точно с пределами той или другой агеае. Проблема эта сложна и трудна для решения. Многие проявления мозговой деятельности в действительности не так просты, как кажутся, и соответствуют часто деятельности целого мозга или его части, но все же есть другие функции^—более простые и более локализованные. Нек-рые из них, несомненно, соответствуют area. Имеют большое значение в этом отношении данные работ Геншена, Вильбранда, Минковского и Монакова (Henschen, Willbrand, Minkow-sky, Monakow), которые позволяют связывать элементарный акт зрения с областью fiss. calcarinae (area striata). Показательны и новые опыты С. и О. Фохтов с электро-раздрая:имой корой церкопитека, при чем оказалось,что каждому полю,предварительно обособленному на основании цитоархи-тектоники, соответствует особая функция. Особенно поразительно совпадение по сходству двух ареальных карт—одной, составленной О. Фохтом для человеческого мозга по данным эксперимента над церкопитеком, и другой, составленной Ферстером (Foerster) для человеческого же мозга на основании раздражения коры при операциях. ; А. и высшая нервная (психическая) деятельность. Архитектоника коры головного(болыного)мозга как органа •высшей нервной (психической) деятельности имеет большое значение и для исследования этой последней. Так, архитектоника дает руководящие указания и рефлексологу, занимающемуся образованием условных рефлексов, и психологу, изучающему поведение животных: и тот и другой, производя добавочно экспериментальное раздражение Или разрушение коры животных, имеют воз-|можность базироваться при этом не только да топографии борозд и долей, но и на тонкой ареальной структуре. Новое слово вносит далее архитектоника коры головного мозга в изучение того естественного эксперимента над человеком, каким является душевная болезнь. Патологическая анатомия т. н. дефективных психозов (слабоумий) в свете топистики, патоклизы и патоархитектоники (С. и О. Фохты) получила уже новое понимание. При этом наглядно выявился ;анат. субстрат и идиотии и приобретенных интеллектуальных дефектов. Ценность архитектонических исследований надо считать доказанной и по отношению к здоровой психике. Имеется ряд микроскопических исследований, устанавливающих особенности индивидуальной архитектоники. Намечаются архитектоника расовая, архитектоника преступников и т. д. Особенно большое значение приобретает изучение архитектонических особенностей мозга высокоодаренных людей. В этих исследованиях важны не только получаемые новые морфологические данные, но еще в большей степени установление соотношений между ними и теми или Другими психическими особенностями данных лиц. Задача будущего не только точно установить такие соотношения, но и доказать их закономерность, т. е. то, что они 'удовлетворяют математической формуле корреляций. Для этого, очевидно, понадобится произвести большое число исследований. В общем, можно сказать, что все данные произведенных до сих пор архитектонических исследований как на людях, так и на животных, подтверждают следующее общебиологическое положение: в процессе органического развития диференцировке формы соответствует диференцировка функции; психическая деятельность, представляющая собой одну из функций мозга, не составляет исключения из этого положения. Ареальные атлас и карты. Выше говорилось о трудности дать описание ламинарной структуры агеае без рисунка. Эта нужда восполняется фотографиями цито- и миэлоархитектонических картин каждой агеае. С ними каждый, занимающийся исследованием архитектоники коры голов- ного мозга, может сверять свои препараты при исследовании индивидуальных, расовых, возрастных и патологических особенностей строения коры. Из таких фотографий составляется атлас (см. атлас и точное описание каждой из area у Экономо-Коскинас). Раз определены границы отдельных агеае, то из них легко составить карту мозговой поверхности (см. рисунок 3, 4, 5). Патоархитектоника и па ток л и-з а. Применение архитектонических методов к изучению нервных и душевных б-ней привело С. и О. Фохтов к учению о патоар-хитектонике и патоклизе. По С. и О. Фох-там, диагносцировать то или другое страдание мозга можно часто на основании одной лишь патоархитектоники. Ими доказано это по отношению к болезням corporis striati, и они пытаются также распространять этот принцип на б-ни головного мозга. В литературе имеется ряд патоархитектони-ческих исследований различных дементных болезненных форм (дефект-психозов), латерального склероза, Гетчинсоновской хореи, церебрального паралича при целости пирамидных путей, раннего слабоумия, эпилепсии, прогрессивного паралича, маниакально-депрессивного психоза и др. Интересно, что изменения патоархитектоники идут по определенным законам.Многие вредности имеют сродство с отдельными невро-нальными комплексами (патоклиза), поражая их больше, чем другие. Напр., пора^ жается III и V слои или только IV слой. Это—ламинарная патоклиза. В меньшей степени проявляется она на отдельных агеае (ареальная патоклиза). Лит.: Betz w., tlber die feinere Struktur der Grosshirnrinde, Zentralblatt 1. med. Wiss., 1874 u. 1881; V о g t C. u. O., Allgemeine Ergebnisse unserer Hirnforschung, Jahrb. f. Psychologie u. Neurologie, 1919, B. XXV, Erganzungsheft; и х ж e, Erkran-kungen der Grosshirnrinde im Lichte der TopistiX, Pathoklise u. Pathoarchitektonik, 1922, Erganzungsheft; Brodmann K., Vergleichende Lokalisations-lehre der Grosshirnrinde, Leipzig, 1925; E со no mo С. и. К oskin as &., Die Zytoarchitektonik der Hirn-rinde des erwachsenen Menschen, Textband und Atlas, Wi en, 1925; Kappers A., Die vergleichende Anatomie des Nervensystems der Wirbeltiere und des Menschen, 1921; EoseM., ttber das histogenetische Prinzip der Einteilung d. Grosshirnrinde, Jahrbuch /Or Psychologie und Neurologie, 1926, Band XXXII; E с o-nomo C., Zellaufbau der Grosshirnrinde des Menschen, Berlin, 1927. П. Снесарев.

Кора полушарий головного мозга представлена слоем серого вещества толщиной в среднем около 3 мм (1,3 — 4,5 мм). Наиболее сильно развита она в передней центральной извилине. Обилие борозд и извилин значительно увеличивает площадь серого вещества головного мозга. В коре содержится около 10-14 млрд нервных клеток. Различные её участки, отличающиеся друг от друга некоторыми особенностями расположения и строения клеток (цитоархитектоника), расположения волокон (миелоархитектоника) и функциональным значением, называются полями. Они представляют собой места высшего анализа и синтеза нервных импульов. Резко очерченные границы между ними отсутствуют. Для коры характерно расположение клеток и волокон слоями [5].

Типичным для новой коры (лат. neocortex) является наличие шести слоёв, различающихся между собой главным образом по форме входящих в них нервных клеток. При этом на медиальной и нижней поверхностях полушарий сохранились участки старой (лат. archipallium) и древней (лат. paleopallium) коры, имеющей 2-слойное и 3-слойное строение[1]. Также выделяется промежуточная кора (лат. mesopallium) располагающаяся между старой и новой, а также древней и новой корой[3]. Древняя кора представлена гиппокампом, а старая — участком коры возле обонятельной луковицы на нижней поверхности лобной доли[1].

Мультиполярный нейроны коры головного мозга весьма разнообразны по форме. Среди них можно выделить:

Пирамидные нейроны составляют основную и наиболее специфическую для коры головного мозга форму (80—90 % всех нейронов). Размеры их варьируют от 10 до 140 мкм. Они имеют вытянутое треугольное тело, вершина которого обращена к поверхности коры. От вершины и боковых поверхностей тела отходят дендриты, заканчивающиеся в различных слоях серого вещества. От основания пирамидных клеток берут начало аксоны, в одних клетках короткие, образующие ветвления в пределах данного участка коры, в других — длинные, поступающие в белое вещество [5].

Пирамидные клетки различных слоёв коры отличаются размерами и имеют разное функциональное значение. Мелкие клетки представляют собой вставочные нейроны, аксоны которых связывают отдельные участки коры одного полушария (ассоциативные нейроны) или двух полушарий (комиссуральные нейроны). Эти клетки встречаются в разных количествах во всех слоях коры. Особенно богата ими кора головного мозга человека. Аксоны крупных пирамидных нейронов принимают участие в образовании пирамидных путей, проецирующих импульсы в соответствующие центры мозгового ствола и спинного мозга [5].

Нейроны коры расположены нерезко отграниченными слоями. Каждый слой характеризуется преобладанием какого-либо одного вида клеток. В двигательной зоне коры различают 6 основных слоёв:

Молекулярный (лат. lamina molecularis)

Наружный зернистый (лат. lamina granularis externa)

Пирамидальных нейронов (лат. lamina pyramidalis)

Внутренний зернистый (лат. lamina granularis interna)

Ганглионарный (слой клеток Беца) (лат. lamina ganglionaris)

Слой мультиформных (полиморфных) клеток (лат. lamina multiformis) [5]

Кора полушарий головного мозга также содержит мощный нейроглиальный аппарат, выполняющий трофическую, защитную, опорную и разграничительную функции [5].

На медиальной и нижней поверхности полушарий сохранились участки старой, древней коры, которые имеют двухслойное и трехслойное строение.

Непосредственное раздражение определённых участков коры головного мозга приводит к судорогам мышц, соответствующих участку коры — проекционной двигательной зоне. При раздражении верхней трети передней центральной извилины возникает судорога мышц ноги, средней — руки, нижней — лица, причём, на стороне, противоположной очагу раздражения в полушарии

Ассоциативные зоны - это функциональные зоны коры головного мозга . Они связывают вновь поступающую сенсорную информацию с полученой ранее и хранящейся в блоках памяти , а также сравнивают между собой информацию, получаемую от разных рецепторов. Сенсорные сигналы интерпретируются, осмысливаются и при необходимости используются для определения наиболее подходящих ответных реакций, которые выбираются в ассоциативной зоне и передаются в связанную с ней двигательную зону . Таким образом, ассоциативные зоны участвуют в процессах запоминания , учения и мышления , и результаты их деятельности составляют то, что обычно называют интеллектом .

Доминантность. Функциональное значение полушарий различно. Одно из них доминирующее по отношению к определенным функциям. Доминантность полушария обеспечивается: генетической предрасположенностью; неодинаковым кровоснабжением полушарий; воспитанием.

Левое полушарие доминирует в отношении речи, письма, чтения, памяти (особенно зрительной), абстрактного мышления, функции счета, математических способностей.

Правое полушарие: зрительные, тактильные, распознавательные функции, память, восприятие музыки, эмоциональные реакции.

Представление о системной локализации функций в коре больших полушарий. Симптомы и синдромы поражения проекционных полей коры.

Двигательные проекционные области для мускулатуры противоположной стороны тела расположены в передней центральной извилине (рис. 64 и 65, 4).

Проекция для отдельных мышечных групп представлена здесь в порядке, обратном распо-ложению их в теле: верхним отделом передней центральной извилины (и частично lobulus paracentralis на внутренней поверхности полушария — рис. 64 и 66) соответствует нога, средним отделам — рука и нижним отделам передней центральной извилины — лицо, язык, гортань и глотка. Проекция движений туловища, по-видимому, представлена в заднем отделе верхней лобной извилины.[30]

Проекции поворота глаз и головы в противоположную сторону соответствует задний отдел второй лобной извилины. Пути отсюда направляются книзу в непосредственной близости к пирамидным пучкам и устанавливают связи с задним продольным пучком в мозговом стволе, осуществляя произвольную иннервацию взгляда (одного его или в сочетании с поворотом головы)[31].

Чувствительные проекционные области находятся в задней центральной извилине (см. рис. 64 и 65, 8). Проекция кожных рецепторов аналогична соматотопическому представительству в передней центральной извилине: в верхнем отделе извилины представлена чувствительность нижней конечности, в среднем — руки и в нижнем — головы.

Зрительная проекционная область расположена в затылочных долях, на внутренней поверхности полушарий, по краям и в глубине fissurae calcariпае (рис. 66, 2). В каждом полушарии представлены противоположные поля зрения обоих глаз, причем область, расположенная над fissura calcarina (cuneus), соответствует нижним, а область под ней (gyms lingualis) — верхним квадрантам полей зрения.

Слуховая проекционная область коры находится в височных долях, в первой (верхней) височной извилине и в извилинах Гешля (на внутренней поверхности височной доли).

Обонятельная проекционная область расположена также в височных долях, главным образом в gyrus hyppocampi, в особенности в его переднем отделе (крючке, или uncus). Есть основания предполагать, что близко к обонятельным территориям расположены и вкусовые (см. рис. 64).[32]

Правильным будет ограничить понятие проекционной области лишь группбй специальных нервных клеток, расположенных на известной территории, только в определенном клеточном слое коры. Только площадью этой клеточной группы и определяется проекционная область.

В остальном вся кора этой территории, несомненно, входит в состав данного анализатора. Таким образом, передняя, скажем, центральная, извилина полностью входит в широкие поля двигательного анализатора, задняя центральная извилина — кожного и т.д.

Читайте также: