Природа электризации тел закон сохранения заряда конспект

Обновлено: 04.07.2024

Оборудование и средства обеспечения учебного процесса: компьютер, мультимедийный проектор, экран, электрофорная машина; электрометр, палочки из оргстекла и эбонита, шерстяные лоскуты, полоски полиэтиленовой пленки и бумаги, электрические султаны, гильза на тонкой нити.

  1. Оргмомент (анализ основных ошибок в контрольной работе, план урока по новой теме)

2. Изучение новой темы : записать тему урока. Примеры проявления электрических явлений.

4 . Анализ видеоролика. Записать выводы (Слайды 4, 5)

5. Демонстрация электрических явлений

6. Объяснение электростатических явлений на основе строения атомов. Записать содержание

7. Электроскоп и делимость заряда.

8. Закон сохранения заряда. Образец решения задачи (записать в тетрадь)

9. Закон Кулона (записать формулу и обозначения).

10. Образец решения задачи на закон Кулона.

11. Самостоятельная работа (тест) на закрепления знаний

12. Домашнее задание : §85 - 88

Многие физические явления, наблюдаемые в природе и окружающей нас жизни, не могут быть объяснены только на основе законов механики, молекулярно-кинетической теории и термодинамики. В этих явлениях проявляются силы, действующие между телами на расстоянии, причем эти силы не зависят от масс взаимодействующих тел и, следовательно, не являются гравитационными. Эти силы называют электромагнитными силами .

О существовании электромагнитных сил знали еще древние греки. Но систематическое, количественное изучение физических явлений, в которых проявляется электромагнитное взаимодействие тел, началось только в конце XVIII века. Трудами многих ученых в XIX веке завершилось создание стройной науки, изучающей электрические и магнитные явления. Эта наука, которая является одним из важнейших разделов физики, получила название электродинамики .

Основными объектами изучения в электродинамике являются электрические и магнитные поля, создаваемые электрическими зарядами и токами.

1.1. Электрический заряд. Закон Кулона

Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием.

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q .

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

  • Существует два рода электрических зарядов, условно названных положительными и отрицательными.
  • Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.
  • Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда .

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q 1 + q 2 + q 3 + . + q n = const.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы . Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны , отрицательно заряженные электроны и нейтральные частицы – нейтроны . Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e .

e = 1,602177·10 –19 Кл ≈ 1,6·10 –19 Кл.

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером . Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела – дискретная величина:

Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными . Элементарный заряд e является квантом (наименьшей порцией) электрического заряда. Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков – частиц с дробным зарядом ±⅓ е и ±⅔ е. Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.

В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр – прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1). Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра.

Перенос заряда с заряженного тела на электрометр.

Электрометр является достаточно грубым прибором; он не позволяет исследовать силы взаимодействия зарядов. Впервые закон взаимодействия неподвижных зарядов был установлен французским физиком Ш. Кулоном (1785 г.). В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора – крутильных весов (рис. 1.1.2), отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка 10 –9 Н.

Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну. Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами .

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

Рисунок 1.1.2. Рисунок 1.1.3.

Прибор Кулона. Силы взаимодействия одноименных и

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона: Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой .

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока ( ампер ) в СИ является наряду с единицами длины, времени и массы основной единицей измерения .

Коэффициент k в системе СИ обычно записывают в виде:

где – электрическая постоянная .

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции .

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Рис. 1.1.4 поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.

Принцип суперпозиции электростатических сил

Предварительный просмотр:

Подписи к слайдам:

УРОК ФИЗИКИ В 10 КЛАССЕ Электризация. Закон Кулона Учитель Бимбаев Д.Д.

ПЛАН УРОКА Строение атома Электризация тел Закон сохранения заряда Закон Кулона Самостоятельная работа (6мин)

ЭЛЕКТРОМАГНИТНЫЕ ВЗАИМОДЕЙСТВИЯ 1. Свет, радиоволны, телевидение 2. Удерживает атомы и молекулы 3. Силы упругости и трения 4. Химические реакции 5. Электродвигатели

ЭЛЕКТРИЗАЦИЯ 1. При электризации заряжаются оба тела в ней участвующие 2. Электризация – это процесс получения телами зарядов при взаимодействии (трение, удар, прикосновение, облучение) 3. Степень электризации характеризуется знаком и величиной электрического заряда

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД – это физическая величина, определяющая силу электромагнитного взаимодействия обозначается буквой q , измеряется в кулонах Наименьший электрический заряд принадлежит электрону и называется элементарным зарядом е = -1,6 ·10 Кл - 19

СТРОЕНИЕ АТОМА В центре атома находится положительно заряженное ядро, вокруг которого вращаются электроны Заряд протонов в ядре равен заряду электронов, вращающихся вокруг ядра, поэтому атомы нейтральны. Атом способен терять электроны (положительный ион), или присоединять лишние (отрицательный ион)

ВЫВОДЫ Существует два рода электрических зарядов, условно названных положительными и отрицательными. Заряды могут передаваться от одного тела к другому. ( В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд). Одноименные заряды отталкиваются, разноименные – притягиваются. ( В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения).

ЭЛЕКТРОСКОП Электрометр – прибор, для обнаружения и измерения электрических зарядов. Состоит из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси. Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра.

Перенос заряда с заряженного тела на электрометр. ЭЛЕКТРОСКОП

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной: q 1 + q 2 + q 3 + . + q n = const. Применения : Ядерные реакции Реакция диссоциации закон сохранения электрического заряда .

ЗАДАЧА 1 Два одинаковых шарика, имеющих заряды 3е и – 7е привели в соприкосновение и развели в стороны. Каков стал заряд на шариках? Дано: Решение Q 1 = 3e Q 1 + Q 2 = q 1 + q 2 q 1 = q 2 Q 2 = - 7e q 1 = (Q 1 + Q 2 ):2 q 1 , q 2 - ? q 1 = q 2 = (3е – 7е):2 = - 2е

ЗАКОН КУЛОНА F – сила взаимодействия (Н) k = 9·10 - коэффициент q 1 , q 2 – заряды тел (Кл) ε – диэлектрическая проницаемость среды r – расстояния между зарядами (м) 9 1

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними Силы взаимодействия подчиняются третьему закону Ньютона: F 1 = - F 2 Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках ЗАКОН КУЛОНА

ЗАДАЧА 2 С какой силой взаимодействуют два точечных заряда 10нКл и 15нКл , находящихся на расстоянии 5см друг от друга?

Дано: Си Решение q 1 = 10 нКл 10 ·10 Кл q 2 = 15 нКл 15 ·10 Кл r = 5 см 0,05м F - ? Ответ:0,54мН ЗАДАЧА 2 -9 -9

САМОСТОЯТЕЛЬНАЯ РАБОТА 1. Написать фамилию и вариант 2. Дается 6 вопросов и по 4 ответа 3. Правильный ответ только один 4. За подсказывание и за пользование чужим результатом ответа оценка снижается 5. На каждый вопрос дается 1 минута (60с) 6. Слайды сменяются автоматически.

ВАРИАНТ 1 ВАРИАНТ 2 1 . При образовании из нейтрального атома положительного иона: 1. ядро атома приобретает один или несколько протонов 2. ядро атома теряет один или несколько электронов 3. количество электронов, движущихся вокруг ядра, увеличивается 4. количество электронов, движущихся вокруг ядра, уменьшается 1 . При трении пластмассовой линейки о шерсть линейка заряжается отрицательно. Это объясняется тем, что 1. электроны переходят с линейки на шерсть 2. протоны переходят с линейки на шерсть 3. электроны переходят с шерсти на линейку 4. протоны переходят с шерсти на линейку

ВАРИАНТ 1 ВАРИАНТ 2 1 . При образовании из нейтрального атома положительного иона: 1. ядро атома приобретает один или несколько протонов 2. ядро атома теряет один или несколько электронов 3. количество электронов, движущихся вокруг ядра, увеличивается 4. количество электронов, движущихся вокруг ядра, уменьшается 1 . При трении пластмассовой линейки о шерсть линейка заряжается отрицательно. Это объясняется тем, что 1. электроны переходят с линейки на шерсть 2. протоны переходят с линейки на шерсть 3. электроны переходят с шерсти на линейку 4. протоны переходят с шерсти на линейку

ВАРИАНТ 1 ВАРИАНТ 2 2 . От водяной капли, обладающей электрическим зарядом +2е , отделилась маленькая капля с зарядом –3е . Каким стал заряд оставшейся части капли? 1) -е 2) -5е 3) +5е 4) +3е 2 . На какую минимальную величину может измениться заряд золотой пылинки? 1. на величину, равную заряду электрона 2. на величину, равную заряду ядра атома золота 3. на сколь угодно малую 4. ответ зависит от размера пылинки

ВАРИАНТ 1 ВАРИАНТ 2 2 . От водяной капли, обладающей электрическим зарядом +2е , отделилась маленькая капля с зарядом –3е . Каким стал заряд оставшейся части капли? 1) -е 2) -5е 3) +5е 4) +3е 2 . На какую минимальную величину может измениться заряд золотой пылинки? 1. на величину, равную заряду электрона 2. на величину, равную заряду ядра атома золота 3. на сколь угодно малую 4. ответ зависит от размера пылинки

ВАРИАНТ 1 ВАРИАНТ 2 3. Как необходимо изменить расстояние между двумя точечными электрическими зарядами, если величина одного из этих зарядов увеличилась в 2 раза , чтобы сила их кулоновского взаимодействия осталась прежней? 1. увеличить в 2 раза 2. увеличить в  2 раз 3. уменьшить в 2 раза 4. уменьшить в  2 раз 3. Два точечных электрических заряда на расстоянии R взаимодействуют с силой F . Как изменится сила взаимодействия этих зарядов на том же расстоянии R в среде с диэлектрической проницаемостью  ? 1. не изменится 2. увеличится в  2 раз 3. увеличится в  раз 4. уменьшится в  раз

ВАРИАНТ 1 ВАРИАНТ 2 3. Как необходимо изменить расстояние между двумя точечными электрическими зарядами, если величина одного из этих зарядов увеличилась в 2 раза , чтобы сила их кулоновского взаимодействия осталась прежней? 1. увеличить в 2 раза 2. увеличить в  2 раз 3. уменьшить в 2 раза 4. уменьшить в  2 раз 3. Два точечных электрических заряда на расстоянии R взаимодействуют с силой F . Как изменится сила взаимодействия этих зарядов на том же расстоянии R в среде с диэлектрической проницаемостью  ? 1. не изменится 2. увеличится в  2 раз 3. увеличится в  раз 4. уменьшится в  раз

ВАРИАНТ 1 ВАРИАНТ 2 4. Два точечных заряда будут отталкиваться друг от друга только в том случае, если заряды 1) одинаковы по знаку и любые по модулю 2) различны по знаку и модулю 3) одинаковы по знаку и обязательно одинаковы по модулю 4) различны по знаку, но обязательно одинаковы по модулю 4. Сила кулоновского взаимодействия двух точечных зарядов 1) прямо пропорциональна расстоянию между ними 2) обратно пропорциональна расстоянию между ними 3) прямо пропорциональна квадрату расстояния между ними 4) обратно пропорциональна квадрату расстояния между ними

ВАРИАНТ 1 ВАРИАНТ 2 4. Два точечных заряда будут отталкиваться друг от друга только в том случае, если заряды 1) одинаковы по знаку и любые по модулю 2) различны по знаку и модулю 3) одинаковы по знаку и обязательно одинаковы по модулю 4) различны по знаку, но обязательно одинаковы по модулю 4. Сила кулоновского взаимодействия двух точечных зарядов 1) прямо пропорциональна расстоянию между ними 2) обратно пропорциональна расстоянию между ними 3) прямо пропорциональна квадрату расстояния между ними 4) обратно пропорциональна квадрату расстояния между ними

ВАРИАНТ 1 ВАРИАНТ 2 5. Легкий незаряженный шарик подвешен на нити. К нему поднесли (без соприкосновения) сначала положительно заряженный стержень, а затем – отрицательный. Шарик 1) притягивается к стержням в обоих случаях 2) отталкивается в обоих случаях 3) не испытывает ни притяжения, ни отталкивания в обоих случаях 4) притягивается к стержню в первом случае, отталкивается во втором случае 5. К стержню положительного заряженного электроскопа поднесли, не касаясь его, стеклянную палочку. Листочки электроскопа опали, образуя гораздо меньший угол. Такой эффект возможен, если палочка 1) заряжена положительно 2) заряжена отрицательно 3) имеет заряд любого знака 4) не заряжена

ВАРИАНТ 1 ВАРИАНТ 2 5. Легкий незаряженный шарик подвешен на нити. К нему поднесли (без соприкосновения) сначала положительно заряженный стержень, а затем – отрицательный. Шарик 1) притягивается к стержням в обоих случаях 2) отталкивается в обоих случаях 3) не испытывает ни притяжения, ни отталкивания в обоих случаях 4) притягивается к стержню в первом случае, отталкивается во втором случае 5. К стержню положительного заряженного электроскопа поднесли, не касаясь его, стеклянную палочку. Листочки электроскопа опали, образуя гораздо меньший угол. Такой эффект возможен, если палочка 1) заряжена положительно 2) заряжена отрицательно 3) имеет заряд любого знака 4) не заряжена

ВАРИАНТ 1 ВАРИАНТ 2 6. Атом имеет : 1. Положительный заряд. 2. Отрицательный заряд. 3. Заряд электрически нейтрален. 4. Заряд может быть любым 6. Если в каком-либо теле число электронов больше, чем число протонов, то в целом тело: 1 . Заряжено отрицательно 2. Заряжено положительно 3. Электрически нейтрально 4. Заряд может быть любым

ВАРИАНТ 1 ВАРИАНТ 2 6. Атом имеет : 1. Положительный заряд. 2. Отрицательный заряд. 3. Заряд электрически нейтрален. 4. Заряд может быть любым 6. Если в каком-либо теле число электронов больше, чем число протонов, то в целом тело: 1 . Заряжено отрицательно 2. Заряжено положительно 3. Электрически нейтрально 4. Заряд может быть любым

Время истекло 1. Время, отведенное на выполнение работы истекло. 2. Проверьте наличие фамилии и номера варианта 3. Сдали свои работы 4. Спасибо, за ваш труд 5. Правильные ответы разберем на следующем уроке

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Тема: Природа электризации тел. Действие электрического поля на электрические заряды. Закон сохранения заряда.

Цель урока: объяснить физический смысл закона сохранения заряда, сформировать представление уч-ся об электрическом поле и его свойствах, объяснить природу электризации тел.

Оборудование: учебник, сборник задач, карточки.

Органический момент: отметить отсутствующих.

Где расположены положительные и отрицательные заряды в теле? (Ядро – имеет +, электроны -).

Каким ионом + или – становится атом, который утратил электрон? (+).

Что такое ионы? Какие у них могут быть заряды?

Изобразите атомы: Водорода, гелия, лития.

Может ли существовать электрический заряд без частиц?

Притягиваются или отталкиваются две стеклянные палочки, потертые о шелк?

Где у вас в доме быстрее всего собирается пыль? (Экраны, зеркала, отполированные поверхности мебели)

Иногда при окраске пульверизатором металлической поверхности ей сообщают заряд одного знака, а капелькам краски – заряд противоположного знака. Для чего это нужно?

Протерев мебель и зеркала сухой тряпкой, хозяйки огорчаются, увидев на них пыль уже через день-два. Чем это объясняется?

2.10.Какая опасность для бензовоза может возникнуть при его длительном движении? Как ее предотвратить?

2.11. Были случаи, когда быстро поднимающийся воздушный шар загорался в воздухе. Чем это объяснить?

2.14. Почему электрическое отталкивание обнаружили почти через 2000 лет после того, как было обнаружено притяжение? Письменно записать ответ: Два тела испытывают электрическое притяжение, если заряжено только ОДНО из тел, причем зарядом ЛЮБОГО знака. А электрическое отталкивание проявляет себя только тогда, когда заряжены ОБА тела, причем обязательно ОДНОИМЕННО.

2.15. Если к заряженному металлическому шарику прикоснуться пальцем, он теряет практически весь заряд. Почему? (Человеческое тело является проводником. При соприкосновении двух проводников заряд перераспределяется между ними так, что на большем по размеру проводнике оказывается и больший по модулю заряд. Человеческое тело намного больше шарика, поэтому практически весь заряд шарика переходит на тело человека).

3. Актуализация знаний: В обычном состоянии тела, образованные из нейтральных молекул и атомов, являются незаряженными. Каким же образом тогда осуществляется электризация тел, каков ее механизм?

4. Усвоение новых знаний:

4.1. Электризация трением

4.2. Свободные электроны.

4.3. Электризация через влияние

4.4. Закон сохранения заряда.

5. Закрепление материала: Решение задач № 2.20-2.25 Кирик

6. Подведение итогов урока:

1. Заряды не создаются при электризации, они лишь перераспределяются между разнородными телами.

2. При электризации тел перемещаются ТОЛЬКО электроны, а положительные ионы остаются.

3. Хорошая проводимость (металлов) объясняется наличием свободных электронов.

4. Диэлектрики не проводят эл.заряд, т.к. у них очень мало свободных электронов.

5. Электризация незаряженного тела без контакта наз. ЭЛЕКТРИЗАЦИЕЙ ЧЕРЕЗ ВЛИЯНИЕ.

6. З-н сохранения заряда: алгебраическая сумма эл. Зарядов тел остается постоянной: q 1+ q 2+ q 3+…= const . Если одно тело приобретает + заряд, то второе -.


Электричество — везде, и не только в розетках. Оно встречается, когда мы гладим собаку, отклеиваем пищевую пленку или приклеиваем скотч.

О чем эта статья:

8 класс, 10 класс

Электрический заряд

Электрический заряд — это физическая величина, которая определяет способность тел создавать электромагнитное поле и принимать участие в электромагнитном взаимодействии.

Мы состоим из клеток, клетки состоят из молекул, молекулы в свою очередь состоят из атомов, а атомы — из ядра и электронов. Ядро состоит из протонов и нейтронов.

Протон — это частица, которая заряжена положительно, нейтрон — нейтрально, а электрон — отрицательно. Электроны вращаются по орбитам, которые во много раз больше, чем размер электрона.


Размер электрона с размером орбиты можно сравнить так: представьте футбольный мяч и футбольное поле. Во сколько раз поле больше мяча, во столько же раз орбита больше, чем электрон.

протон нейтрон электрон

Как мы уже выяснили, электрические заряды бывают положительными и отрицательными. Одноименные заряды отталкиваются, разноименные притягиваются:

ядро

А вот измерять Электрический заряд мы будем в Кулонах [Кл]. Нет, не тех, что болтаются на цепочке. Шарль Кулон — это физик, который изучал электромагнитные явления.

физика разрядов

Электризация

Чтобы разобраться с тем, как тело приобретает электрический заряд и сохраняет его, нам для начала нужно поближе познакомиться с протоном и электроном. Протон — ленивый и неповоротливый — он точно не будет никуда перемещаться, если мы не переместим атом целиком.

А вот электрон — парень подвижный, и ему перебежать с одного атома на другой — ничего не стоит.

Шарль Кулон

Мы поговорим о двух типах электризации: электризация соприкосновением и электризация трением.

  • Электризация соприкосновением — это процесс, при котором мы берем два проводящих тела: отрицательно заряженное и нейтральное.

Свободные электроны переходят с незаряженного тела на нейтральное. А если мы возьмем положительно заряженное тело вместо отрицательного, то свободные электроны перейдут с нейтрального тела, чтобы уравновесить заряды.

  • Электризации трением — это когда мы берем два незаряженных тела и трем их друг о друга.

Электроны переходят от одного тела к другому и в отличии от электризации соприкосновением заряжаются противоположными по знаку и равными по модулю зарядами.

То есть при соприкосновении заряд раздают одного знака и поровну. Как если бы ты поделился с другом конфетами, которых у тебя с избытком.

При трении наоборот — заряды у тел будут разных знаков, но также в одинаковом количестве. Например, у вас есть равное количество денег в рублях и долларах, и у меня аналогичная ситуация с той же суммой. Вы решили лететь в США, а мне как раз доллары не нужны. Чтобы не ходить в банк, мы можем просто поменяться. Тогда у вас будут только доллары, а у меня — только рубли. Главное, договориться про курс :)

Давайте решим пару задач по этой теме.

Задачка один

Из какого материала может быть сделан стержень, соединяющий электрометры, изображённые на рисунке?

протон и электрон

Решение:

Он может быть сделан либо из проводника, либо из диэлектрика. Проводник пропускает через себя заряды, а диэлектрик — нет. Если мы посмотрим на показания электрометров, то увидим, что они отличаются.

Как мы помним, при соприкосновении заряды уравниваются по величине (один электрометр делится конфетами с другим). В данном случае никто ни с кем не делился, это значит, что стержень не пропускает — он диэлектрик. И стекло, и эбонит являются диэлектриками. Значит подходят оба варианта!

Ответ: стержень может быть сделан как из стекла, так и из эбонита.

Задачка два

В процессе трения о шёлк стеклянная линейка приобрела положительный заряд. Как при этом изменилось количество заряженных частиц на линейке и шёлке при условии, что обмен при трении не происходил?

А) количество протонов на стеклянной линейке

Б) количество электронов на шёлке

Решение:

Вспомните, как мы охарактеризовали протон: он ленивый и неподвижный! Значит количество протонов ни на стеклянной линейке, ни на шелке измениться просто не может. Мы же не отламываем кусок линейки вместе с атомами, из которых она состоит. А вот электроны охотно перемещаются. Нам известно, что линейка приобрела положительный заряд. Получается, электроны сбежали от нее к шелку. Следовательно, количество электронов на шелке увеличилось.

Ответ: количество протонов на стеклянной линейке не изменилось, а количество электронов на шелке увеличилось.

Классический курс физики для 10 класса поможет разобраться в законе сохранения заряда и других непростых темах.

Электростатическая индукция

Кажется, с электризацией разобрались. Теперь разберемся, что произойдет, если мы поднесем одно тело к другому, но не вплотную. Произойдет такое явление, как электростатическая индукция — явление перераспределения зарядов в нейтрально заряженных телах.

Давай разбираться на примере задачи:

На нити подвешен незаряженный металлический шарик. К нему снизу поднесли положительно заряженную палочку. Как изменится при этом сила натяжения нити?

Пример решения задачи

Решение:

Здесь важно подчеркнуть, что незаряженный — значит заряжен нейтрально. То есть в теле равное количество положительных и отрицательных зарядов.

Электроны металлического шарика будут перемещаться вниз и притягиваться к поднесенной положительной палочке. В результате шарик притягивается к палочке, следовательно, сила натяжения нити увеличивается.

Ответ: сила натяжения нити увеличивается

Поляризация диэлектрика

Давайте возьмем два, на первый взгляд, одинаковых задания из ЕГЭ.

Задание 1

Если к незаряженному металлическому шару поднести, не касаясь, точечный положительный заряд, то на стороне шара, ближайшей к заряду, появится отрицательный заряд. Как называется это явление?

Мы только что это разобрали: это электростатическая индукция.

Задание 2

Если к незаряженному диэлектрическому шару поднести, не касаясь, точечный положительный заряд, то на стороне шара, ближайшей к заряду, появится отрицательный заряд. Как называется это явление?

Кажется, что очень похоже на электростатическую индукцию, но это явление будет называться поляризация. В чем разница:

В первом случае — это проводник, а во втором — диэлектрик. Если не вдаваться в подробности, то поляризация диэлектрика — процесс, очень похожий по природе своей на электростатическую индукцию, только происходит в непроводящих материалах.

Закон сохранения электрического заряда

И последнее, о чем мы сегодня поговорим — этот закон сохранения заряда

Алгебраическая сумма зарядов электрически замкнутой системы сохраняется.

Закон сохранения заряда

q1, q2, q3, …, qn — заряды электрически замкнутой системы [Кл]

Задачка раз

У нас есть два металлических шарика. Один имеет положительный заряд 2q, а другой — отрицательный −3q. Шарики соприкасаются, после чего их разъединяют. Каков конечный заряд каждого шарика?

Решение:

Для решения этой задачи нам нужно найти алгебраическую сумму зарядов.

Это суммарный заряд шариков и до, и после и во время взаимодействия.

Так как суммарный заряд сохраняется, но шарики соприкоснулись, суммарный заряд разделится между всеми шариками поровну. То есть нам нужно суммарный заряд просто поделить на количество шариков — на 2.

И это ответ к нашей задаче.

Ответ: конечный заряд каждого шарика будет равен −0,5 Кл.

Задачка два

Металлическая пластина, имевшая положительный заряд, по модулю равный 10е, при освещении потеряла шесть электронов. Каким стал заряд пластины?

Решение:

У положительно заряженной пластины 10e забрали 6 электронов. Заряд одного электрона равен −е. Спасемся математикой и посчитаем:

q = q₀ − 6(−e) = 10e + 6e = 16e

Ответ: 16е

Задачка три

Имеются два одинаковых проводящих шарика. Одному из них сообщили электрический заряд +8q, другому −4q. Затем шарики привели в соприкосновение и развели на прежнее расстояние. Какими стали заряды у шариков после соприкосновения?

Решение:

По закону сохранения заряда сумма зарядов в замкнутой системе остается постоянной.

Два шарика привели в соприкосновение и развели, значит их суммарный заряд разделится между шариками поровну.

Ответ: заряд каждого шарика равен 2q.

Закон Кулона и связь с гравитацией

Мы уже упоминали Шарля Кулона. В честь него названа единица измерения заряда — Кулон. Он придумал закон о взаимодействии зарядов.

Закон Кулона

k — коэффициент пропорциональности

(Н · м 2 )/Кл 2 — электрическая постоянная

— диэлектрическая проницаемость среды — показывает во сколько раз сила электростатического взаимодействия в вакууме больше силы в среде (в вакууме равна 1)

q1 — заряд первого тела [Кл]

q2 — заряд второго тела [Кл]

r — расстояние между телами [м]

F — сила электростатического взаимодействия (кулоновская) [Н]

Мы уже знаем, что заряды бывают положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные — притягиваются. Это значит, что сила направлена туда же, куда заряд будет стремиться двигаться.

Например, у положительного заряда сила будет направлена в сторону отрицательного, если он есть где-то поблизости, и от положительного, так как одноименные заряды отталкиваются.

Согласно третьему закону Ньютона, силы одной природы возникают попарно, равны по величине, противоположны по направлению. Если взаимодействуют два неодинаковых заряда, сила, с которой больший заряд действует на меньший (В на А) равна силе, с которой меньший действует на больший (А на В).

третий закон Кулона

Интересно, что у различных законов физики есть некоторые общие черты. Вспомним закон тяготения. Сила гравитации также обратно пропорциональны квадрату расстояния, но уже между массами. И невольно возникает мысль, что в этой закономерности таится глубокий смысл. До сих пор никому не удалось представить тяготение и электричество, как два разных проявления одной и той же сущности.

Сила и тут изменяется обратно пропорционально квадрату расстояния, но разница в величине электрических сил и сил тяготения поразительна. Пытаясь установить общую природу тяготения и электричества, мы обнаруживаем такое превосходство электрических сил над силами тяготения, что трудно поверить, будто у тех и у других один и тот же источник. Нельзя говорить, что одно действует сильнее другого, ведь все зависит от того, какова масса и каков заряд.

Мы возьмем элементарную заряженную частицу, например, электрон. Две элементарные частицы, два электрона, за счет электрического заряда отталкивают друг друга с силой, обратно пропорциональной квадрату расстояния между ними, а за счет гравитации притягиваются друг к другу опять-таки с силой, обратно пропорциональной квадрату расстояния.

Закон всемирного тяготения

F — сила тяготения [Н]

M — масса первого тела (часто планеты) [кг]

m — масса второго тела [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 · 10 −11 м 3 · кг −1 · с −2

Тяготение относится к электрическому отталкиванию, как единица к числу с 42 нулями. Да, это огромное число! Исследователи перебирали все большие числа, чтобы понять — откуда это взялось. Одно из таких больших чисел — это отношение диаметра Вселенной к диаметру протона — как ни удивительно, это тоже число с 42 нулями. Нормально так перебрали.

Если вы смотрели Рика и Морти, то знаете о теории параллельных вселенных и о том, что эти вселенные расширяются. Из-за расширения вселенной постоянная сила тяготения меняется. Хотя эта гипотеза еще не опровергнута, у нас нет никаких свидетельств в ее пользу. Наоборот, некоторые данные говорят о том, что постоянная сила тяготения не менялась таким образом. Это громадное число по сей день остается загадкой.

От расширяющихся вселенных и мультиков перейдем к чему-то более приземленному — к задачам.

Задачка раз

Расстояние между двумя точечными электрическими зарядами уменьшили в 3 раза, каждый из зарядов увеличили в 3 раза. Во сколько раз увеличился модуль сил электростатического взаимодействия между ними?

Решение:

Возьмем закон Кулона.

Если расстояние уменьшилось в 3 раза, то знаменатель уменьшился в 9 раз. Каждый из зарядов увеличился в три раза, значит числитель увеличился в 9 раз. Уменьшаем знаменатель в 9 раз, тем самым увеличивая всю дробь в 9 раз, увеличиваем числитель в 9 раз, получаем, что вся дробь увеличилась в 81 раз. И это ответ.

Ответ: модуль сил электростатического взаимодействия увеличится в 81 раз.

Задачка два (последняя!)

Два одинаковых маленьких отрицательно заряженных металлических шарика находятся в вакууме на достаточно большом расстоянии друг от друга. Модуль силы их кулоновского взаимодействия равен F1. Модули зарядов шариков отличаются в 5 раз.

Если эти шарики привести в соприкосновение, а затем расположить на прежнем расстоянии друг от друга, то модуль силы их кулоновского взаимодействия станет равным F2. Определите отношение F2 к F1.


На этом уроке мы вспомним, какие взаимодействия в природе называют электромагнитными. Поговорим об электрическом заряде и его видах. Узнаем, в чём проявляется свойство дискретности электрического заряда. А также сформулируем закон сохранения электрического заряда.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Электрический заряд. Закон сохранения электрического заряда"

Ещё совсем недавно мы с вами говорили о том, что по современным представлениям основой всего многообразия явлений природы являются всего четыре фундаментальных взаимодействия — сильное, слабое, электромагнитное и гравитационное. Каждый вид взаимодействия связан с определённой характеристикой частицы. Так, гравитационное взаимодействие зависит от масс частиц, а электромагнитное — от электрических зарядов.


Электромагнитное взаимодействие лежит в основе всех электрических, магнитных и оптических явлений. Им же обусловлены возникновения сил упругости и сил трения, о которых мы говорили при изучении механики.

Взаимодействие атомов и молекул, которое мы рассматривали при изучении молекулярно-кинетической теории, также является электромагнитным. Электромагнитное взаимодействие определяет свойства веществ в различных агрегатных состояниях и их химические превращения. Оно же ответственно за обмен веществ в человеческом организме.

Раздел физики, в котором изучают свойства и закономерности поведения электромагнитного поля, с помощью которого осуществляется взаимодействие между электрически заряженными телами или частицами, называется электродинамикой.


В XVI веке Уильям Гильберт обнаружил, что свойством притягивать лёгкие предметы обладает не только янтарь, но и многие другие тела, предварительно натёртые кожей или другими мягкими материалами. Это явление он назвал электризацией (так как янтарь по-гречески звучит как, электрон).

О телах, способных к таким взаимодействиям, говорят, что они электрически заряжены, то есть им сообщён электрический заряд.

А теперь давайте подумаем, что означают слова: тело или частица обладает электрическим зарядом? Чтобы ответить на этот вопрос, обратимся к истории. Итак, ещё в 1881 году знакомый нам немецкий физик Герман Гельмгольц высказал гипотезу, объясняющую электрические явления существованием электрически заряженных элементарных частиц.

Под элементарными частицами мы с вами будем понимать мельчайшие неделимые на более простые частицы, из которых построены все тела.

Гипотеза Гельмгольца была подтверждена спустя 16 лет английским физиком Уильямом Томсоном, после открытия им электрона. А также Эрнестом Резерфордом, который в 1919 году открыл протон, заряд которого с точностью до 10 –20 равен модулю заряда электрона, хотя его масса в 1836 раз больше.

Многие элементарные частицы, хотя и не все, обладают способностью взаимодействовать друг с другом с силой, которая подобно гравитационным силам убывает обратно пропорционально квадрату расстояния, но эта сила во много раз превосходит силу тяготения. Например, между протоном и электроном в атоме водорода эта сила примерно в 10 39 раз больше силы их гравитационного взаимодействия.

Поэтому принято считать, что если частицы взаимодействуют друг с другом с силами, которые убывают с увеличением расстояния так же, как и силы всемирного тяготения, но превышают последние во много раз, то говорят, что эти частицы имеют электрический заряд. А сами частицы называются заряженными.

Важно запомнить, что частица может и не обладать электрическим зарядом. А вот электрического заряда без частицы не существует.

Подобно тому, как масса определяет интенсивность гравитационного взаимодействия, электрический заряд является количественной мерой способности тел к электромагнитным взаимодействиям.

Чаще всего обозначать электрический заряд мы с вами будем малой латинской буквой q, а измерять — в кулонах (Кл).

1 Кл — это электрический заряд, проходящий через поперечное сечение проводника за 1 с при силе постоянного тока 1 А.

Один кулон — это очень большая единица заряда. Расчёты показывают, что диаметр уединённого металлического шара, находящегося в сухом воздухе, должен быть равен примерно 110 м, чтобы на нём мог находиться избыточный заряд в 1 Кл. Но при этом при включении автомобильных фар через поперечное сечение проводников, подсоединённых к фарам, проходит заряд приблизительно в 10 Кл.

В 1747 году американский учёный Бенджамин Франклин (кстати, это единственный не президент, изображённый на денежных банкнотах США) ввёл понятие положительного и отрицательного заряда, соответственно заряда, приобретённого стеклянной палочкой, потёртой о шёлк, и заряда, полученного на янтаре, потёртым о мех.

В последствии было установлено, что носителями положительных зарядов являются протоны, входящие в состав всех атомных ядер. А носителями отрицательных зарядов являются электроны, входящие в состав всех атомов.

Из курса физики средней школы вы знаете, что электрическое взаимодействие проявляется в том, что одноимённо заряженные тела (или частицы) отталкивают друг друга, а разноимённо — притягиваются.

На этом явлении основан принцип действия простейшего электроскопа — прибора, при помощи которого выясняют, наэлектризовано тело или нет.


Напомним, что электроскоп состоит из металлического стержня, к концу которого прикреплены две тонкие бумажные полоски. Стержень с бумажными листочками вставляется в металлическую оправу, застеклённую с обеих сторон. Чтобы стержень не касался оправы, его пропускают через пластмассовую пробку. Если дотронуться заряженным телом до стержня электроскопа, то бумажные листочки оттолкнутся друг от друга.

Более совершенным прибором является электрометр. Сообщённый шарику, а через него стержню и стрелке заряд (любого знака) вызывает отталкивание стрелки от заряженного стержня. Нижний конец стрелки перемещается при этом по шкале. А металлический корпус позволяет использовать прибор и для более сложных измерений. Например, при помощи электрометра можно доказать, что при электризации трением оба тела, приобретают равные по модулю, но противоположные по знаку заряды. Покажем это. Возьмём электрометр, на который сверху надет полый металлический шар. Наэлектризуем трением друг о друга две пластинки — эбонитовую и плексигласовую.


Внесём сначала одну из них внутрь полого шара электрометра и убедимся, что он зарядился. Снимем заряд с электрометра, прикоснувшись к нему рукой, и внесём внутрь шара вторую пластинку. Стрелка электрометра отклонилась на такой же угол, что и в прошлый раз. Это убеждает нас в том, что каждая из пластинок действительно заряжается при трении друг о друга. А теперь внесём внутрь шара одновременно обе заряженные пластинки — электрометр не обнаруживает заряда — его стрелка не отклоняется.

Данный опыт позволяет нам ещё раз убедиться не только в том, что при электризации тела приобретают заряды противоположных знаков, но и в том, что эти заряды равны по модулю. При этом, что важно, при электризации новые носители зарядов не возникают, а существовавшие ранее — не исчезают. Происходит лишь перераспределение зарядов в телах, которые до этого были нейтральными. Заряд на внесённой в электрометр пластинке, притягивает к себе разноимённый и отталкивает одноимённый заряд на стержне и стрелке прибора, что и объясняет появление заряда.


Обратите внимание, что Фарадей говорит не о сохранении заряда, а о сохранении силы, так как ему было неизвестно, как электрические заряды связаны с атомами вещества (ведь существование электрона и протона, было осуществлено гораздо позднее). Поэтому он исходил из философской концепции взаимной превращаемости сил природы и сохранения сил при их превращении. Электрический заряд он понимает, как источник электрической силы.

Строгая формулировка закона сохранения электрического заряда возникла только после открытия факта взаимной превращаемости элементарных частиц материи: в электрически изолированной системе тел алгебраическая сумма зарядов всех тел остаётся постоянной:


Обратите внимание на то, что выполняется закон сохранения заряда только для электрически изолированных систем, которые не обменивается электрически заряженными частицами с внешними телами. Интересно, но причина, по которой выполняется закон сохранения электрического заряда до сих пор не ясна.

А теперь давайте проведём с вами такой опыт. Возьмём заряженный электрометр и с помощью проводника соединим его с точно таким же незаряженным электрометром. Нетрудно заметить, что ровно половина заряда перешла с первого электрометра на второй. Теперь разрядим второй электрометр, коснувшись рукой и вновь присоединим его к первому, на котором осталась половина первоначального заряда.


Отклонившиеся, но уже на меньший угол, стрелки опять показывают присутствие заряда на обоих приборах. Только на каждом из них теперь лишь по четверти первоначального заряда. Очевидно, что, продолжая подобное деление, можно получить одну восьмую, одну шестнадцатую и так далее части начального заряда. Из истории физики известно, что уже более ста лет назад учёные умели делить заряд. Но самым важным для них было выяснить: существует ли в природе наименьший заряд, то есть такой, который разделить уже невозможно?


е = 1,6 · 10 –19 Кл.

Таким образом, любой электрический заряд дискретен, то есть он может быть больше заряда электрона только в целое число раз:

q = е (NрNе) = Ne.

Читайте также: