Конспект кодификатор егэ физика

Обновлено: 01.07.2024

В разделе, посвященному ЕГЭ по физике, Вы найдете подробный обзор экзамена c разборами типовых заданий. Перед разборами и решениями задач дана краткая теория, которая необходима именно для выполнения данного задания. Успехов!

Вся теория для ЕГЭ по Физике ⬇️

1. Кинематика

2. Динамика

3. Законы сохранения

4. Статика и гидростатика

5. Электростатика

6. Постоянный ток

7. Магнетизм

8. Термодинамика и молекулярная физика

9. Колебания и волны

10. Оптика

11. Квантовая физика

Все разборы заданий ЕГЭ ⬇️

Разборы по заданиям

Все тесты ЕГЭ ⬇️

Тесты по заданиям

Информация об экзамене

ЕГЭ по физике состоит из 31 задания в двух частях.

Первая часть содержит 23 задания с кратким ответом:

  • 13 заданий с кратким ответом в виде числа, слова или двух чисел
  • 10 заданий на установление соответствия и множественный выбор

Вторая часть состоит из восьми заданий - решение задач. Для трех задач необходимо привести краткий ответ (задания с 24 по 26) и для пяти оставшихся заданий ответ должен быть развернутый (с решением).

В ЕГЭ по физике нас будут ждать следующие темы:

  1. Механика (кинематика, динамика, статика, законы сохранения в механике, механические колебания и волны)
  2. Молекулярная физика (молекулярно-кинетическая теория, термодинамика)
  3. Электродинамика и основы СТО (электрическое поле, постоянный ток, магнитное поле, электромагнитная индукция, электромагнитные колебания и волны, оптика, основы СТО)
  4. Квантовая физика (корпускулярно-волновой дуализм, физика атома, физика атомного ядра)

Общее количество заданий в экзаменационной работе по каждому из разделов приблизительно пропорционально его содержательному наполнению и учебному времени, отводимому на изучение данного раздела в школьном курсе физики.

Части работы Количество заданий Максимальный первичный бал Тип заданий
1 часть 24 34 Краткий ответ
2 часть 8 18 Развернутый ответ
Итого 32 52

Время

На выполнение работы отводится 235 минут. Рекомендуемое время на выполнение заданий различных частей работы составляет:

Элементы содержания, проверяемые заданиями экзаменационной работы.

1. МЕХАНИКА

1.1 КИНЕМАТИКА

1.1 КИНЕМАТИКА



1.2 ДИНАМИКА

1.2 ДИНАМИКА


1.3 СТАТИКА

1.3 СТАТИКА

1.4 ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ

1.4 ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ


1.5 МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ

1.5 МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ

2. МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕРМОДИНАМИКА

2.1 МОЛЕКУЛЯРНАЯ ФИЗИКА

2.1 МОЛЕКУЛЯРНАЯ ФИЗИКА


2.2 ТЕРМОДИНАМИКА

2.2 ТЕРМОДИНАМИКА

3. ЭЛЕКТРОДИНАМИКА

3.1 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

3.1 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ


3.2 ЗАКОНЫ ПОСТОЯННОГО ТОКА

3.2 ЗАКОНЫ ПОСТОЯННОГО ТОКА

3.3 МАГНИТНОЕ ПОЛЕ

3.3 МАГНИТНОЕ ПОЛЕ

3.4 ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

3.4 ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

3.5 ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫ

3.5 ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫ

3.6 ОПТИКА

3.6 ОПТИКА


4. ОСНОВЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

4. ОСНОВЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

5. КВАНТОВАЯ ФИЗИКА И ЭЛЕМЕНТЫ АСТРОФИЗИКИ

5.1 КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ

5.1 КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ

5.2 ФИЗИКА АТОМА

5.2 ФИЗИКА АТОМА

5.3 ФИЗИКА АТОМНОГО ЯДРА

5.3 ФИЗИКА АТОМНОГО ЯДРА


5.4 ЭЛЕМЕНТЫ АСТРОФИЗИКИ

5.4.1 Солнечная система: планеты земной группы и планеты-гиганты, малые тела Солнечной системы.

5.4.2 Звезды: разнообразие звездных характеристик и их закономерности. Источники энергии звезд.

5.4.3 Современные представления о происхождении и эволюции Солнца и звезд.

5.4.4 Наша Галактика. Другие галактики. Пространственные масштабы наблюдаемой Вселенной.

5.4.5 Современные взгляды на строение и эволюцию Вселенной

Физика Кодификатор ЕГЭ элементов содержания

Справочники по физике для подготовки к ОГЭ и ЕГЭ:

Школьные предметы:

Поиск конспекта

Новые конспекты

  • Алгебра 9 КР-5 Уровень 3 (сложный)
  • Алгебра 9 КР-5 Уровень 2 (средний)
  • Алгебра 9 КР-5 Уровень 1 (легкий)
  • Алгебра 9 КР-4 Уровень 3 (сложный)
  • Алгебра 9 КР-4 Уровень 2 (средний)
  • Алгебра 9 КР-4 Уровень 1 (легкий)
  • Электромагнитные колебания

О проекте

Возрастная категория: 12+

(с) 2021 Учитель.PRO — Копирование информации с сайта только при указании активной ссылки на сайт!

По теме: методические разработки, презентации и конспекты


Кодификатор по физике (ЕГЭ,2015)

Приводится демоверсия и кодификатор по физике за 2015г.


Кодификатор по физике (ЕГЭ,2014)

В документе представлен кодификатор и демоверсия по физике(ЕГЭ, 11класс).


Кодификатор ЕГЭ история - 2020

Кодификатор элементов содержания и требований к уровню подготовки выпускников образовательных организаций для проведения единого государственного экзамена по истории.

огз по физике 2020 кодификатор

огз по физике 2020 кодификатор.


Демоверсия, спецификация и кодификатор русский язык 2020


Кодификатор. ОГЭ Физика 2020

Кодификаторпроверяемых требований к результатам освоенияосновной образовательной программы основногообщего образования и элементов содержаниядля проведения основного государственного экзаменапо ФИЗИКЕ.

Кодификатор элементов содержания и требований к уровню подготовки выпускников образовательных организаций для проведения ЕГЭ по физике является одним из документов, определяющих структуру и содержание КИМ единого государственного экзамена, объекты перечня которого имеют конкретный код. Составлен кодификатор на основе Федерального компонента государственных стандартов основного общего и среднего (полного) общего образования по физике (базовый и профильный уровни).

Основные изменения в новой демоверсии

Скоро мы поговорим о грядущем ЕГЭ на вебинарах и в эфире нашего канала на YouTube.

Расписание ЕГЭ по физике в 2020 году

На данный момент известно, что Минпросвещения и Рособрнадзор опубликовали для общественного обсуждения проекты расписания ЕГЭ. Экзамены по физике предполагается провести 4 июня.

Кодификатор представляет собой информацию, разделённую на две части:

Перечень элементов содержания, проверяемых на едином государственном экзамене по физике

Код раздела Код контролируемого элемента Элементы содержания, проверяемые заданиями КИМ
1 Механика
1.1 Кинематика
1.2 Динамика
1.3 Статика
1.4 Законы сохранения в механике
1.5 Механические колебания и волны
2 Молекулярная физика. Термодинамика
2.1 Молекулярная физика
2.2 Термодинамика
3 Электродинамика
3.1 Электрическое поле
3.2 Законы постоянного тока
3.3 Магнитное поле
3.4 Электромагнитная индукция
3.5 Электромагнитные колебания и волны
3.6 Оптика
4 Основы специальной теории относительности
5 Квантовая физика и элементы астрофизики
5.1 Корпускулярно-волновой дуализм
5.2 Физика атома
5.3 Физика атомного ядра
5.4 Элементы астрофизики

В книге содержатся материалы для успешной сдачи ЕГЭ: краткие теоретические сведения по всем темам, задания разных типов и уровней сложности, решение задач повышенного уровня сложности, ответы и критерии оценивания. Учащимся не придется искать дополнительную информацию в интернете и покупать другие пособия. В данной книге они найдут все необходимое для самостоятельной и эффективной подготовки к экзамену.

Требования к уровню подготовки выпускников

1.1. смысл физических понятий;

1.2. смысл физических величин;

1.3. смысл физических законов, принципов, постулатов.

2.1. описывать и объяснять:

2.1.1. физические явления, физические явления и свойства тел;

2.1.2. результаты экспериментов;

2.2. описывать фундаментальные опыты, оказавшие существенное влияние на развитие физики;

2.3. приводить примеры практического применения физических знаний, законов физики;

2.4. определять характер физического процесса по графику, таблице, формуле; продукты ядерных реакций на основе законов сохранения электрического заряда и массового числа;

2.5.1. отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий и позволяют проверить истинность теоретических выводов, физическая теория даёт возможность объяснять известные явления природы и научные факты, предсказывать ещё неизвестные явления;

2.5.2. приводить примеры опытов, иллюстрирующих, что: наблюдения и эксперимент служат основой для выдвижения гипотез и построения научных теорий; эксперимент позволяет проверить истинность теоретических выводов; физическая теория даёт возможность объяснять явления природы и научные факты; физическая теория позволяет предсказывать ещё неизвестные явления и их особенности; при объяснении природных явлений используются физические модели; один и тот же природный объект или явление можно исследовать на основе использования разных моделей; законы физики и физические теории имеют свои определённые границы применимости;

2.5.3. измерять физические величины, представлять результаты измерений с учётом их погрешностей;

1.5.1 Гармонические колебания. Амплитуда и фаза колебаний. Кинематическое описание. Динамическое описание. Энергетическое описание (закон сохранения механической энергии). Связь амплитуды колебаний исходной величины с амплитудами колебаний её скорости и ускорения

1.5.2 Период и частота колебаний. Период малых свободных колебаний математического маятника. Период свободных колебаний пружинного маятника

1.5.3 Вынужденные колебания. Резонанс. Резонансная кривая

1.5.4 Поперечные и продольные волны. Скорость распространения и длина волны. Интерференция и дифракция волн

1.5.5 Звук. Скорость звука

2 Молекулярная физика. Термодинамика

2.1 Молекулярная физика

2.1.1 Модели строения газов, жидкостей и твердых тел

2.1.2 Тепловое движение атомов и молекул вещества

2.1.3 Взаимодействие частиц вещества

2.1.4 Диффузия. Броуновское движение

2.1.5 Модель идеального газа в МКТ: частицы газа движутся хаотически и не взаимодействуют друг с другом

2.1.6 Связь между давлением и средней кинетической энергией поступательного теплового движения молекул идеального газа (основное уравнение МКТ)

2.1.7 Абсолютная температура

2.1.8 Связь температуры газа со средней кинетической энергией поступательного теплового движения его частиц

2.1.9 Уравнение p=nkT

2.1.10 Модель идеального газа в термодинамике. Уравнение Менделеева-Клапейрона. Выражение для внутренней энергии одноатомного идеального газа

2.1.11 Закон Дальтона для давления смеси разреженных газов

2.1.12 Изопроцессы в разреженном газе с постоянным числом частиц N (с постоянным количеством вещества ν): изотерма, изохора, изобара. Графическое представление изопроцессов на pV-, pT- и VT- диаграммах

2.1.13 Насыщенные и ненасыщенные пары. Качественная зависимость плотности и давления насыщенного пара от температуры, их независимость от объема насыщенного пара

2.1.14 Влажность воздуха. Относительная влажность

2.1.15 Изменение агрегатных состояний вещества: испарение и конденсация, кипение жидкости

2.1.16 Изменение агрегатных состояний вещества: плавление и кристаллизация

2.1.17 Преобразование энергии в фазовых переходах

2.2 Термодинамика

2.2.1 Тепловое равновесие и температура

2.2.2 Внутренняя энергия

2.2.3 Теплопередача как способ изменения внутренней энергии без совершения работы. Конвекция, теплопроводность, излучение

2.2.4 Количество теплоты. Удельная теплоемкость вещества

2.2.5 Удельная теплота парообразования. Удельная теплота плавления. Удельная теплота сгорания топлива

2.2.6 Элементарная работа в термодинамике. Вычисление работы по графику процесса на pV-диаграмме

2.2.7 Первый закон термодинамики. Адиабата

2.2.8 Второй закон термодинамики, необратимость

2.2.9 Принципы действия тепловых машин. КПД

2.2.10 Максимальное значение КПД. Цикл Карно

2.2.11 Уравнение теплового баланса

3. Электродинамика

3.1. Электрическое поле

3.1.1 Электризация тел и её проявления. Электрический заряд. Два вида заряда. Элементарный электрический заряд. Закон сохранения электрического заряда

3.1.2 Взаимодействие зарядов. Точечные заряды. Закон Кулона

3.1.3 Электрическое поле. Его действие на электрические заряды

3.1.4 Напряжённость электрического поля. Поле точечного заряда. Картины линий этих полей

3.1.5 Потенциальность электростатического поля. Разность потенциало и напряжение. Потенциальная энергия заряда в электростатическом поле. Потенциал электростатического поля. Связь напряжённости поля и разности потенциалов для однородного электростатического поля

3.1.6 Принцип суперпозиции электрических полей

3.1.7 Проводники в электростатическом поле. Условие равновесия зарядов: внутри проводника

3.1.8 Диэлектрики в электростатическом поле. Диэлектрическая проницаемость вещества

3.1.9 Конденсатор. Электроёмкость конденсатора. Электроёмкость плоского конденсатора

3.1.10 Параллельное соединение конденсаторов. Последовательное соединение конденсаторов

3.1.11 Энергия заряженного конденсатора

3.2. Законы постоянного тока

3.2.1 Сила тока. Постоянный ток

3.2.2 Условия существования электрического тока

3.2.3 Закон Ома для участка цепи

3.2.4 Электрическое сопротивление. Зависимость сопротивления однородного проводника от его длины и сечения. Удельное сопротивление вещества

3.2.5 Источники тока. ЭДС и внутреннее сопротивление источника тока

3.2.6 Закон Ома для полной (замкнутой) электрической цепи

3.2.7 Параллельное соединение проводников. Последовательное соединение проводников

3.2.8 Работа электрического тока. Закон Джоуля-Ленца

3.2.9 Мощность электрического тока. Тепловая мощность, выделяемая на резисторе. Мощность источника тока

3.2.10 Свободные носители электрических зарядов в проводниках. Механизмы проводимости твёрдых металлов, растворов и расплавов электролитов, газов. Полупроводники. Полупроводниковый диод

3.3. Магнитное поле

3.3.1 Механическое взаимодействие магнитов. Магнитное поле. Вектор магнитной индукции. Принцип суперпозиции магнитных полей. Линии магнитного поля. Картина линий поля полосового и подковообразного постоянных магнитов

3.3.2 Опыт Эрстеда. Магнитное поле проводника с током. Картина линий поля длинного прямого проводника и замкнутого кольцевого проводника, катушки с током

3.3.3 Сила Ампера, её направление и величина

3.3.4 Сила Лоренца, её направление и величина. Движение заряженной частицы в однородном магнитном поле

3.4. Электромагнитная индукция

3.4.1 Поток вектора магнитной индукции

3.4.2 Явление электромагнитной индукции. ЭДС индукции

3.4.3 Закон электромагнитной индукции Фарадея

3.4.4 ЭДС индукции в прямом проводнике, движущемся в однородном магнитном поле

3.4.5 Правило Ленца

3.4.6 Индуктивность. Самоиндукция. ЭДС самоиндукции

3.4.7 Энергия магнитного поля катушки с током

3.5. Электромагнитные колебания и волны

3.5.1 Колебательный контур. Свободные электромагнитные колебания в идеальном колебательном контуре. Формула Томсона. Связь амплитуды заряда конденсатора с амплитудой силы тока в колебательном контуре

3.5.2 Закон сохранения энергии в колебательном контуре

3.5.3 Вынужденные электромагнитные колебания. Резонанс

3.5.4 Переменный ток. Производство, передача и потребление электрической энергии

3.5.5 Свойства электромагнитных волн. Взаимная ориентация векторов в электромагнитной волне в вакууме

3.5.6 Шкала электромагнитных волн. Применение электромагнитных волн в технике и быту

3.6. Оптика

3.6.1 Прямолинейное распространение света в однородной среде. Луч света

3.6.2 Законы отражения света

3.6.3 Построение изображений в плоском зеркале

3.6.4 Законы преломления света. Абсолютный показатель преломления. Относительный показатель преломления. Ход лучей в призме. Соотношение частот и длин волн при переходе монохроматического света через границу раздела двух оптических сред

3.6.5 Полное внутреннее отражение. Предельный угол полного внутреннего отражения

3.6.6 Собирающие и рассеивающие линзы. Тонкая линза. Фокусное расстояние и оптическая сила тонкой линзы

3.6.7 Формула тонкой линзы. Увеличение, даваемое линзой

3.6.8 Ход луча, прошедшего линзу под произвольным углом к её главной оптической оси. Построение изображений точки и отрезка прямой в собирающих и рассеивающих линзах и их системах

3.6.9 Фотоаппарат как оптический прибор. Глаз как оптическая система

3.6.10 Интерференция света. Когерентные источники. Условия наблюдения максимумов и минимумов в интерференционной картине от двух синфазных когерентных источников

3.6.11 Дифракция света. Дифракционная решётка. Условие наблюдения главных максимумов при нормальном падении монохроматического света с длиной волны λ на решётку с периодом d

3.6.12 Дисперсия света

4. Основы специальной теории относительности

4.1 Инвариантность модуля скорости света в вакууме. Принцип относительности Эйнштейна

4.2 Энергия свободной частицы. Импульс частицы

4.3 Связь массы и энергии свободной частиц. Энергия покоя свободной частицы

5. Квантовая физика и элементы астрофизики

5.1. Корпускулярно-волновой дуализм

5.1.1 Гипотеза М. Планка о квантах. Формула Планка

5.1.2 Фотоны. Энергия фотона. Импульс фотона

5.1.3 Фотоэффект. Опыты А.Г. Столетова. Законы фотоэффекта

5.1.4 Уравнение Эйнштейна для фотоэффекта

5.1.5 Волновые свойства частиц. Волны де Бройля. Длина волны де Бройля движущейся частицы. Корпускулярно-волновой дуализм. Дифракция электронов на кристаллах

5.1.6 Давление света. Давление света на полностью отражающую поверхность и на полностью поглощающую поверхность

5.2. Физика атома

5.2.1 Планетарная модель атома

5.2.2 Постулаты Бора. Излучение и поглощение фотонов при переходе атома с одного уровня энергии на другой

5.2.3 Линейчатые спектры. Спектр уровней энергии атома водорода

5.3. Физика атомного ядра

5.3.1 Нуклонная модель ядра Гейзенберга–Иваненко. Заряд ядра. Массовое число ядра. Изотопы

5.3.2 Энергия связи нуклонов в ядре. Ядерные силы

5.3.3 Дефект массы ядра

5.3.4 Радиоактивность. Альфа-распад. Бета-распад. Электронный β-распад. Позитронный β-распад. Гамма-излучение

Читайте также: