Начертить схему станка качалки и составить конспект с описанием опасных узлов при ремонте и спуске

Обновлено: 06.07.2024

Станок-качалка является индивидуальным приводом штангового скважинного насоса, спускаемого в скважину и связанного с приводом колонной штанг.

В конструктивном отношении станок-качалка представляет собой механизм, преобразующий вращательное движение электродвигателя в возвратно- поступательное движение колонны штанг.

станок качалка

Крутящий момент от электродвигателя 10 через клиноремённую передачу 9 передаётся на ведущий вал редуктора 1, а затем и на ведомый вал. На ведомом валу закрепляется кривошип 8 с противовесами 17. Кривошипе помощью шатунов 7 и траверсы 14, связан с балансиром 3, качающимся на опоре 4, укреплённой на стойке 5. Балансир снабжён откидной головкой 15, на которой монтируется канатная подвеска 16, с устьевой подвеской штока 2. Управление электрооборудованием станка-качалки осуществляется станцией управления 18. Рама станка-качалки крепится к фундаменту анкерными болтами 11.

Станки качалки изготавливаются в двух исполнениях:

  • СК, выпускаются семи типоразмеров, и
  • СКД, выпускаются шести типоразмеров.

Отличительной особенностью станков-качалок СКД являются:

  • несимметричная (дезаксиальная) кинематическая схема преобразующего механизма с повышенным кинематическим отношением;
  • меньшие габариты и масса;
  • редуктор установлен непосредственно на раме станка-качалки.

СКД — станок-качалка с несимметричной (дезаксиальной) кинематической схемой преобразующего механизма; первая цифра — номинальная нагрузка (на устьевом штоке), кН (т); цифры после первого тире — наибольшая длина хода устьевого штока, м; цифры после второго тире — номинальный крутящий момент (на выходном валу редуктора), кН м (кге м).

Характеристика станков-качалок исполнения СК

Характеристика станков-качалок исполнения СКД

Станок-качалка (СК) состоит из ряда самостоятельных узлов:

Кривошип — ведущее звено преобразующего механизма станка-качалки, в котором предусмотрены отверстия для изменения длины хода устьевого штока. Выполнен в виде прямоугольных пластин с отверстиями для крепления к валу редуктора и присоединения шатунов. На кривошипе установлены противовесы, которые перемещаются с помощью съёмного устройства, вставляемого в поперечный паз у основания противовеса.

Редуктор

Редуктор — предназначен для уменьшения частоты вращения и увеличения мощности, передаваемых от электродвигателя кривошипам станка- качалки.

Как правило, типоразмерный ряд станков-качалок базируется на восьми размерах двухступенчатых редукторов Ц2НШ, представляющих собой совокупность двух пар цилиндрических шевронных зубчатых передач, выполненных с зацеплением Новикова.

Быстроходная ступень — раздвоенный шеврон, тихоходная ступень — шевронная ступень с канавкой.

Ведущий и промежуточный валы установлены в роликоподшипниках с короткими цилиндрическими роликами, ведомый вал — в двухрядных сферических роликоподшипниках.

На концах ведущего вала насажены ведомый шкив клиноремённой передачи и шкив тормоза. На оба конца ведомого вала насажены кривошипы. Смазка зубчатых колёс — картерная (из ванны корпуса редуктора), подшипников валов — принудительная картерная.

Шкивы электродвигателя

Шкивы электродвигателя выполняют быстросменными за счёт конусной расточки тела и применения конусной втулки, закрепляемой гайкой. При помощи сменных шкивов регулируется число ходов точки подвеса штанг.

Поворотные салазки предназначены для крепления электродвигателя, обеспечивают быструю смену и натяжение клиновидных ремней. Выполнены в виде рамы, которая шарнирно укреплена на заднем конце рамы станка-качалки в трёх точках, а на большегрузных СК (длина хода свыше 3,5, и) — в четырёх и прикреплённых к ней поперечно болтами двух салазок, на которые устанавливается электро- двигатель. Поворотные салазки поворачиваются вращением ходового винта.

Применяемое оборудование: Принцип работы станка качалки

Электродвигатель через клиноремённую передачу и редуктор придаёт двум массивным кривошипам, расположенных с двух сторон редуктора, круговое движение. Крившипнно шатунный механизм в целом преобразовывает в возвратно-поступательное движение балансира, который вращается на опорной оси, укреплённой на стойке. Балансир сообщает возвратно-поступательное движение канатной подвеске, штангам и плунжеру.

При ходе плунжера вверх нагнетательный клапан под действием жидкости закрывается и вся жидкость, находящиеся под плунжером, поднимается вверх на высоту равную длине хода плунжера. В это время скважинная жидкость через всасывающий клапан заполняет цилиндр насоса.

При ходе плунжера вниз всасывающий клапан закрывается, жидкость под плунжером сжимается, и открывается нагнетательный клапан. В цилиндр погружаются штанги, связанные с плунжером.

Таким образом, ШСН – поршневой насос однородного действия, а в целом комплекс из насоса и штанг – двойного действия.

Жидкость из НКТ вытисняется через тройник в нефтесборный трубопровод.

Принцип работы штанговой насосной установки

Читать также: Виды лампочек и типы цоколей

Плунжерный насос приводится в действие от станка-качалки, где вращательное движение, получаемое от двигателя при помощи редуктора, кривошипно-шатунного механизма и балансира, преобразуется в возвратно-поступательное движение, передаваемое плунжеру штангового насоса через колонну штанг.

При ходе плунжера вверх под ним снижается давление, и жидкость из межтрубного пространства через открытый всасывающий клапан поступает в цилиндр насоса.

При ходе плунжера вниз всасывающий клапан закрывается, а нагнетательный клапан открывается, и жидкость из цилиндра переходит в подъёмные трубы. При непрерывной работе насоса уровень жидкости в НКТ повышается, жидкость доходит до устья скважины и через тройник переливается в выкидную линию.

Обратный клапан для перепуска газа;

Электродвигатель на поворотной салазке;

Схема штанговой скважинно-насосной установки (УШГН)

Станок качалка устройство и принцип работы

Описание работы насоса

Скважинные штанговые насосы предназначены для откачивания из нефтяных скважин жидкости обводнённостью до 90 %, температурой не более 130 0 С, содержанием сероводорода не более 50 г/л, минерализирующей воды не более 10 г/л.

Скважинные насосы представляют собой вертикальную конструкцию одинарного действия с неподвижным цилиндром, с подвижным металлическим плунжером и шариковыми клапанами; спускаются в скважину на колонне насосно-компрессорных труб и насосных штанг.

Скважинные насосы изготавливаются следующих типов:

  • · НВ1 – вставные с замком наверху;
  • · НВ2 – вставные с замком внизу;
  • · НН – не вставные без ловителя;
  • · НН1 – не вставной с захватным штоком;
  • · НН2 – не вставной с ловителем.

Выпускаются насосы следующих конструктивных исполнении:

по конструкции (исполнению) цилиндра:

5 – с толсто стенным цельным (безвтулочным) цилиндром;

С – с составным (втулочным) цилиндром;

по конструктивным особенностям, определяемым функциональным назначением (областью применения):

Т – с полым трубчатым штоком, обеспечивающим подъём жидкостью по каналу колонны трубчатых штанг;

Д 1 – одноступенчатые, двух плунжерные, обеспечивающие создание гидравлического низа;

Д 2 – одноступенчатые, двух плунжерные, обеспечивающие двухступенчатое сжатие откачиваемой жидкости (насосы исполнении Д 1 и Д 2 – одноступенчатые, одноплунжерные);

по стойкости к среде:

без обозначения – стойкие к среде с содержанием механических примесей до 1,3 г/л (нормальные);

И – стойкие к среде с содержанием механических примесей более 1,3 г/л (абразивостойкие).

Вставные скважинные насосы закрепляются в насосно-компрессорных трубах на замковой опоре типа ОМ, в условное обозначение, в которое входит: тип опоры; условный размер опоры; номер отраслевого стандарта.

Цилиндры насосов выпускают в двух исполнениях:

ЦБ – цельный (без втулочный), толстостенный;

ЦС – составной из набора втулок, стянутых внутри кожуха переводниками.

Плунжеры насосов выпускают в четырёх исполнениях:

П 1Х – с кольцевыми канавками, цилиндрической расточкой на верхнем конце и с хромовым покрытием наружной поверхности;

П2Х – то же, но без цилиндрической расточки на верхнем конце;

П1И – с кольцевыми канавками, цилиндрической расточкой на верхнем конце и упрочнением наружной поверхности напылением износостойкого порошка;

П2И – то же, без цилиндрической расточкой на верхнем конце.

К – с цилиндрическим седлом и шариком из нержавеющей стали;

КБ – то же, с седлом с буртиком;

КН – с цилиндрическим седлом из твёрдого сплава и шариком из нержавеющей стали.

Конструктивно все скважинные насосы из цилиндра, плунжера, клапанов, замка (для вставных насосов), присоединительных и установочных деталей. При конструкции насосов соблюдается принцип максимально возможной унификации указанных узлов и деталей для удобства замены потребителем изношенных деталей и сокращения номенклатуры потребных запасных частей.

Читать также: Насадка для лент с шурупами

Скважинные насосы исполнения НСВ1 предназначены для откачивания из нефтяных скважин маловязкой жидкости с содержанием механических примесей до 1,3 г/л и свободного газа на приёме насоса не более 10 %.

Насос состоит из составного цилиндра исполнения ЦС, на нижний конец которого навёрнут сдвоенный всасывающий клапан, а на верхний конец – замок, плунжера исполнения П1Х, подвижно расположенного внутри цилиндра, на резьбовые соединения которого навинчены: снизу – сдвоенный нагнетательный клапан, а сверху – клетка плунжера.

Скважинный насос спускается на колонне насосных штанг в колонну НКТ и закрепляется в опоре.

Принцип работы заключается в следующем. При ходе плунжера вверх в межклапанном пространстве цилиндра создаётся разряжение, за счёт чего открывается всасывающий клапан и происходит заполнение цилиндра. Последующим ходом плунжера вниз межклапанный объём сжимается, за счёт чего открывается нагнетательный клапан и поступившая в цилиндр жидкость перетекает в зону над плунжером. Периодические совершаемые плунжером перемещения вверх и вниз обеспечивают откачку пластовой жидкости и нагнетания ее на поверхность.

Конструктивно скважинные насосы состоят из цельного цилиндра исполнения ЦБ с всасывающим клапаном, навинченным на нижний конец. На всасывающий клапан навинчен упорный ниппель с конусом. На верхнем конце цилиндра расположен защитный клапан, предотвращающий осаждение песка в цилиндре при остановке насоса.

В расточке верхнего переводника цилиндра расположен упор. Насос спускается в колонну НКТ на колонне насосных штанг и закрепляется в опоре нижней частью при помощи ниппеля упорного с конусом. Такое закрепление насоса позволяет разгрузить от пульсирующих нагрузок. Это обстоятельство обеспечивает применение его на больших глубинах скважин.

Скважинные насосы исполнения НСН1 предназначены для откачивания из малодебитных, относительно неглубоких скважин маловязкой жидкости с содержанием механических примесей до 1,3 г/л и свободного газа до 10 % по объёму.

Конструктивно скважинные насосы состоят из составного цилиндра исполнения ЦС с седлом конуса на нижнем конце, в конусной расточке которого размещён всасывающий клапан. Внутри цилиндра подвижно расположен плунжер исполнения П1Х с навинченным на нижний конец наконечником, а на верхний конец – нагнетательным клапаном.

На всасывающий клапан навинчен захватный шток, располагающийся внутри плунжера.

Насосы диаметром 29, 32 и 44 мм. снабжены штоком для соединения колонны насосных штанг с плунжером, а у насосов диаметром 57 мм плунжер привинчивается к насосным штангам резьбой на нагнетательном клапане.

Длина хода плунжера насосов исполнения НСН1 составляет 900мм.

Принцип работы насоса НСН1 аналогичен принципу насоса НСВ1, однако цилиндр насоса НСН1 спускается на колонне НКТ, а плунжер с клапанами – на колонне насосных штанг. При подъёме штанг головка захватного штока упирается в наконечник плунжера и обеспечивает извлечение соединённого с ним всасывающего клапана для слива из колонны НКТ.

Станок качалка устройство и принцип работы

Процесс бурения скважины

Скважина 890 заложена согласно технологической схемы разработки терригенной пачки нижнего карбона Турнейского пласта Павловского месторождения утверждённой Центральной комиссией по разработке нефтяных месторождений. Скважина пробурена с целью эксплуатации залежей нефти Павловского месторождения Тунейского пласта.

Описание процесса освоения скважины

Устье скважин оборудовано арматурой тип.

ЭТГр БЗ 65х140 №419. Арматура отпрессована. Герметична.

25 июня 1989 года в скважине проведена кумулятивная перфорация ПКС-80 в интервале 1476,0-1492,0 м.(-1231,5-1247,5) всего сделано 288 отверстий.

В скважину спущены 73 мм. НКТ до глубины стоп – кольца.

Скважина освоена компрессором.

73 мм. НКТ спущено 154 трубы мерой 1458,45м.

В скважине в интервале перфорации сделана соляно – кислотная обработка с сульфатом аммония. За 2 часа, при Р=100 атм. закачено 12 м3. В процессе обработки давления колебалось от 150 до 90 атм. Скважина освоена компрессором. Получена нефть. Силами ЦНИПРА снята кривая восстановления давления до и после кислотной обработки.

Читать также: Ленточная пила принцип действия

В нефтедобывающей отрасли эффективность во многом зависит от типа применяемого оборудования. Для полноценной комплектации и эффективной добычи необходим станок-качалка. Это оборудование является неотъемлемой частью нефтедобывающего комплекса.

Тормоз

Тормоз — состоит из двух колодок: правой и левой, и предназначен для блокирования (остановки) станка- качалки в нужном положении.

Устройство нефтяной качалки

нефтегазовое оборудование

Станок монтируется на специальную бетонную основу в виде фундамента. Здесь же располагается стойка, платформа и управляющая станция для оператора. После завершения работ по организации платформы размещается балансир, уравновешиваемый специальной головкой, к которой также подсоединяется канатный подвес. Для обеспечения силового воздействия качалка нефтяная оснащается редуктором и электродвигателем. Последний может располагаться под платформой, но из-за высокой опасности эксплуатации данной конфигурации такое размещение применяется крайне редко.

Что касается редуктора, то он посредством кривошипно-шатунного механизма подключается к балансиру. Эта связка предназначена для преобразования вращательного действия вала в возвратно-поступательную функцию. Примечательна и задача станции управления. Как правило, ее основу формирует коробочный комплекс с электротехнической начинкой. В обязательном порядке рядом с реле управления устанавливается и ручной механический тормоз.

Электродвигатель

Электродвигатель является приводом станка-качалки.

=2,2-2,5; 1пуск/1ном = 5,5-7,5. Основная синхронная частота вращения — 1500 об/мин. Для получения необходимого числа ходов точки подвеса штанг могут быть применены электродвигатели с частотой вращения 750 или 1000 об/мин серии АОП. Двигатели питаются

электроэнергией от промысловой сети напряжением 380 В через понижающие трансформаторные подстанции 6/0,4 кВ или 10/0,4 кВ.

Электродвигатели выполнены в искробезопасном исполнении.

Основные характеристики

Каждый станок качалка обладает индивидуальными параметрами, которые зависят от требуемых эксплуатационных свойств. Однако наряду с ними данный тип оборудования имеет общие технические характеристики. Для анализа качества станка рекомендуется ознакомиться с ними.

Все станки-качалки должны обладать достаточно высокой производительностью. Она определяется движением штока и его интенсивностью. Помимо этого, следует учитывать эксплуатационные качества: ремонтопригодность, размеры, общую массу и сложность обслуживания. Это является важным, так как зачастую станок качалка устанавливается вдали от населенных пунктов, что затрудняет ремонт в случае возникновения поломки.

Перечень основных технических характеристик:

  • максимально допустимый показатель нагрузки на устьевом штоке. Он может варьироваться от 30 до 100 кН;
  • длина хода штока. Обычно она составляет от 1,2 до 3 м;
  • крутящий момент вала выходного редуктора. Он влияет на интенсивность движения штока и может быть равен от 6,3 до 56 кНм;
  • число ходов балансира варьируется от 1,2 до 15 в минуту.

Станок-качалка может иметь различный показатель массы, который зависит от размеров его составных элементов. В среднем вес конструкции составляет от 3,8 до 14 тонн. При этом габариты варьируются от 4,125*1,35*3,245 м до 7,95*2,25*5,83 м. Для повышения безопасности эксплуатации станок качалка комплектуется блоком управления, который предотвращает самопроизвольный запуск электродвигателя в случае отключения энергии. Это же помогает избежать аварийных ситуаций при механических поломках компонентов.

Станки-качалки могут регулироваться по нескольким параметрам, определяющими из которых является длина хода штока, а также число колебаний балансира. В каждой модели способы регулировки различны.

В нефтедобывающей отрасли эффективность во многом зависит от типа применяемого оборудования. Для полноценной комплектации и эффективной добычи необходим станок-качалка. Это оборудование является неотъемлемой частью нефтедобывающего комплекса.

Конструктивные особенности

Конструктивные элементы

Станки-качалки предназначены для передачи поступательного движения глубинному штанговому насосу, расположенному на дне скважины. Для уменьшения затрат на энергию оборудование должно обладать уникальной кинематической схемой. Дополнительным условием является применение современных комплектующих и компонентов.

Для анализа функциональности и особенности работы необходимо ознакомиться с конструкцией, которой обладает станок-качалка. Он состоит из силовой установки, вращательное движение от которой поступает на ведущий вал редуктора. На нем расположен кривошип с системой противовесов. Для связи кривошипа с балансиром предусмотрены шатуны и траверсы. В свою очередь, балансир установлен на опорной стойке. Для уменьшения затраты энергии на торцевой части балансира расположена откидная головка.

Правильно установленный станок имеет следующие эксплуатационные качества:

  • высокий показатель КПД. Обусловлен системой противовесов, которые позволят оптимизировать затраты энергии;
  • надежность. Станок качалка способен работать продолжительное время. Главное — обеспечивать должный уровень смазки подвижных механизмов;
  • сложность установки. Для нормальной эксплуатации станки-качалки необходимо устанавливать на обустроенные опорные платформы. Чаще всего их изготавливают методом заливки бетонной смесью.

Наряду с этой конструкцией в нефтедобывающей отрасли применяется безбалансировочное оборудование. Эти модели отличаются относительно небольшими размерами и массой, но при этом обладают более низким показателем КПД. Чаще всего устанавливаются в труднодоступных районах или местах, где обустройство полноценного фундамента затруднено.

В качестве привода чаще всего используются электродвигатели, скорость вращения вала которых не превышает 1500 об/мин. Изменение этого параметра выполняется с помощью коробки передач или ее клиноременного аналога.

Основные характеристики

Внешний вид

Каждый станок качалка обладает индивидуальными параметрами, которые зависят от требуемых эксплуатационных свойств. Однако наряду с ними данный тип оборудования имеет общие технические характеристики. Для анализа качества станка рекомендуется ознакомиться с ними.

Все станки-качалки должны обладать достаточно высокой производительностью. Она определяется движением штока и его интенсивностью. Помимо этого, следует учитывать эксплуатационные качества: ремонтопригодность, размеры, общую массу и сложность обслуживания. Это является важным, так как зачастую станок качалка устанавливается вдали от населенных пунктов, что затрудняет ремонт в случае возникновения поломки.

Перечень основных технических характеристик:

  • максимально допустимый показатель нагрузки на устьевом штоке. Он может варьироваться от 30 до 100 кН;
  • длина хода штока. Обычно она составляет от 1,2 до 3 м;
  • крутящий момент вала выходного редуктора. Он влияет на интенсивность движения штока и может быть равен от 6,3 до 56 кНм;
  • число ходов балансира варьируется от 1,2 до 15 в минуту.

Станок-качалка может иметь различный показатель массы, который зависит от размеров его составных элементов. В среднем вес конструкции составляет от 3,8 до 14 тонн. При этом габариты варьируются от 4,125*1,35*3,245 м до 7,95*2,25*5,83 м. Для повышения безопасности эксплуатации станок качалка комплектуется блоком управления, который предотвращает самопроизвольный запуск электродвигателя в случае отключения энергии. Это же помогает избежать аварийных ситуаций при механических поломках компонентов.

Станки-качалки могут регулироваться по нескольким параметрам, определяющими из которых является длина хода штока, а также число колебаний балансира. В каждой модели способы регулировки различны.

Особенности эксплуатации

Станок качалка на бетонном фундаменте

Современный станок качалка относится к классу сложного оборудования и состоит из множества компонентов. Поэтому его эксплуатация подразумевает детальное изучение устройства, основных параметров оборудования и неукоснительное соблюдение техники безопасности.

Прежде всего необходимо сделать корректную установку оборудования. При этом учитывается не только его масса и габариты, но и характеристики грунта. В некоторых случаях для модели с небольшим весом достаточно обустроить свайный фундамент. Но чаще всего необходимо устанавливать железобетонную плиту, которая равномерно распределит вес оборудования.

Основные правила эксплуатации:

  • рабочий персонал должен пройти инструктаж по технике безопасности, детально узнать характеристики и устройство станка;
  • выполнение профилактических мероприятий по поддержанию установки в нормальном состоянии;
  • в случае возникновения аварийной ситуации оборудование должно быть отключено, работа прекращена;
  • устранением неполадок могут заниматься только квалифицированные специалисты.

При соблюдении этих правил станок-качалка прослужит длительное время и при этом сохранит свои изначальные эксплуатационно-технические свойства.

Для наглядного ознакомления с принципом работы рекомендуется посмотреть видеоматериал, в котором показаны станки-качалки:

Силантьев Владимир Владимирович

Осмотр территории скважины Проверить состояние территории скважины. Примечание : Территория вокруг устья скважины должна быть: • очищена от замазученности; • не иметь посторонних предметов; • спланирована; • в зимнее время очищена от снега по колонную головку.

Осмотр фундамента станка - качалки (СК) Проверить исправность фундамента. Примечание : Фундамент служит для установки и крепления станка-качалки. Фундамент сооружается: - монолитный (бутобетонный или железобетонный); сборный (железобетонный или металлический).Фундамент станка качалки не должен быть разрушенным, иметь трещины, изломы и выкрашивания в местах крепления рамы станка-качалки.

Осмотр крепление СК Произвести осмотр наличия и надежности крепежа составных частей. Примечание : При проведении осмотра при работающем станке-качалке находиться внутри ограждения и под головкой балансира КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ!

Проверить жёсткость узлов СК. Проверить на отсутствие вибрации и постороннего шума работы СК . Примечание: Уровень шума работающего станка-качалки не должен превышать 90(дБ).

Осмотр заземления Проверить исправность заземление. Примечание : Кондуктор (техническая колонна) должна быть связана с рамой станка- качалки не менее чем двумя заземляющими стальными проводниками приваренными в разных местах к кондуктору и раме. Сечение прямоугольного проводника должно быть не менее 46 (мм²), толщина стенок угловой стали не менее 4 (мм), диаметр круглых заземлителей – 10 (мм). Заземляющие проводники, соединяющие раму станка-качалки с кондуктором (технической колонной) должны быть заглублены в землю не менее чем на 0,5(м).

Проверить заземление станции управления (СУ) и площадки обслуживания электродвигателя и тормоза . Примечание : В качестве заземляющих проводников может применяться сталь круглая, полосовая, угловая или другого профиля. Применение для этих целей стального каната не допускается. Соединения заземляющих проводников должны быть доступны для осмотра.

Проверить заземление электродвигателя Примечание : При установке электродвигателя на поворотных салазках он должен быть заземлён гибким стальным проводником сечением 35 (мм²). При установке электродвигателя на заземлённой раме станка-качалки и обеспечении надёжного контакта между ними, дополнительного заземления электродвигателя не требуется.

Проверка работы редуктора Убедиться в отсутствии посторонних шумов в редукторе и в подшипниках при работе станка-качалки. Примечание: Редуктор предназначен для уменьшения частоты вращения, передаваемой от электродвигателя кривошипам станка-качалки. На концах ведущего вала насажены ведомый шкив клиноременной передачи и шкив тормоза. На оба конца ведомого вала насажены кривошипы. Смазка зубчатых колёс – картерная (из ванны корпуса редуктора), подшипников валов – принудительная картерная. Возможные причины шума или стука в редукторе станка-качалки: 1. Неравномерная нагрузка на редуктор при ходе балансира вверх и вниз. 2. Поломка зубьев зубчатых колёс. 3. Неисправность подшипников. 4. Недостаточный уровень (отсутствие) масла в редукторе.

Осмотр фланцевых соединений ФА Проверить фланцевые соединения на отсутствие пропусков газа нефти и воды.

Примечани е: Требования, предъявляемые к фланцевым соединениям: Не допускаются пропуски жидкости через фланцевые соединения. Фланцевые соединения должны иметь полный комплект крепежа. Затяжка шпилек должна быть равномерной. Диаметр шпилек должен соответствовать диаметру отверстий фланца Шпильки должны устанавливаться таким образом, чтобы после затяжки гаек резьбовая часть выступала с обеих сторон на 2-4 нитки.

Осмотр запорной арматуры Проверить герметичность соединения крышки и корпуса запорных устройств.

Проверить работоспособность запорного механизма - вращение штурвала должно быть легким; - шток при вращении штурвала должен перемещаться в плоскости перпендикулярной к штурвалу. Примечани е: Если шток проворачивается вместе со штурвалом – это означает, что задвижка неисправна. Для надежности работы задвижки, после ее закрытия повернуть маховик в направлении открытия на ¼ оборота. Производить осмотр и обслуживание задвижек не реже одного раза в 10 дней .. ЗАПРЕЩАЕТСЯ: 1. Эксплуатация задвижек в полуоткрытом положении затвора; 2. Производить вращение маховика с помощью дополнительного рычага; 3. Производить монтажные и демонтажные работы при наличии давления; 4. Наносить механические удары по корпусу задвижки; 5. Отогревать задвижку открытым огнем; Использовать задвижку с рабочим давлением меньше чем давление среды

Осмотр СУЗГа Проверить герметичность устьевого сальника УШГН. Примечани е: Не допускаются пропуски жидкости и газа через уплотнение устьевого сальника. Верхний торец СУС должен возвышаться над уровнем устьевой площадки не более, чем на 1000 (мм) и не менее чем на 450 (мм)

Проверить исправность манометров Проверить наличие, исправность и пригодность к эксплуатации установленные манометры.

Примечание : Манометр не допускается к применению в случаях, когда: - отсутствует пломба или клеймо на манометре; - просрочен срок поверки манометра; - стрелка манометра при его выключении не возвращается на нулевую отметку шкалы; - разбито стекло или имеются другие повреждения, которые могут отразиться на правильности его показаний.

Замена манометров в случае неисправности В случае неисправности манометра, его необходимо заменить на исправный, соответствующий по своим параметрам давлению в аппарате согласно технологическому регламенту.

Примечание: Номинальный диаметр корпуса манометров, устанавливае­мых на высоте до 2 (м) дол­жен быть не менее 100 (мм), на высоте от 2 до 3 (м) - не менее 160 (мм). 1. Между манометром быть установлен трех­ходовой кран или заменяющее его устройство, позволяющее прово­дить периодическую проверку манометра с помощью контрольного. 2. Манометр должен выбираться с такой шкалой, чтобы пре­дел измерения рабочего давления находился во второй трети шкалы. Манометры должны иметь класс точности не ниже: 2,5 — при рабочем 2,5 МПа (25 кгс/см 2 ),1,5- при ра­бочем давлении сосуда выше 2,5 МПа (25 кгс/см 2 ). На шкале манометра должна быть нане­сена красная черта, указывающая рабочее давление в сосуде. Взамен красной черты разрешается прикреплять к корпусу манометра ме­таллическую пластину, окрашенную в красный цвет и плотно приле­гающую к стеклу манометра. Поверка манометров с их пломбированием или клейме­нием должна производиться не реже одного раза в 12 месяцев. На пломбе указывается квартал и год поверки. Кро­ме того, не реже одного раза в 6 месяцев владельцем сосуда должна производиться дополнительная проверка рабочих манометров конт­рольным манометром с записью результатов в журнал контрольных проверок.

Осмотр станции управления Проверить герметичность кабельного ввода (отсутствие видимых повреждений).

Проверить исправность и убедиться в отсутствии повреждений элементов щитка управления (переключателя, кнопок, амперметра). Примечание : На скважинах с автоматическим и дистанционном управлением станков-качалок вблизи пускового устройства на видном месте должны быть укреплены щитки с надписью " Внимание! Пуск автоматический ". Такая же надпись должна быть на пусковом устройстве.

Проверить уравновешивание станка-качалки.

Примечание : Правильность установленного уравновешивания можно проверить по амперметру станции управления, показывающему максимальный расходуемый ток при ходе балансира вверх и вниз, значение которого должно быть приблизительно одинаковым (±10%). Резкие колебания нагрузок приведут к ускоренному износу всех узлов станка и создадут ненормальный режим работы электродвигателя.

Проверка работы скважины Проверить температуру устьевого штока Примечание : Внешней стороной ладони, температура не должна превышать 40-50º- тепло на ощупь.

Станок-качалка является индивидуальным приводом штангового скважинного насоса, спускаемого в скважину и связанного с приводом колонной штанг.

В конструктивном отношении станок-качалка представляет собой механизм, преобразующий вращательное движение электродвигателя в возвратно- поступательное движение колонны штанг.

станок качалка

Крутящий момент от электродвигателя 10 через клиноремённую передачу 9 передаётся на ведущий вал редуктора 1, а затем и на ведомый вал. На ведомом валу закрепляется кривошип 8 с противовесами 17. Кривошипе помощью шатунов 7 и траверсы 14, связан с балансиром 3, качающимся на опоре 4, укреплённой на стойке 5. Балансир снабжён откидной головкой 15, на которой монтируется канатная подвеска 16, с устьевой подвеской штока 2. Управление электрооборудованием станка-качалки осуществляется станцией управления 18. Рама станка-качалки крепится к фундаменту анкерными болтами 11.

Станки качалки изготавливаются в двух исполнениях:

  • СК, выпускаются семи типоразмеров, и
  • СКД, выпускаются шести типоразмеров.

Отличительной особенностью станков-качалок СКД являются:

  • несимметричная (дезаксиальная) кинематическая схема преобразующего механизма с повышенным кинематическим отношением;
  • меньшие габариты и масса;
  • редуктор установлен непосредственно на раме станка-качалки.

СКД — станок-качалка с несимметричной (дезаксиальной) кинематической схемой преобразующего механизма; первая цифра — номинальная нагрузка (на устьевом штоке), кН (т); цифры после первого тире — наибольшая длина хода устьевого штока, м; цифры после второго тире — номинальный крутящий момент (на выходном валу редуктора), кН м (кге м).

Характеристика станков-качалок исполнения СК

Характеристика станков-качалок исполнения СКД

Станок-качалка (СК) состоит из ряда самостоятельных узлов:

Кривошип — ведущее звено преобразующего механизма станка-качалки, в котором предусмотрены отверстия для изменения длины хода устьевого штока. Выполнен в виде прямоугольных пластин с отверстиями для крепления к валу редуктора и присоединения шатунов. На кривошипе установлены противовесы, которые перемещаются с помощью съёмного устройства, вставляемого в поперечный паз у основания противовеса.

Редуктор

Редуктор — предназначен для уменьшения частоты вращения и увеличения мощности, передаваемых от электродвигателя кривошипам станка- качалки.

Как правило, типоразмерный ряд станков-качалок базируется на восьми размерах двухступенчатых редукторов Ц2НШ, представляющих собой совокупность двух пар цилиндрических шевронных зубчатых передач, выполненных с зацеплением Новикова.

Быстроходная ступень — раздвоенный шеврон, тихоходная ступень — шевронная ступень с канавкой.

Ведущий и промежуточный валы установлены в роликоподшипниках с короткими цилиндрическими роликами, ведомый вал — в двухрядных сферических роликоподшипниках.

На концах ведущего вала насажены ведомый шкив клиноремённой передачи и шкив тормоза. На оба конца ведомого вала насажены кривошипы. Смазка зубчатых колёс — картерная (из ванны корпуса редуктора), подшипников валов — принудительная картерная.

Шкивы электродвигателя

Шкивы электродвигателя выполняют быстросменными за счёт конусной расточки тела и применения конусной втулки, закрепляемой гайкой. При помощи сменных шкивов регулируется число ходов точки подвеса штанг.

Поворотные салазки предназначены для крепления электродвигателя, обеспечивают быструю смену и натяжение клиновидных ремней. Выполнены в виде рамы, которая шарнирно укреплена на заднем конце рамы станка-качалки в трёх точках, а на большегрузных СК (длина хода свыше 3,5, и) — в четырёх и прикреплённых к ней поперечно болтами двух салазок, на которые устанавливается электро- двигатель. Поворотные салазки поворачиваются вращением ходового винта.

Применяемое оборудование: Принцип работы станка качалки

Электродвигатель через клиноремённую передачу и редуктор придаёт двум массивным кривошипам, расположенных с двух сторон редуктора, круговое движение. Крившипнно шатунный механизм в целом преобразовывает в возвратно-поступательное движение балансира, который вращается на опорной оси, укреплённой на стойке. Балансир сообщает возвратно-поступательное движение канатной подвеске, штангам и плунжеру.

При ходе плунжера вверх нагнетательный клапан под действием жидкости закрывается и вся жидкость, находящиеся под плунжером, поднимается вверх на высоту равную длине хода плунжера. В это время скважинная жидкость через всасывающий клапан заполняет цилиндр насоса.

При ходе плунжера вниз всасывающий клапан закрывается, жидкость под плунжером сжимается, и открывается нагнетательный клапан. В цилиндр погружаются штанги, связанные с плунжером.

Таким образом, ШСН – поршневой насос однородного действия, а в целом комплекс из насоса и штанг – двойного действия.

Жидкость из НКТ вытисняется через тройник в нефтесборный трубопровод.

Принцип работы штанговой насосной установки

Читать также: Как сварить алюминий дома

Плунжерный насос приводится в действие от станка-качалки, где вращательное движение, получаемое от двигателя при помощи редуктора, кривошипно-шатунного механизма и балансира, преобразуется в возвратно-поступательное движение, передаваемое плунжеру штангового насоса через колонну штанг.

При ходе плунжера вверх под ним снижается давление, и жидкость из межтрубного пространства через открытый всасывающий клапан поступает в цилиндр насоса.

При ходе плунжера вниз всасывающий клапан закрывается, а нагнетательный клапан открывается, и жидкость из цилиндра переходит в подъёмные трубы. При непрерывной работе насоса уровень жидкости в НКТ повышается, жидкость доходит до устья скважины и через тройник переливается в выкидную линию.

Обратный клапан для перепуска газа;

Электродвигатель на поворотной салазке;

Схема штанговой скважинно-насосной установки (УШГН)

Станок качалка устройство и принцип работы

Описание работы насоса

Скважинные штанговые насосы предназначены для откачивания из нефтяных скважин жидкости обводнённостью до 90 %, температурой не более 130 0 С, содержанием сероводорода не более 50 г/л, минерализирующей воды не более 10 г/л.

Скважинные насосы представляют собой вертикальную конструкцию одинарного действия с неподвижным цилиндром, с подвижным металлическим плунжером и шариковыми клапанами; спускаются в скважину на колонне насосно-компрессорных труб и насосных штанг.

Скважинные насосы изготавливаются следующих типов:

  • · НВ1 – вставные с замком наверху;
  • · НВ2 – вставные с замком внизу;
  • · НН – не вставные без ловителя;
  • · НН1 – не вставной с захватным штоком;
  • · НН2 – не вставной с ловителем.

Выпускаются насосы следующих конструктивных исполнении:

по конструкции (исполнению) цилиндра:

5 – с толсто стенным цельным (безвтулочным) цилиндром;

С – с составным (втулочным) цилиндром;

по конструктивным особенностям, определяемым функциональным назначением (областью применения):

Т – с полым трубчатым штоком, обеспечивающим подъём жидкостью по каналу колонны трубчатых штанг;

Д 1 – одноступенчатые, двух плунжерные, обеспечивающие создание гидравлического низа;

Д 2 – одноступенчатые, двух плунжерные, обеспечивающие двухступенчатое сжатие откачиваемой жидкости (насосы исполнении Д 1 и Д 2 – одноступенчатые, одноплунжерные);

по стойкости к среде:

без обозначения – стойкие к среде с содержанием механических примесей до 1,3 г/л (нормальные);

И – стойкие к среде с содержанием механических примесей более 1,3 г/л (абразивостойкие).

Вставные скважинные насосы закрепляются в насосно-компрессорных трубах на замковой опоре типа ОМ, в условное обозначение, в которое входит: тип опоры; условный размер опоры; номер отраслевого стандарта.

Цилиндры насосов выпускают в двух исполнениях:

ЦБ – цельный (без втулочный), толстостенный;

ЦС – составной из набора втулок, стянутых внутри кожуха переводниками.

Плунжеры насосов выпускают в четырёх исполнениях:

П 1Х – с кольцевыми канавками, цилиндрической расточкой на верхнем конце и с хромовым покрытием наружной поверхности;

П2Х – то же, но без цилиндрической расточки на верхнем конце;

П1И – с кольцевыми канавками, цилиндрической расточкой на верхнем конце и упрочнением наружной поверхности напылением износостойкого порошка;

П2И – то же, без цилиндрической расточкой на верхнем конце.

К – с цилиндрическим седлом и шариком из нержавеющей стали;

КБ – то же, с седлом с буртиком;

КН – с цилиндрическим седлом из твёрдого сплава и шариком из нержавеющей стали.

Конструктивно все скважинные насосы из цилиндра, плунжера, клапанов, замка (для вставных насосов), присоединительных и установочных деталей. При конструкции насосов соблюдается принцип максимально возможной унификации указанных узлов и деталей для удобства замены потребителем изношенных деталей и сокращения номенклатуры потребных запасных частей.

Читать также: Как прибить плинтус пластиковый

Скважинные насосы исполнения НСВ1 предназначены для откачивания из нефтяных скважин маловязкой жидкости с содержанием механических примесей до 1,3 г/л и свободного газа на приёме насоса не более 10 %.

Насос состоит из составного цилиндра исполнения ЦС, на нижний конец которого навёрнут сдвоенный всасывающий клапан, а на верхний конец – замок, плунжера исполнения П1Х, подвижно расположенного внутри цилиндра, на резьбовые соединения которого навинчены: снизу – сдвоенный нагнетательный клапан, а сверху – клетка плунжера.

Скважинный насос спускается на колонне насосных штанг в колонну НКТ и закрепляется в опоре.

Принцип работы заключается в следующем. При ходе плунжера вверх в межклапанном пространстве цилиндра создаётся разряжение, за счёт чего открывается всасывающий клапан и происходит заполнение цилиндра. Последующим ходом плунжера вниз межклапанный объём сжимается, за счёт чего открывается нагнетательный клапан и поступившая в цилиндр жидкость перетекает в зону над плунжером. Периодические совершаемые плунжером перемещения вверх и вниз обеспечивают откачку пластовой жидкости и нагнетания ее на поверхность.

Конструктивно скважинные насосы состоят из цельного цилиндра исполнения ЦБ с всасывающим клапаном, навинченным на нижний конец. На всасывающий клапан навинчен упорный ниппель с конусом. На верхнем конце цилиндра расположен защитный клапан, предотвращающий осаждение песка в цилиндре при остановке насоса.

В расточке верхнего переводника цилиндра расположен упор. Насос спускается в колонну НКТ на колонне насосных штанг и закрепляется в опоре нижней частью при помощи ниппеля упорного с конусом. Такое закрепление насоса позволяет разгрузить от пульсирующих нагрузок. Это обстоятельство обеспечивает применение его на больших глубинах скважин.

Скважинные насосы исполнения НСН1 предназначены для откачивания из малодебитных, относительно неглубоких скважин маловязкой жидкости с содержанием механических примесей до 1,3 г/л и свободного газа до 10 % по объёму.

Конструктивно скважинные насосы состоят из составного цилиндра исполнения ЦС с седлом конуса на нижнем конце, в конусной расточке которого размещён всасывающий клапан. Внутри цилиндра подвижно расположен плунжер исполнения П1Х с навинченным на нижний конец наконечником, а на верхний конец – нагнетательным клапаном.

На всасывающий клапан навинчен захватный шток, располагающийся внутри плунжера.

Насосы диаметром 29, 32 и 44 мм. снабжены штоком для соединения колонны насосных штанг с плунжером, а у насосов диаметром 57 мм плунжер привинчивается к насосным штангам резьбой на нагнетательном клапане.

Длина хода плунжера насосов исполнения НСН1 составляет 900мм.

Принцип работы насоса НСН1 аналогичен принципу насоса НСВ1, однако цилиндр насоса НСН1 спускается на колонне НКТ, а плунжер с клапанами – на колонне насосных штанг. При подъёме штанг головка захватного штока упирается в наконечник плунжера и обеспечивает извлечение соединённого с ним всасывающего клапана для слива из колонны НКТ.

Станок качалка устройство и принцип работы

Процесс бурения скважины

Скважина 890 заложена согласно технологической схемы разработки терригенной пачки нижнего карбона Турнейского пласта Павловского месторождения утверждённой Центральной комиссией по разработке нефтяных месторождений. Скважина пробурена с целью эксплуатации залежей нефти Павловского месторождения Тунейского пласта.

Описание процесса освоения скважины

Устье скважин оборудовано арматурой тип.

ЭТГр БЗ 65х140 №419. Арматура отпрессована. Герметична.

25 июня 1989 года в скважине проведена кумулятивная перфорация ПКС-80 в интервале 1476,0-1492,0 м.(-1231,5-1247,5) всего сделано 288 отверстий.

В скважину спущены 73 мм. НКТ до глубины стоп – кольца.

Скважина освоена компрессором.

73 мм. НКТ спущено 154 трубы мерой 1458,45м.

В скважине в интервале перфорации сделана соляно – кислотная обработка с сульфатом аммония. За 2 часа, при Р=100 атм. закачено 12 м3. В процессе обработки давления колебалось от 150 до 90 атм. Скважина освоена компрессором. Получена нефть. Силами ЦНИПРА снята кривая восстановления давления до и после кислотной обработки.

Читать также: Регулятор напряжения для паяльника своими руками

В нефтедобывающей отрасли эффективность во многом зависит от типа применяемого оборудования. Для полноценной комплектации и эффективной добычи необходим станок-качалка. Это оборудование является неотъемлемой частью нефтедобывающего комплекса.

Тормоз

Тормоз — состоит из двух колодок: правой и левой, и предназначен для блокирования (остановки) станка- качалки в нужном положении.

Принцип работы нефтяной качалки

Все происходит по следующему принципу. Посредством электрического питания происходит работы двигателя, который в свою очередь запускает весь механизм в рабочее положение. Начинается вращение механических частей нефтяной качалки, посредством чего балансировочный элемент начинает осуществлять движение, которое сродни движению качелей. Подвеска, на которой располагается шток устьевого типа, начинает осуществлять движения возвратно поступательного характера. Таким образом, поступающая через штанговые элементы энергия выдается на штанговый насос, который в свою очередь и позволяет захватить нефть из недр земли.

Нефтяная качалка

Управляющая всем механизмом станция выглядит таким образом. Она представляет собой блок коробочного типа, который внутри в буквальном смысле нашпигован электроникой. Таким образом, никаких силовых и ручных воздействий для управления данной установкой не требуются, все управление происходит посредством нажатия на клавиши и выбора необходимой программы.

Электродвигатель

Электродвигатель является приводом станка-качалки.

=2,2-2,5; 1пуск/1ном = 5,5-7,5. Основная синхронная частота вращения — 1500 об/мин. Для получения необходимого числа ходов точки подвеса штанг могут быть применены электродвигатели с частотой вращения 750 или 1000 об/мин серии АОП. Двигатели питаются

электроэнергией от промысловой сети напряжением 380 В через понижающие трансформаторные подстанции 6/0,4 кВ или 10/0,4 кВ.

Читайте также: