Использование свойств и графиков функций при решении уравнений и неравенств конспект

Обновлено: 05.07.2024

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

«Правильному применению методов можно научиться,

Решение неравенств повышенной сложности, содержащих модули, иррациональные, логарифмические, показательные функцииили их комбинацию, стандартными школьными методами часто оказывается весьма сложным и громоздким, что вызывает у нас, школьников, определенные трудности.

Мною было проведено анкетирование среди учащихся 9-11 классов:

Знаете ли вы методы решения неравенств, опирающиеся на свойства функций?

Какие вы используете чаще всего?

По результатам анкетирования были получены следующие результаты:

Проанализировав полученные результаты, я пришел к выводу, что большинство учащихся недостаточно осведомлены о данных методах решения неравенств.

Таким образом, возникает необходимость в изучении методов решения неравенств, опирающихся на свойства функций, что определяет актуальность данной работы.

Цель: научиться использовать методы решения неравенств, опирающиеся на свойства функций.

Задачи:

Рассмотреть методы решения неравенств, опирающиеся на свойства функций, такие как область определения, ограниченность, неотрицательность, монотонность функций и метод мини-максов;

Привести примеры решения неравенств с помощью методов, опирающихся на свойства функций;

Составить тренажер по использованию свойств функций при решении неравенств.

Объект исследования: методы решения неравенств.

Предмет исследования: методы решения неравенств, опирающиеся на свойства функций.

Гипотеза исследования: использование свойств функций при решении неравенств дает более рациональное его решение и позволяет повысить эффективность и качество.

Методы исследования: анализ, сравнение, обобщение, конструирование, моделирование, изучение литературных источников и Интернет-источников.

Практическая значимость исследования: изучение методов решения неравенств, опирающихся на свойства функций, необходимы для получения хорошего результата на ЕГЭ, при поступлении в ВУЗы и различных жизненных ситуациях.

Основная часть

Глава 1. Понятие функции

Первоначально понятие функции было неотличимо от понятия аналитического представления. Впоследствии появилось определение функции, данное Эйлером (1751 год), затем — у Лакруа (1806 год), — уже практически в современном виде. Наконец, общее определение функции (в современной форме, но для числовых функций) было дано Лобачевским (1834 год) и Дирихле (1837 год).

К концу XIX века понятие функции переросло рамки числовых систем. Сначала понятие функции было распространено на векторные функции, вскоре Фреге ввёл логические функции (1879), а после появления теории множеств Дедекинд (1887) и Пеано (1911) сформулировали современное универсальное определение.

Зависимость переменной у от переменной х, при которой каждому значению переменной х соответствует единственное значение переменной у, называется функцией (определение, которое нам знакомо из курса алгебры).

При этом x называют независимой переменной или аргументом, а переменную y – зависимой переменной или функцией.

Если зависимость переменной у от переменной х является функцией, то коротко это записывают y = f ( x ).

Область определения функции - все значения независимой переменной.

Область значений функции – все значения, которые принимает зависимая переменная.

Глава 2. Использование свойств функции

2.1. Использование области определения функций

Предварительный анализ области определения функций, входящих в неравенство (ОДЗ неизвестной), иногда позволяет получить решение без преобразований.

Если множество M, на котором определены обе части неравенства, окажется пустым множеством, то в этом случае неравенство решений не имеет.

Использование областей существования наиболее результативен при решении уравнений и неравенств, в состав которых входят функции: y = arcsinx , y = arccosx , y = log a x , y =  x .

Пример 1. Решите неравенство

Проверим полученные значения на исходное неравенство.

Использование ограниченности функций

Использование неотрицательности функций

Пусть левая часть неравенства F ( x )0 есть сумма функций F ( x )= f ( x )+ g ( x ).Установили, что каждая из этих функций неотрицательна на своей области определения. Тогда неравенство F ( x ) ≤ 0 равносильно системе уравнений

При тех же условиях неравенство F ( x ) ≥ 0 сводится к нахождению области определения функции F ( x ):

Пример 2. Решите неравенство
Решение. (1)  f 1( x )+ f 2( x )≥0, (2)

где 1) ООН: (2 x – 1) 4 – (2 x – 1) 2 ≥0  (2 x – 1) 2 ((2 x – 1) 2 –1) ≥0 

(2 x – 1) 2 (2 x – 1–1) (2 x – 1+1) ≥0  (2 x – 1) 2 ( x – 1) x ≥0

x  (-  ;0  0,5  1;+  ).

2)Так как f 1( x )≥0, f 2( x )≥0 на ООН, то (2)  x  ООН  x  (-  ;0  0,5  1;+  ).

Пример 3. Решите неравенство

Решение. (1)  f 1( x )+ f 2( x ) ≤ 0, (2)

1) ООН : x 2 –2 x +5>0  x  R.

2) x 2 –2 x +5=(x-1) 2 +4 ≥4  f 2 (x) ≥0.

Пример 4. Решите систему неравенств

Решим неравенство (1). Разделим (1) на 9 x ( E ( a t )=(0;+  )).

Решим неравенство (2).

g ( x )= x 2 -10  x  +26=(  x  -5) 2 +1≥1, при x g ( x )=( x +5) 2 +1≥1.

Метод мини-максов (метод оценки)

Иногда неравенство f ( x )  g ( x ) устроено так, что на всей ОДЗ неизвестной х имеет место неравенства f ( x )≥ A , g ( x )≤ A .

а) решение неравенства f ( x ) ≤ g ( x ) сводится к нахождению тех значенийх, для которых f ( x )= A и g ( x )= A , т.е.

б) решение неравенства f ( x )≥ g ( x ) сводится к нахождению ОДЗ неизвестной переменной.

Как понять, что нужно решать именно предложенным методом? Для этого нужно знать основной признак подобных задач: имеется смешанное неравенство, то есть в задании присутствуют разнородные функции, например: линейная и логарифмическая, тригонометрическая и квадратичная.

Пример 5. Решите неравенство

Решение: Преобразуем данное неравенство: . Т.к. , то . Мы получили неравенство вида

Рассмотрим . Преобразуем подлогарифмическое выражение: . Получаем, что подлогарифмическое выражение

Т. к. возрастает при , то

Рассмотрим . Мы знаем, что возрастает. Т. к. то Получаем, что M =1. Следовательно, неравенство равносильно системе:

Решив второе уравнение системы, получаем . Проверим первое уравнение, подставив значение x .

Получаем верное равенство Значит, является решением неравенства .

Использование монотонности функций

Принцип монотонности для неравенств

Пусть функция y = f ( x ) определена и строго монотонна на промежутке М.

Если функция y = f ( x ) возрастает на промежутке М, то

Если функция y = f ( x ) убывает на промежутке М, то

Использование монотонности функций при решении уравнений и неравенств используется чаще всего. Решение уравнений и неравенств с применением монотонности функций основывается на следующих утверждениях:

Теорема о корне

Если в уравнении f ( x )= C = const функция y = f (x) непрерывна и строго монотонна на множестве М, то уравнение имеет на М не более одного корня.

Если в уравнении f ( x )= g ( x ) функция y = f (x) непрерывна и строго возрастает, а функция y = g ( x ) непрерывна и строго убывает на множестве М, то уравнение имеет на М не более одного корня.

Пример 6. Решите неравенство

Решение .

ООН: 2х-3 ≥ 0  х≥1,5.

Функция возрастает при х≥1,5, как сумма двух возрастающих функций.

Так как , то по теореме о корне х=2 – единственный корень уравнений f ( x )=3.

Решение. (1)  4 log 3( x 2 +3 x -7)+( x 2 +3 x -14)≥0 (2)

t=x 2 +3 x– 7 , x 2 +3x –14=t – 7.

где f(t) =4 log 3 t+t – 7.

Функция y = f ( t ) возрастает при t > 0, как сумма двух возрастающих функций.

Так как f (3)=4+3 – 7=0, то по теореме о корне t =3 единственный корень уравнения f ( t )=0.

Ответ:(-  ; - 5  2;+  ).

Пример 8. Решите неравенство

Где f 1 (x)=arcos(x 2 –6x+8) – arcos(x2), f 2 (x)=log 2 3 (8 – x) – 3x +4.

Применим МЗМ. Заменим функции f 1( x ) и f 2( x ) на функции равного знака.

Функция y = f 1( t )= arcos ( t ) убывает на t  -1;1 

Функция y = f 2(х) убывает на хх1;3. Так как f 2(4)=0, то по теореме о корне х=4 единственный корень уравнения f 2(х)=0 

Мне захотелось составить тренажер по усвоению методов решения неравенств, используя свойства функций. Традиционно ученику предлагается решить неравенство, а я предлагаю ознакомиться с решением неравенства и определить, какой метод используется при решении данного неравенства. Этот тренажер составлен с помощью конструктора интерактивных заданий LearningApps. Учащиеся могут проверить и закрепить свои знания по данным методам, что способствует формированию их познавательного интереса к математике:

В ходе выполнения исследования были достигнуты поставленная цель и задачи. Гипотеза подтвердилась. Использование свойств функций при решении неравенств: таких как область определения и область значений, неотрицательность, монотонность и ограниченность, экстремумы функций и метод «мини-максов, позволяет избежать огромных преобразований. Применение этих методов дает более рациональное решение неравенства и позволяет повысить эффективность и качество.

Для каждого из указанных типов неравенств приведены методические указания и алгоритмы (схемы), а также подробные и обоснованные решения неравенств разных типов и разного уровня сложности, иллюстрирующие оригинальность и эффективность приведенных методов, позволяющих решать задачи компактно, быстро и просто. Составлен тренажер по усвоению методов решения неравенств, используя свойства функций.

Выбор способа решения должен оставаться за нами, учащимися. Каждый ученик должен уметь верно, и главное рационально решать неравенства, что в дальнейшем может ему пригодиться при поступлении в ВУЗы и различных жизненных ситуациях. Они могут воспользоваться собранной информацией для изучения и закрепления методов решения неравенств.

Я считаю, что проделанная работа будет интересна всем, кто хочет научиться рационально решать неравенства и хорошо подготовиться к выпускным экзаменам.

Хочется отметить и то, что излагаемая тема в данном исследовании еще недостаточно изучена, поэтому она таит в себе много скрытого и неизвестного, что дает прекрасную возможность для дальнейшей работы над ней.

Куланин Е. Д., Норин В. П. 3000 конкурсных задач по математике. М.:Айрис-пресс, 2003.

Коропец З.Л., Коропец А.А., Алексеева Т.А. Нестандартные методы решения неравенств и их систем. Орел: ОрелГТУ, 2012.

Математика: Учебно-методический журнал – М.: Первое сентября, 2009.

Сергеев И.Н., Панферов В.С. ЕГЭ 2011. Математика. Задача С3. Уравнения и неравенства. / Под ред. А.Л. Семенова, И.В. Ященко. – М.:МЦНМО, 2011.

Загрузить презентацию (352 кБ)

Правильному применению методов можно научиться только применяя их на разнообразных примерах.
И.Г. Цейтен

  • дидактические: продолжить формирование умений применять различные способы решения неравенств; совершенствовать навыки решения неравенств различными методами;
  • развивающие: развивать познавательный интерес у учащихся, логическое мышление, интеллектуальные способности; формировать математическую речь;
  • воспитательные: воспитывать у учащихся такие качества личности как познавательная активность, самостоятельность, упорство в достижении цели, потребность в приобретении и углублении знаний, вырабатывать умение слушать и вести диалог, формировать эстетические навыки при оформлении записей в тетради.

Тип урока: урок систематизации и обобщения изученного материала

  1. Организационный этап.
  2. Этап подготовки учащихся к активному и сознательному усвоению материала.
  3. Этап обобщения и систематизации изученного.
  4. Этап подведения итогов.
  5. Этап информации учащихся о домашнем задании.

Оборудование: компьютер, мультимедийный проектор, экран, презентация “Использование свойств функций при решении уравнений и неравенств”, доска, мел, раздаточный материал для работы на уроке и домашним заданием.

Деятельность учителя Деятельность учащихся
Организационный этап.
Здравствуйте, рада вас всех видеть! Ответы учащихся: Здравствуйте!
Этап подготовки учащихся к активному и сознательному усвоению материала.
Эпиграфом к уроку я выбрала слова датского математика и историка математики, жившего с 1839 по 1920 года, Иеромонима Георга Цейтена: “Правильному применению методов можно научиться только применяя их на разнообразных примерах”.

При решении практически любой математической задачи приходится производить преобразование числовых, алгебраических или функциональных выражений. Но бывают случаи, когда стандартные преобразования не позволяют получить ответ. Тогда используют нестандартные методы, суть которых – реализовать “иной взгляд” на задачу, что существенно упрощает решение некоторых задач. Таким образом, тема сегодняшнего урока…

Область значений (область изменения).Ограниченность функции.

Возрастание, убывание функции.

Четность, нечетность функции.

1 группа. Решить уравнение .

2 группа. Решить неравенство .

Решение: при решении используем ограниченность функций и квадратичной функций:

1. для любого х из R.

Таким образом мы видим, что области значений левой и правой части этого уравнения не имеют “точек соприкосновения”. Значит уравнение не имеет решений.

Ответ: решений нет.

Решение: при решении используем анализ ОДЗ неравенства.

х=1 не является решением. Тогда при получим, что , а . Значит решением данного неравенства являются все числа из промежутка.

Решение: при решении используем монотонность функций, входящих в неравенство.

Рассмотрим функции . Все они непрерывны и строго возрастают на R. значит и сумма этих функций тоже будет возрастающей функцией. Легко увидеть, что . А в силу её непрерывности и строгой монотонности получим, что при имеем, а при имеем. Значит решениями являются все .

  1. Какие неравенства мы сегодня рассматривали?
  2. Какими алгоритмами мы пользовались?
  3. Какие затруднения у вас вызвали эти методы? В чём они выражались?
  4. А чем понравились эти методы? Как вы думаете в чём их плюсы, а в чём - минусы?

2. Творческое задание.

Подумайте, какие “внешние” признаки могут содержать уравнения или неравенства, которые бы указывали на применение рассмотренных сегодня методов.

  1. П. В. Чулков Материалы курса “Уравнения и неравенства в школьном курсе математики” – М.:”Педагогический университет “Первое сентября”, 2010.
  2. Олехник С.Н., Потапов М.К., Пасиченко П.И. Уравнения и неравенства. Нестандартные методы решения. Учимся решать задачи. 10-11 классы: Учебно-методическое пособие. – М.: Дрофа. 2002 г.
  3. Математика. Тренировочные тематические задания повышенной сложности с ответами для подготовки к ЕГЭ и к другим формам выпускного и вступительного экзаменов / сост. Г.И. Ковалева, Т.И. Бузулина, О.Л. Безрукова, Ю.А. Розка – Волгоград: Учитель, 2005.
  4. Математика. Подготовка к ЕГЭ. Нестандартные методы решения уравнений и неравенств: учебно-методическое пособие/ Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова. – Ростов – на – Дону: Легион, 2013.
  5. В. К. Егерев, В. В. Зайцев, Б. А. Кордемский и др.; под ред. М. И. Сканави. Сборник задач по математике (с решениями) – М.: ООО”Издательский дом “ОНИКС 21 век”: ООО “Издательство “Мир и Образование”, 2005.

Замечание. По данной теме проводится ещё два урока: 2 урок – использование четности, периодичности, решение задач, 3 урок – самостоятельная работа.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Выберите документ из архива для просмотра:

Выбранный для просмотра документ Использование свойств функций для решения уравнений и неравенств.pptx

Использование свойств функций для решения уравнений и неравенств. Учитель мат.

Описание презентации по отдельным слайдам:

Использование свойств функций для решения уравнений и неравенств. Учитель мат.

Свойства функций Область определения Область значений (ограниченность) Четнос.

Свойства функций Область определения Область значений (ограниченность) Четность-нечетность Периодичность Монотонность

[-1;1] [-1;1] [0;+∞) [0;+∞) (0;+∞) Область значений

[-1;1] [-1;1] [0;+∞) [0;+∞) (0;+∞) Область значений

a-2, b-5, c-1, d-6, e-3


убывает возрастает


Выбранный для просмотра документ Конспект урока алгебры по теме.doc

Конспект урока алгебры по теме

Урок проведен в 11А, экономическом классе.

Учитель: Дудина Н.М.

Цели урока:

Рассмотреть решение нестандартных заданий по теме.

Показать возможности применения свойств функций при решении различных уравнений и неравенств.

Развивать мыслительные операции: анализ, синтез, обобщение.

Совершенствовать умение строить высказывания, правильно использовать математические термины.

Вырабатывать умение отстаивать свое мнение, прислушиваться к мнению окружающих.

План урока во времени:

Оргмомент 2 мин.

Постановка цели урока 3 мин.

Этап актуализации знаний 12 мин.

Решение уравнений и неравенств 20 мин.

Подведение итогов урока 3 мин.

1.Оргмомент.

Проверить готовность класса к уроку, поприветствовать детей.

2.Постановка цели урока.

Недостаточный уровень знаний по теме.

Запутанность или сложность формулировки.

Сегодня на уроке мы как раз и будем работать с заданиями, при решении которых применение алгоритма не приводит к успеху, где необходимо умение применять свои знания в нестандартной ситуации.

3.Этап актуализации знаний.

Давайте вспомним, какими свойствами обладает некоторая функция.

Основное внимание мы уделим тем свойствам, которые чаще других используются при решении уравнений и неравенств.

Начнем с области определения.

В каких случаях возникают ограничения?

При наличии в формуле, задающей функцию корней четной степени, дробей, логарифмов.

Приведем примеры. Работаем по цепочке. ( Первый ученик приводит пример функции с ограниченной областью определения и называет имя ученика, которому адресован вопрос. Тот отвечает и сам приводит следующий пример.)

Хорошо, а теперь поговорим об области значений. У каких функций она ограничена?

Найти область значений функции (задания записаны заранее на отвороте).

Пока дети работают с заданием на нахождение области значений функции, записать на доске следующее задание.

Как ведет себя функция на области определения?

4.Решение уравнений и неравенств.

№ 1. Решите неравенство:

Что нам больше всего не нравится в этом неравенстве?

Мы можем от них избавиться?

А что мы можем сделать?

Найти область допустимых значений переменной.

Область допустимых значений состоит из одного числа. Если неравенство имеет решение, то это 1. Проверим.

№ 2. Решите уравнение

Значит равенство невозможно ни при каких значениях переменной. Уравнение не имеет корней.

Ответ: нет корней.

Равенство возможно только при одновременном выполнении условий:

Функция возрастает на своей области определения, а функция убывает. Значит графики функций имеют не более одной точки пересечения. Тогда уравнение имеет не более одного корня.

5.Подведение итогов.

Мы решали с вами необычные уравнения и неравенства. Какие мысли возникли у вас по ходу урока, какие ощущения?

Какие выводы можно сделать?

Попробуем выработать алгоритм действий при встрече с неизвестным.

Понять, что не нравится больше всего.

Успокоиться и начать делать то, что умеешь.

Попробовать увидеть в задании что-то знакомое.

Не останавливаться после первой неудачи.

Этот алгоритм работает не только при решении математических задач, но и при жизненных затруднениях.

Задание на дом: придумать по два задания, решаемых с использованием свойств функций.

  • подготовка к ЕГЭ/ОГЭ и ВПР
  • по всем предметам 1-11 классов

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 933 человека из 80 регионов


Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 683 человека из 75 регионов


Курс повышения квалификации

Инструменты онлайн-обучения на примере программ Zoom, Skype, Microsoft Teams, Bandicam

  • Курс добавлен 31.01.2022
  • Сейчас обучается 24 человека из 17 регионов
  • ЗП до 91 000 руб.
  • Гибкий график
  • Удаленная работа

Дистанционные курсы для педагогов

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 610 751 материал в базе

Материал подходит для УМК

§ 24. Общие методы решения уравнений

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

Свидетельство и скидка на обучение каждому участнику

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

  • 05.02.2020 341
  • ZIP 229.9 кбайт
  • 9 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Дудина Наталья Михайловна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

40%

  • Подготовка к ЕГЭ/ОГЭ и ВПР
  • Для учеников 1-11 классов

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Новые курсы: функциональная грамотность, ФГОС НОО, инклюзивное обучение и другие

Время чтения: 15 минут

Минтруд предложил упростить направление маткапитала на образование

Время чтения: 1 минута

В Белгородской области отменяют занятия в школах и детсадах на границе с Украиной

Время чтения: 0 минут

Рособрнадзор предложил дать возможность детям из ДНР и ЛНР поступать в вузы без сдачи ЕГЭ

Время чтения: 1 минута

Время чтения: 2 минуты

Отчисленные за рубежом студенты смогут бесплатно учиться в России

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Нажмите, чтобы узнать подробности

В работе рассматриваются сособы решения уравнений с использованием свойств и характеристик функций: монотонности, ограниченности, области определенийи области значений функции.

II. Применение свойств функций для решения уравнений

Использование ОДЗ для решения уравнений .………….. 2стр

Монотонность функции и наличие корней уравнении…. 3стр

Используемая литература………………………………………. 10 стр

Найти и освоить приемы решения уравнений способами, позволяющими значительно сократить время нахождения корней уравнений.

В ходе сбора и изучения информации по данной теме, были найдены и изучены рациональные приемы решения уравнений с применением свойств монотонности, ограниченности функций, а также области определения и значений функций, позволяющие эффективно (практически устно) решать некоторые виды уравнений, рассмотренных в качестве примеров в нашей работе.

В наших школьных учебниках алгебры в основном изучаются такие методы и приемы решения уравнений как возведение в степень, замена переменной, применение тождественных преобразований, Но использование этих способов при решении некоторых видов уравнений приводит к довольно долгим и сложным преобразованиям, особенно если уравнения в левой и правой части которой находятся функции, имеющие различную природу.

В ходе наших поисков мы познакомились с одним из эффективных способов решения уравнений вида f(x)=g(x), который и демонстрируем в нашей работе. Это способ решения уравнений с использованием свойств функций.

Использование ОДЗ

Начнем с уравнений, которые можно решить, используя область определения функции или область допустимых значений переменной. Напомним, что множество значений переменной, при которых обе части данного уравнения (или неравенства) имеют смысл называют областью допустимых значений уравнения или неравенства. Рассмотрим такие уравнения, которые можно решить просто найдя ОДЗ.


​​​ = 3−x


Пусть f(x) = . Тогда D (f) определяется неравенством 2х – 6 0, т.е. x3, а E(f) = [0; +∞ )

Значит правая часть уравнения должна быть неотрицательной, т.е. должно выполнятся условие 3−x 0, тогда x ≤ 3. Определяется системой двух неравенств: x3 и x ≤ 3. Получаем, что ОДЗ уравнения: х=3.Легко видеть, что 3 будет корнем исходного уравнения.

Приведем еще один пример уравнения:

​​+​ ​​​= 27x−15


Решение: Найдем ОДЗ, решив систему неравенств


Решая неравенства этой системы получим А эта система имеет решение х=5. Таким образом, уравнение имеет смысл только при одном значении переменной. Подставив x=5 в уравнение, убеждаемся, что получаем верное равенство. Значит 5 – корень данного уравнения.

Монотонность функции и наличие корней уравнения.

Рассмотрим как применяются такое свойство функции как монотонность. Для успешного решения уравнения этим способом необходимо знать следующие утверждения: 1) если функция f (х) на некотором промежутке возрастает, а функция g(х) убывает на этом же промежутке, то уравнение f(х) = g(х) имеет на этом промежутке не более одного корня; 2) Если на некотором промежутке функция f(x) возрастает (или убывает), то уравнение f(x)=a на этом промежутке имеет единственный корень либо не имеет корней (a — постоянная величина (число)). Применение свойства продемонстрируем на следующих примерах:


1) x 1991 +1 =

1) В левой части этого уравнения стоит возрастающая функция на на R
в правой – убывающая на (-∞;5].
Если уравнение и будет иметь корень, то только на промежутке (-∞;5]. Легко заметить, что этот корень 1, и он, согласно теореме, единственный.

2) 5x 19 + 4x 3 +3х=12. Функция, стоящая в левой части уравнения является возрастающей (как сумма возрастающих функций). Следовательно, уравнение имеет не более одного корня. Подбором находим, что x=1.

3) +=2. Областью определения функции, стоящей в левой части, является промежуток [-1; ∞). На этом промежутке функция возрастает. Следовательно, корень, равный -1 – единственный.

4) 2 x 15 + 3x=5/х. Функция f(x) = 5/х на каждом из промежутков (-∞;0) и (0:∞) убывает, а функция g (х) = 2 x 15 + 3x возрастает на каждом из них, поэтому наше уравнение на каждом из этих промежутков имеет не более одного корня. Убеждаемся, что это числа 1 и -1.

5) 2 = 9/х – 1.Функция f(x)= 2 на промежутке [ 2; ∞) возрастает, а функция g (х) = 9/х – 1 на этом же промежутке убывает, значит уравнение имеет не более одного корня на этом промежутке. И этот корень равен 3.


6) найти положительные корни уравнения

Функция возрастает на R. g (х)=
Убывает на промежутке [ 0; ∞). Следовательно, на промежутке [ 0; ∞) уравнение имеет не более одного корня. Подбором находим что х =1.

Функция возрастает на(0; ∞) . а функция g (х)= на этом промежутке убывает. Значит, уравнение будет иметь корни только на промежутке (0; ∞). Подбором находим корень уравнения –это число 2.

Метод мажорант.


Рассмотрим, как можно применить к решению уравнений такое свойство функции как ограниченность. Метод, с помощью которого решаются уравнения с применением ограниченности функции, получил название метода мажорант. Ну, а само название метода происходит от французского слова majorer - объявлять большим. Мажорантой данной функции f(х) на множестве Р, называется такое число М, что либо f(х) ≤ М для всех х ϵ Р, либо f(х) ≥ М для всех х ϵ Р. Основная идея метода состоит в следующем: Пусть имеется уравнение f(х) = g(х) и существует такое такое число М, что для любого х из области определения f(х) и g(х) имеем f(х) ≤ М и g(х) ≥ М. Тогда уравнение f(х) = g(х) равносильно системе Метод применим к уравнениям, в которых используются ограниченные фукции, т. е. функции, множество значений которых ограниченно. Вот некоторые из них:

1. -1≤sinx≤1 или ≤1


2. -1≤cosx≤1 или ≤1


3.


4.

5.


6.


Применение метода рассмотрим на следующих примерах.

1) Решим уравнение: + =0.

4и 10 степени – это четные числа, значит и при любом значении x. Тогда наше уравнение будет равносильно системе уравненийПервое уравнение имеет единственный корень – это число3, значит, если система и будет иметь решение, то не более одного. Проверкой убеждаемся, что3 является корнем и второго уравнения системы, а следовательно и исходного уравнения.

Заменим левую часть уравнения логарифмом, используя свойство разности логарифмов:

Представим дробь в виде, и используя неравенство Коши оценим подлогарифмическое выражение. Получаем (x + ) ≥ 4, а значит

log2 (x + ) ≥ 2. Таким образом, левая часть уравнения не меньше 2.

Рассмотрим правую часть уравнения. В правой части содержится квадратный трехчлен, поэтому выделив из него квадрат двучлена приходим к выводу, что данное выражение принимает значения не больше 2:

4 xx 2 – 2 = – x 2 + 4 x – 2 = – ( – 4 x + 4 – 2) = – (x - 2) 2 + 2 = 2 – ( x - 2) 2

Получили, что правая часть уравнения не больше 2, т.к. (x - 2) 2 ≥ 0 при любых х. Значит, равенство левой и правой частей уравнения достигается, если они одновременно равны 2.

Из первого уравнения системы находим корень х = 2. Убеждаемся, что этот корень удовлетворяет и второму уравнению системы. Следовательно, решением исходного уравнения будет х = 2.

Ответ: х = 2

3) Решить уравнение:

В левой части уравнения стоит тригонометрическая функция, а в правой – сумма показательных. Формул, позволяющих находить корни в таких случаях, не существует. Оценим каждую из частей уравнения. Очевидно, что левая часть уравнения не больше 2. И так как

Поскольку 0, то причем равенство достигается только при x = 0. В данном случае

Получили, что левая часть уравнения не больше двух, а правая часть – больше или равняется двум. Таким образом, уравнение имеет решение, только если имеет решение система уравнений:

Проверкой убеждаемся, что x=0 – корень уравнения: . Значит число 0 – корень исходного уравнения. Получили ответ: x = 0.

Рассмотрим решение еще одного уравнения:

Рассмотрим две функции

Уравнение имеет решение, если наибольшее значение функции f(х) равно наименьшему значению функции g(х). Таким образом, уравнение имеет решение, только если обе части равны 2. И наше уравнение равносильно системе:

Решим первое уравнение системы:

Подставив данный корень во второе уравнение системы, получим верное равенство. Значит, решением исходного уравнения будут числа вида .

Функция y= (квадратичная функция) имеет наименьшее значение при , равное y(2)=4

Функция у= является возрастающей и, следовательно, принимает наименьшее значение при x=2

Правая часть уравнения, в силу ограниченности функции принимает значения не больше 2, поэтому исходное уравнение равносильно системе:

Так как 2-корень первого уравнения, то убедимся, что число 2-корень второго уравнения. Получаем:

Таким образом, 2-корень исходного уравнения.

Рассмотренные нами примеры могли быть решены и другими методами, но традиционные методы в данных конкретных примерах достаточно трудоемки. В нашей работе мы постарались продемонстрировать применение некоторых нестандартных приемов решения уравнений, основанных на свойствах и характеристиках функций. Планируем продолжить изучение нетрадиционных и эффективных приемов решения уравнений.

Читайте также: