Спектр электромагнитного излучения конспект 9 класс

Обновлено: 04.07.2024

-В данном файле представлена технологическая карта урока №3/10 по физике в 9 классе, тема "Электромагнитные волны", по учебнику А.В.Пёрышкина, Е.М.Гутника. Физика 9, п.53.

Данный урок разработан учителем по системно- деятельностной технологии.

Сложность заключалось в том, что материал теоретический, постановку опытов не возможно использовать за 1 час урока, а информация об эмв необходима для усвоения темы "Электромагнитная природа света".

Но, как показывает практика, результаты теста и заполнение таблицы (см Приложения №2,№3) хорошие, даже учащиеся слабые справились на твёрдую "3".

ВложениеРазмер
Сценарий урока "ЭМВ" по СДП 74.5 КБ
Шкала ЭМВ 121 КБ
Таблица для заполнения 70.5 КБ
Тест "ЭМВ" 52 КБ
Рефлексия 27.5 КБ
Презентация к уроку 1.7 МБ

Предварительный просмотр:

Ф. И. О. педагога: Р.В.Султанова

Предмет: ФИЗИКА
Класс : 9
"Электромагнитные волны"

Цель: Познакомить учащихся с понятием электромагнитной волны.

Деятельностная цель формирование у учащихся умений реализации новых способов действия.

Содержательная цель - расширение ПОНЯТИЙНОЙ базы за счет включения в нее новых элементов

  1. Личностные: Познакомить учащихся с электромагнитными волнами. Научить применять знания для объяснения физических процессов и решения задач, находить связи между физическими характеристиками различных эмв и его восприятием . Дать возможность детям ощутить радость познания, открытия.
  2. Метапредметные: Развивать память, внимание, мышление. Продолжить работу по формированию умственной деятельности: анализа, способности наблюдать, делать выводы, выдвигать гипотезы. Развивать умение выделять главное, существенное в изучаемом материале (составление конспекта), грамотно излагать свои мысли; воспитывать стремление к познанию. Развитие познавательных интересов, интеллектуальных способностей средствами ИКТ. Создать содержательные и организационные условия для развития критического мышления, продолжить формирование навыков самостоятельного поиска необходимого материала.
  3. Предметные: Воспитание понимания причинно-следственных связей в окружающем мире и познаваемости окружающего мира; расширить кругозор учащихся на разборе шкалы эмв и их свойств; развивать самостоятельность учеников, использовать полученные знания в повседневной жизни.

Тепловое излучение

Тепловое излучение – электромагнитное излучение, испускаемое нагретыми телами за счет преобразования энергии хаотического, теплового движения атомов (молекул) тела в энергию излучения и свойственно всем телам при температуре выше О К.

Абсолютно черное тело – это тело, которое независимо от материала и состояния его поверхности поглощает всю энергию падающего на него излучения любой частоты при произвольной температуре.

Количественной характеристикой теплового излучения служит спектральная плотность энергетической светимости тела rv – мощность излучения с единицы площади поверхности тела в единичном интервале частот.

Единица спектральной плотности энергетической светимости в Си – джоуль на метр в квадрате (1 Дж/м 2 ).

Закон Стефана — Больцмана: интегральная энергетическая светимость абсолютно черного тела зависит только от его температуры:

RТ = σ • Т 4 ,

где σ = 5,67 • 10 –8 Вт/м 2 •К 4 – постоянная Стефана – Больцмана.

Мощность излучения нагретого тела прямо пропорциональна площади поверхности тела и четвертой степени температуры тела:

Р = σ • S • Т 4 ,

Исследование теплового излучения сыграло важную роль в создании квантовой теории света. Законы, которым он подчиняется, будут рассмотрены в следующей главе.

Люминесценция

Люминесценция – излучение, представляющее собой избыток над тепловым излучением тела и продолжающееся в течение времени, значительно превышающего период световых колебаний (10 –15 с). Люминесценцией называют свечение тел, которое не может быть объяснено их тепловым излучением. Люминесцировать тело может при любой температуре. Поэтому люминесценцию часто называют холодным свечением. Вещества, способные превращать поглощаемую ими энергию в люминесцентное свечение, называют люминофорами.

Фотолюминесценция – возникает при возбуждении атомов вещества светом (ультрафиолетовые лучи и коротковолновая часть видимого света).

Рентгенолюминесценция – возникает при возбуждении атомов рентгеновским и γ-излучением (экраны рентгеновских аппаратов, индикаторы радиации).

Катодолюминесценция – возникает при возбуждении атомов ускоренными электронами (кинескопы, экраны осциллографов, мониторов).

Радиолюминесценция – возникает при возбуждении атомов продуктами радиоактивного распада.

Электролюминесценция – возникает при возбуждении атомов под действием электрического поля (возбуждение молекул газа электрическим разрядом –газоразрядные лампы).

Хемилюминесценция – возникает при возбуждении молекул в процессе химических реакций.

Биолюминесценция – возникает в биологических объектах в результате определенных биохимических процессов.

Сонолюминесценция – возникает под действием ультразвука.

Люминесценция продолжается и после прекращения внешнего возбуждения люминофора. По длительности остаточного свечения различают флуоресценцию и фосфоресценцию:

  • Флуоресценция – кратковременное остаточное свечение, длительность которого составляет 10 –9 — 10 –8 с.
  • Фосфоресценция – продолжительное остаточное свечение, длительность которого составляет 10 –4 — 10 4 с.

Инфракрасные и ультрафиолетовые лучи

Излучение, которое обнаруживается перед красной частью видимого спектра, называется инфракрасным излучением. ИК излучение занимает частотный диапазон 3 • 10 11 — 3,85 • 10 14 Гц (диапазон длин волн 780 нм – 1 мм). Источниками невидимого инфракрасного излучения являются все нагретые тела.

Излучение, которое обнаруживается непосредственно за фиолетовой частью видимого спектра, называют ультрафиолетовым излучением. УФ излучение занимает частотный диапазон 8 • 10 14 — 3 • 10 16 Гц (диапазон длин волн 10 – 380 нм). Источниками УФ излучения – являются валентные электроны атомов, а также ускоренно движущиеся свободные заряды.

Невидимое УФ излучение обнаруживается по его активному химическому и биологическому воздействию на тела. УФ излучение действует разрушительно на сетчатку глаза. Глаза защищают стеклянными солнцезащитными очками, так как стекло не пропускает УФ излучение. Различные дозы УФ излучения оказывают различное действие на кожу человека: образование защитного пигмента (загара), витамина D2, оказывают бактерицидное действие. УФ излучение широко используется в производстве и медицине.

Рентгеновские лучи

Рентгеновское излучение (Х–лучи) возникает в частотном диапазоне 3 • 10 16 – 3 • 10 20 Гц (диапазон длин волн 10 –12 – 10 –8 м) и является излучением высокой проникающей способности для X–лучей прозрачен лист картона, данное свойство используется в медицине, при рентгеноструктурном анализе в научных экспериментах.

Источниками рентгеновского излучения являются изменяющие свои состояния электроны на внутренних оболочках атомов и ускоренно движущиеся свободные электроны.

Гамма-излучение

γ-излучение – самое коротковолновое электромагнитное излучение, занимающее весь диапазон частот более 3 • 10 20 Гц (длины волн менее 10 –12 м). Обладает еще большей проникающей способностью, чем Х–лучи (γ-излучение проходит сквозь метровый слой бетона).

Поглощение атмосферой Земли практически всех γ-лучей, приходящих к нам из космоса обеспечивает возможность жизни на Земле, γ-излучение возникает при радиоактивном распаде ядер.

Источниками γ-излучения являются атомные ядра, изменяющие свое энергетическое состояние, а так же ускоренно движущиеся частицы.

Шкала электромагнитных волн

Спектр электромагнитных волн условно делят на восемь диапазонов частот (длин волн).

Излучения и спектры

Виды излучений

Тепловое излучение – излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов (или молекул) излучающего тела. Тепловым источником является солнце, лампа накаливания и т. д.

Катодолюминесценция – свечение твердых тел, вызванное бомбардировкой их электронами. Благодаря ей светятся экраны электронно-лучевых трубок телевизоров.

Хемилюминесценция – излучение света в некоторых химических реакциях, идущих с выделением энергии. Ее можно наблюдать на примере светлячка и других живых организмах, обладающих свойством светиться.

Фотолюминесценция – свечение тел непосредственно под действием падающих на них излучений. Примером являются светящиеся краски, которыми покрывают елочные игрушки, они излучают свет после их облучения. Это явление широко используется в лампах дневного света.

Для того чтобы атом начал излучать, ему необходимо передать определенную энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне.

Спектры




Полосатые спектры

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.


Спектральный анализ

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др. В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральный анализы позволяют определять элементный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения. Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта. Простейший спектральный аппарат - спектрограф.

Схема устройства призменного спектрографа

Фраунгоферовы линии


Вскоре выяснялось, что одна из самых отчётливых линий всегда появляется в присутствии натрия. В 1859 году Г.Кирхгоф и Р.Бунзен после серии экспериментов заключили: каждый химический элемент имеет свой неповторимый линейчатый спектр, и по спектру небесных светил можно сделать выводы о составе их вещества. С этого момента в науке появился спектральный анализ, мощный метод дистанционного определения химического состава.

Для проверки метода в 1868 году Парижская академия наук организовала экспедицию в Индию, где предстояло полное солнечное затмение. Там учёные обнаружили: все тёмные линии в момент затмения, когда спектр излучения сменил спектр поглощения солнечной короны, стали, как и было предсказано, яркими на тёмном фоне.

Природа каждой из линий, их связь с химическими элементами выяснялись постепенно. В 1860 году Кирхгоф и Бунзен при помощи спектрального анализа открыли цезий, а 1861 году — рубидий. А гелий был открыт на Солнце на 27 лет ранее, чем на Земле (1868 и 1895 годы соответственно).

Принцип работы

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10—30 мг), необходимого для анализа на большое число элементов. Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000—10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

Спектр электромагнитных излучений

Свойства электромагнитных излучений. Электромагнитные излучения с различными длинами волн имеют довольно много различий, но все они, от радиоволн и до гамма-излучения, одной физической природы. Все виды электромагнитного излучения в большей или меньшей степени проявляют свойства интерференции, дифракции и поляризации, характерные для волн. Вместе с тем все виды электромагнитного излучения в большей или меньшей мере обнаруживают квантовые свойства.

Общим для всех электромагнитных излучений являются механизмы их возникновения: электромагнитные волны с любой длиной волны могут возникать при ускоренном движении электрических зарядов или при переходах молекул, атомов или атомных ядер из одного квантового состояния в другое. Гармонические колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.

Радиоволны. При колебаниях, происходящих с частотами от 10 5 до 10 12 Гц, возникают электромагнитные излучения, длины волн которых лежат в интервале от нескольких километров до нескольких миллиметров. Этот участок шкалы электромагнитных излучений относится к диапазону радиоволн. Радиоволны применяются для радиосвязи, телевидения, радиолокации.

Инфракрасное излучение. Электромагнитные излучения с длиной волны, меньшей 1-2 мм, но большей 8*10 -7 м, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением.


Область спектра за красным его краем впервые экспериментально была исследована в 1800г. английским астрономом Вильямом Гершелем (1738 - 1822 гг.). Гершель поместил термометр с зачерненным шариком за красный край спектра и обнаружил повышение температуры. Шарик термометра нагревался излучением, невидимым глазом. Это излучение назвали инфракрасными лучами.

Инфракрасное излучение испускают любые нагретые тела. Источниками инфракрасного излучения служат печи, батареи водяного отопления, электрические лампы накаливания.

С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте. Инфракрасное излучение применяется для сушки окрашенных изделий, стен зданий, древесины.

Видимый свет. К видимому свету (или просто свету) относятся излучения с длиной волны примерно от 8*10 -7 до 4*10 -7 м, от красного до фиолетового света.

Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения. Свет является обязательным условием развития зеленых растений и, следовательно, необходимым условием для существования жизни на Земле.

Ультрафиолетовое излучение. В 1801 году немецкий физик Иоганн Риттер (1776 - 1810), исследуя спектр, открыл, что за


его фиолетовым краем имеется область, создаваемая невидимыми глазом лучами. Эти лучи воздействуют на некоторые химические соединения. Под действием этих невидимых лучей происходит разложения хлорида серебра, свечение кристаллов сульфида цинка и некоторых других кристаллов.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового света, называют ультрафиолетовым излучением. К ультрафиолетовому излучению относят электромагнитные излучения в диапазоне длин волн от 4*10 -7 до 1*10 -8 м.

Ультрафиолетовое излучение способно убивать болезнетворных бактерий, поэтому его широко применяют в медицине. Ультрафиолетовое излучение в составе солнечного света вызывает биологические процессы, приводящие к потемнению кожи человека - загару.

В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами.

Рентгеновские лучи. Если в вакуумной трубке между нагретым катодом, испускающим электрон, и анодом приложить постоянное напряжение в несколько десятков тысяч вольт, то электроны будут сначала разгоняться электрическим полем, а затем резко тормозиться в веществе анода при взаимодействии с его атомами. При торможении быстрых электронов в веществе или при переходах электронов на внутренних оболочках атомов возникают электромагнитные волны с длиной волны меньше, чем у ультрафиолетового излучения. Это излучение было открыто в 1895 году немецким физиком Вильгельмом Рентгеном (1845-1923). Электромагнитные излучения в диапазоне длин волн от 10 -14 до 10 -7 м называются рентгеновскими лучами.


Рентгеновские лучи невидимы глазом. Они проходят без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Обнаруживают рентгеновские лучи по их способности вызывать определенное свечение некоторых кристаллов и действовать на фотопленку.

Способность рентгеновских лучей проникать через толстые слои вещества используется для диагностики заболеваний внутренних органов человека. В технике рентгеновские лучи применяются для контроля внутренней структуры различных изделий, сварных швов. Рентгеновское излучение обладает сильным биологическим действием и применяется для лечения некоторых заболеваний. Гамма-излучение. Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными атомными ядрами и возникающее при взаимодействии элементарных частиц.

Гамма-излучение - самое коротковолновое электромагнитное излучение ( -10 м). Его особенностью являются ярко выраженные корпускулярные свойства. Поэтому гамма-излучение обычно рассматривают как поток частиц - гамма-квантов. В области длин волн от 10 -10 до 10 -14 и диапазоны рентгеновского и гамма-излучений перекрываются, в этой области рентгеновские лучи и гамма-кванты по своей природе тождественны и отличаются лишь происхождением.

Цели урока: рассмотреть шкалу электромагнитных волн, дать характеристику волнам разных диапазонов частот; показать роль различных видов излучений в жизни человека, влияние различных видов излучений на человека; систематизировать материал по теме и углубить знания учащихся об электромагнитных волнах; развивать устную речь учащихся, творческие навыки учащихся, логику, память; познавательные способности; формировать интерес учащихся к изучению физики; воспитывать аккуратность, трудолюбие.

Тип урока: урок формирования новых знаний.

Форма проведения: лекция с презентацией

Содержимое разработки

Конспект урока на тему:

Виды излучений. Шкала электромагнитных волн

Урок разработан

Карасёвой И.Д.

Цели урока: рассмотреть шкалу электромагнитных волн, дать характеристику волнам разных диапазонов частот; показать роль различных видов излучений в жизни человека, влияние различных видов излучений на человека; систематизировать материал по теме и углубить знания учащихся об электромагнитных волнах; развивать устную речь учащихся, творческие навыки учащихся, логику, память; познавательные способности; формировать интерес учащихся к изучению физики; воспитывать аккуратность, трудолюбие.

Тип урока: урок формирования новых знаний.

Форма проведения: лекция с презентацией

Оборудование: компьютер, мультимедийный проектор, презентация «Виды излучений.

Организационный момент.

Мотивация учебной и познавательной деятельности.

Вселенная – это океан электромагнитных излучений. Люди живут в нем, по большей части, не замечая пронизывающих окружающее пространство волн. Греясь у камина или зажигая свечу, человек заставляет работать источник этих волн, не задумываясь об их свойствах. Н о знание - сила: открыв природу электромагнитного излучения, человечество в течение XX столетия освоило и поставило себе на службу самые различные его виды.

Постановка темы и целей урока.

Каждое излучение мы будем изучать по следующему обобщенному плану (Слайд 2) .Обобщенный план для изучения излучения:

1. Название диапазона

4. Кем был открыт

6. Приёмник (индикатор)

8. Действие на человека

В ходе изучения темы вы должны заполнить следующую таблицу:

Таблица "Шкала электромагнитных излучений"

Название излучения

Длина волны

Действие на человека

Изложение нового материала.

Длина электромагнитных волн бывает самой различной: от значений порядка 10 13 м (низкочастотные колебания) до 10 -10 м ( -лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее, именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.
Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и -излучение. Самое коротковолновое -излучение испускает атомные ядра.

Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны.

Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.


Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь, это относится к рентгеновскому и -излучению, сильно поглощаемым атмосферой.

Количественные различия в длинах волн приводят к существенным качественным различиям.


Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно -лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

Рассмотрим каждое излучение.

Низкочастотное излучение возникает в диапазоне частот от 3 · 10 -3 до 3 • 10 5 Гц. Этому излучению соответствует длина волны от 10 13 - 10 5 м. Излучением таких, сравнительно малых частот, можно пренебречь. Источником низкочастотного излучения являются генераторы переменного тока. Применяются при плавке и закалке металлов.

Радиоволны занимают диапазон частот 3·10 5 - 3·10 11 Гц. Им соответствует длина волны 10 5 - 10 -3 м. Источником радиоволн, так же как и низкочастотного излучения является переменный ток. Также источником являются генератор радиочастот, звезды, в том числе Солнце, галактики и метагалактики. Индикаторами являются вибратор Герца, колебательный контур.

Большая частота радиоволн, по сравнению с низкочастотным излучением приводит к заметному излучению радиоволн в пространство. Это позволяет использовать их для передачи информации на различные расстояния. Передаются речь, музыка (радиовещание), телеграфные сигналы (радиосвязь), изображения различных объектов (радиолокация).

Радиоволны используются для изучения структуры вещества и свойств той среды, в которой они распространяются. Исследование радиоизлучения космических объектов – предмет радиоастрономии. В радиометеорологии изучают процессы по характеристикам принимаемых волн.

Инфракрасное излучение занимает диапазон частот 3 · 10 11 - 3,85 · 10 14 Гц. Им соответствует длина волны 2·10 -3 - 7,6 ·10 -7 м.

Инфракрасное излучение было открыто в 1800 году астрономом Уильямом Гершелем. Изучая повышение температуры термометра, нагреваемого видимым светом, Гершель обнаружил наибольшее нагревание термометра вне области видимого света (за красной областью). Невидимое излучение, учитывая его место в спектре, было названо инфракрасным. Источником инфракрасного излучения является излучение молекул и атомов при тепловых и электрических воздействиях. Мощный источник инфракрасного излучения – Солнце, около 50% его излучения лежит в инфракрасной области. На инфракрасное излучение приходится значительная доля (от 70 до 80 %) энергии излучения ламп накаливания с вольфрамовой нитью. Инфракрасное излучение испускает электрическая дуга и различные газоразрядные лампы. Излучения некоторых лазеров лежит в инфракрасной области спектра. Индикаторами инфракрасного излучения являются фото и терморезисторы, специальные фотоэмульсии. Инфракрасное излучение используют для сушки древесины, пищевых продуктов и различных лакокрасочных покрытий (инфракрасный нагрев), для сигнализации при плохой видимости, дает возможность применять оптические приборы, позволяющие видеть в темноте, а также при дистанционном управлении. Инфракрасные лучи используются для наведения на цель снарядов и ракет, для обнаружения замаскированного противника. Эти лучи позволяют определить различие температур отдельных участков поверхности планет, особенности строения молекул вещества (спектральный анализ). Инфракрасная фотография применяется в биологии при изучении болезней растений, в медицине при диагностике кожных и сосудистых заболеваний, в криминалистике при обнаружении подделок. При воздействии на человека вызывает повышение температуры человеческого тела.

Свет - источник жизни на Земле и одновременно источник наших представлений об окружающем мире.

(Слайд 9)

Ультрафиолетовое излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучением в пределах длин волн 3,8 ∙10 -7 - 3∙10 -9 м. (=8*10 14 - 3*10 16 Гц). Ультрафиолетовое излучение было открыто в 1801 году немецким ученым Иоганном Риттером. Изучая почернение хлористого серебра под действием видимого света, Риттер обнаружил, что серебро чернеет еще более эффективно в области, находящейся за фиолетовым краем спектра, где видимое излучение отсутствует. Невидимое излучение, вызвавшее это почернение, было названо ультрафиолетовым.

Источник ультрафиолетового излучения — валентные электроны атомов и молекул, также ускоренно движущиеся свободные заряды.

Излучение накаленных до температур - 3000 К твердых тел содержит заметную долю ультрафиолетового излучения непрерывного спектра, интенсивность которого растет с увеличением температуры. Более мощный источник ультрафиолетового излучения - любая высокотемпературная плазма. Для различных применений ультрафиолетового излучения используются ртутные, ксеноновые и др. газоразрядные лампы. Естественные источники ультрафиолетового излучения - Солнце, звезды, туманности и другие космические объекты. Однако лишь длинноволновая часть их излучения ( 290 нм) достигает земной поверхности. Для регистрации ультрафиолетового излучения при

 = 230 нм используются обычные фотоматериалы, в более коротковолновой области к нему чувствительны специальные маложелатиновые фотослои. Применяются фотоэлектрические приемники, использующие способность ультрафиолетового излучения вызывать ионизацию и фотоэффект: фотодиоды, ионизационные камеры, счетчики фотонов, фотоумножители.

В малых дозах ультрафиолетовое излучение оказывает благотворное, оздоровительное влияние на человека, активизируя синтез ви т амина D в организме, а также вызывая загар. Большая доза ультрафиолетового излучения может вызвать ожог кожи и раковые новообразования (в 80 % излечимые). Кроме того, чрезмерное ультрафиолетовое излучение ослабляет иммунную систему организма, способствуя развитию некоторых заболеваний. Ультрафиолетовое излучение оказывает также бактерицидное действие: под действием этого излучения гибнут болезнетворные бактерии.

Ультрафиолетовое излучение применяется в люминесцентных лампах, в криминалистике (по снимкам обнаруживают подделки документов), в искусствоведении (с помощью ультрафиолетовых лучей можно обнаружить на картинах не видимые глазом следы реставрации). Практически не пропускает ультрафиолетовое излучение оконное стекло, т.к. его поглощает оксид железа, входящий в состав стекла. По этой причине даже в жаркий солнечный день нельзя загореть в комнате при закрытом окне.

Человеческий глаз не видит ультрафиолетовое излучение, т.к. роговая оболочка глаза и глазная линза поглощают ультрафиолет. Ультрафиолетовое излучение видят некоторые животные. Например, голубь ориентируется по Солнцу даже в пасмурную погоду.

Рентгеновское излучение - это электромагнитное ионизирующее излучение, занимающее спектральную область между гамма - и ультрафиолетовым излучением в пределах длин волн от 10 -12 - 1 0 -8 м (частот 3*10 16 - 3-10 20 Гц ). Рентгеновское излучение было открыто в 1895 году немецким физиком В. К. Рентгеном. Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка, в которой ускоренные электрическим нолем электроны бомбардируют металлический анод. Рентгеновское излучение может быть получено при бомбардировке мишени ионами высокой энергии. В качестве источников рентгеновского излучения могут служить также некоторые радиоактивные изотопы, синхротроны - накопители электронов. Естественными источниками рентгеновского излучения является Солнце и другие космические объекты

Изоб ражения предметов в рентгеновском излучении получают на специальной рентгеновской фотопленке. Рентгеновское излучение можно регистрировать с помощью ионизационной камеры, сцинтилляционного счетчика, вторично-электронных или каналовых электронных умножителей, микроканальных пластин. Благодаря высокой проникающей способности рентгеновское излучение применяется в рентгеноструктурном анализе (исследовании структуры кристаллической решетки), при изучении структуры молекул, обнаружении дефектов в образцах, в медицине (рентгеновские снимки, флюорография, лечение раковых заболеваний), в дефектоскопии (обнаружение дефектов в отливках, рельсах), в искусствоведении (обнаружение старинной живописи, скрытой под слоем поздней росписи), в астрономии (при изучении рентгеновских источников), криминалистике. Большая доза рентгеновского излучения приводит к ожогам и изменению структуры крови человека. Создание приемников рентгеновского излучения и размещение их на космических станциях позволило обнаружить рентгеновское излучение сотен звезд, а также оболочек сверхновых звезд и целых галактик.

Гамма излучение - коротковолновое электромагнитное излучение, занимающее весь диапазон частот  = 8∙10 14 - 10 17 Гц, что соответствует длинам волн  = 3,8·10 -7 - 3∙10 -9 м. Гамма-излучение было открыто французским ученым Полем Вилларом в 1900 году.

Изучая излучение радия в сильном магнитном поле, Виллар обнаружил коротковолновое электромагнитное излучение, не отклоняющееся, как и свет, магнитным полем. Оно было названо гамма-излучением. Гамма-излучение связано с ядерными процессами, явлениями радиоактивного распада, происходящими с некоторыми веществами, как на Земле, так и в космосе. Гамма-излучение можно регистрировать с помощью ионизационных и пузырьковых камер, а также с помощью специальных фотоэмульсий. Используются при исследовании ядерных процессов, в дефектоскопии. Гамма-излучение отрицательно воздействует на человека.

Итак, низкочастотное излучение, радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение, -излучение представляют собой различные виды электромагнитного излучения.

Если мысленно разложить эти виды по возрастанию частоты или убыванию длины волны, то получится широкий непрерывный спектр – шкала электромагнитных излучений (учитель показывает шкалу). К опасным видам излучения относятся: гамма-излучение, рентгеновские лучи и ультрафиолетовое излучение, остальные – безопасны.

Деление электромагнитных излучений по диапазонам условное. Четкой границы между областями нет. Названия областей сложились исторически, они лишь служат удобным средством классификации источников излучений.

Все диапазоны шкалы электромагнитных излучений имеют общие свойства:

физическая природа всех излучений одинакова

все излучения распространяются в вакууме с одинаковой скоростью, равной 3*10 8 м/с

все излучения обнаруживают общие волновые свойства (отражение, преломление, интерференцию, дифракцию, поляризацию)

5. Подведение итогов урока

В заключение урока учащиеся заканчивают работу над таблицей.

Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами.

Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга.

Волновые свойства ярче проявляются при малых частотах и менее ярко — при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко — при малых.

Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.

Все это служит подтверждением закона диалектики (переход количественных изменений в качественные).

Читайте также: