Вклад русских ученых в развитие неорганической химии кратко

Обновлено: 05.07.2024

Уже с первых лет существования Академии наук с ней были связаны все научные достижения в России. В ее стенах работали такие известные ученые, как Иоганн и Даниил Бернулли, Л. Эйлер, С.П. Крашенинников, П.С. Паллас, И.И. Лепехин, Н.Я. Озерецковский, Я.Д. Захаров и др.

Вторая половина XIX в. представляет собой особый период в истории отечественной науки, в том числе и химии. Эпохой в истории мировой науки стали открытие в 1869 г. Дмитрием Ивановичем Менделеевым (1834–1907) Периодического закона химических элементов и разработка в 1861–1870 гг. А.М. Бутлеровым (1828–1886) теории химического строения веществ.

Ответ на вопрос о различии химических свойств органических соединений дал А.М. Бутлеров в своей теории химического строения. Он показал, что реакционная способность молекул зависит от величин энергии химических связей между атомами, которые изменяются в результате взаимного влияния атомов и атомных групп в единой системе молекулы. Таким образом, в соответствии с его теорией сущность химического строения молекул заключается в энергетической неэквивалентности разных химических связей, одинаково обозначаемых как С–Н, или в общем случае А–В.

На основе теории химического строения представителями школы Бутлерова был осуществлен синтез олефиновых и парафиновых углеводородов состава C5–C10 – основы химии углеводородов, которая стала впоследствии базой для развития нефтехимии, являющейся основным поставщиков карбюраторных и дизельных топлив и смазочных материалов для авто- и авиамоторостроения. Исследования А.М. Бутлерова по полимеризации низкомолекулярных олефинов и по синтезу углеводородов изостроения, выполненные им с целью экспериментального подтверждения своей теории, составили научную основу синтеза компонентов высококачественных авиационных топлив. Уплотнение олефиновых углеводородов по Бутлерову приобрело важное значение также для синтеза присадок, улучшающих вязкостные свойства смазочных масел. Не меньший вклад в науку о химии нефти внёс ученик А.М. Бутлерова, В.В. Марковников, посвятивший более 20 лет своей научной деятельности исследованию состава кавказской нефти. Исследование нефтей в период интенсивной разработки кавказских месторождений в последней четверти XIX столетия было сосредоточено главным образом в Московском университете в лабораториях Н.Д. Зелинского и В.В. Марковникова. Особое внимание В.В. Марковников уделял выделению нафтеновых углеводородов из нефти путём многократной дробной разгонки её и изучению свойств выделенных углеводородов. Химические методы идентификации нефтяных углеводородов, разработанные учёным, нашли применение во всех лабораториях мира. По этим же реакциям осуществляется синтез многих органических соединений.

Россия - страна с богатой историей. Многие знатные личности-первооткрыватели прославили своими достижениями большую державу. Одними из таковых являются великие русские химики.

русские химики

Химией сегодня называют одну из наук естествознания, которая изучает внутренние составы и строение материй, разложения и изменений веществ, закономерность образований новых частиц и их изменений.

Русские химики, прославившие страну

Если говорить об истории химической науки, то нельзя не вспомнить величайших людей, определенно заслуживающих всеобщего внимания. Список известных личностей возглавляют великие русские химики:

  1. Михаил Васильевич Ломоносов.
  2. Дмитрий Иванович Менделеев.
  3. Александр Михайлович Бутлеров.
  4. Сергей Васильевич Лебедев.
  5. Владимир Васильевич Марковников.
  6. Николай Николаевич Семёнов.
  7. Игорь Васильевич Курчатов.
  8. Николай Николаевич Зинин.
  9. Александр Николаевич Несмиянов.

И многие другие.

Ломоносов Михаил Васильевич

Русские ученые химики не смогли бы работать в условиях отсутствия работ Ломоносова. Михаил Васильевич был родом из деревни Мишанинская (Санкт-Петербург). Родился будущий ученый в ноябре 1711 года. Ломоносов - химик-основатель, давший химии верное определение, ученый-естествоиспытатель с большой буквы, мировой физик и знаменитый энциклопедист.

великие русские химики

Научные работы Михаила Васильевича Ломоносова в середине 17-го века были близки к современной программе химико-физических исследований. Ученый вывел теорию молекулярно-кинетического тепла, которая во многом превосходила тогдашние представления о структуре материи. Ломоносов сформулировал много фундаментальных законов, среди которых был закон о термодинамике. Ученый основал науку о стекле. Михаил Васильевич первым открыл тот факт, что у планеты Венеры есть атмосфера. Он стал профессором химии в 1745 году, через три года, после того как получил аналоничное звание в физической науке.

Дмитрий Иванович Менделеев

Выдающийся химик и физик, русский ученый Дмитрий Иванович Менделеев родился в конце февраля 1834 года в городе Тобольске. Первый русский химик был семнадцатым ребенком в семействе Ивана Павловича Менделеева - директора училищ и гимназий Тобольского края. До сих пор сохранилась метрическая книга с записью о рождении Дмитрия Менделеева, где на старинной странице значатся имена ученого и его родителей.

русские ученые химики

Менделеева называли самым гениальным химиком 19-го столетия, и это было верное определение. Дмитрий Иванович - автор важных открытий в химии, метеорологии, метрологии, физике. Менделеев занимался исследованиями изоморфизма. В 1860 году ученый открыл критическую температуру (кипения) для всех видов жидкостей.

В 1861 году ученый издал книгу “Органическая химия”. Он исследовал газы и выводил правильные формулы. Менделеев сконструировал пикнометр. Великий химик стал автором многих работ по метрологии. Он занимался исследованиями угля, нефти, разработал системы для орошения землеугодий.

Именно Менделеев открыл одну из главных природных аксиом - периодический закон химических элементов. Им мы пользуемся и теперь. Он дал характеристики всем химическим элементам, теоретически определив их свойства, состав, размеры и вес.

Александр Михайлович Бутлеров

Родился А. М. Бутлеров в сентябре 1828 года в городе Чистополе (Казанская губерния). В 1844 году стал студентом Казанского университета, факультета естественных наук, по окончании которого был оставлен там для получения профессорского звания. Бутлеров интересовался химией и создал теорию химического строения органических веществ. Основатель школы “Русских химиков”.

русские ученые химики

Марковников Владимир Васильевич

В список “русские химики” без сомнений входит еще один известный ученый. Владимир Васильевич Марковников, уроженец Нижегородской губернии, появился на свет 25 декабря 1837 года. Ученый-химик в области органических соединений и автор теории строения нефти и химического строения материи в общем. Его труды сыграли важную роль в развитии науки. Марковников заложил принципы органической химии. Он проводил много исследований на молекулярном уровне, устанавливая определенные закономерности. Впоследствии эти правила получили названия в честь их автора.

За свои открытия был награжден золотой медалью в Париже.

Сергей Васильевич Лебедев

С. В. Лебедев родился в ноябре 1902 года в Нижнем Новгороде. Образование будущий ученый-химик получил в Варшавской гимназии. В 1895 году поступил на физико-математический факультет Петербургского университета.

В начале 20-х годов 19-го века советом народного хозяйства был объявлен международный конкурс на выработку синтетического каучука. Предлагалось не только найти альтернативный способ его изготовления, но и предоставить результат работы - 2 кг готового синтетического материала. Сырье для производственного процесса также должно было быть дешевым. Каучук требовалось получить высокого качества, не хуже натурального, но дешевле последнего.

Стоит ли говорить, что Лебедев принял участие в конкурсе, в котором стал победителем? Он разработал специальный химический состав каучука, доступного и дешевого для всех, завоевав себе звание великого ученого.

Николай Николаевич Семёнов

Николай Семенов родился в 1896 году в г. Саратове в семье Елены и Николая Семеновых. В 1913 году Николай поступил в Петербургский университет на физико-математическую кафедру, где под наставлением известного российского физика Иоффе Абрама стал лучшим студентом на потоке.

известные русские химики

Николай Николаевич Семенов занимался изучением электрических полей. Он проводил исследования по прохождению электротока через газы, на основе чего была разработана теория теплового пробоя диэлектрика. Позже он выдвинул теорию о тепловом взрыве и горении газовых смесей. Согласно данному правилу, тепло, выделяемое при химической реакции, при соблюдении некоторых условий может привести к взрыву.

Николай Николаевич Зинин

25 августа 1812 года в городе Шуши (Нагорный Карабах) родился Николай Зинин, будущий химик-органик. Николай Николаевич закончил физико-математический факультет в Петербургском университете. Стал первым президентом в русском химическом обществе.

выдающиеся русские химики

Зинин нашел способ обращения в бензоин горького масла миндаля, об этом было написано в его первой статье в 1839 г. Данная работа стала темой его докторской диссертации, которую он защитил в России.

Игорь Васильевич Курчатов

12 января 1903 года в Уфимской губернии родился “отец” советской атомной бомбы. Так называют сегодня главного научного руководителя по атомным разработкам СССР Игоря Васильевича Курчатова.

химик и физик русский

Ученый окончил Таврическую академию им. В. И. Вернадского. Под его руководством была построена первая АЭС - Обнинская, также разработана первая в мире водородная бомба, которая была подорвана 12 августа 1953 г. После этого последовала разработка термоядерной взрывчатки РДС-202, мощность которой составила 52 000 кт.

Курчатов являлся одним из основоположников применения в мирных целях ядерной энергии.

Известные русские химики тогда и сейчас

Современная химия не стоит на месте. Ученые со всего мира трудятся над новыми открытиями ежедневно. Но не стоит забывать, что важные основы этой науки были заложены еще в 17-19-м веках. Выдающиеся русские химики стали важными звеньями в последующей цепочке развития химических наук. Не все современники используют в своих исследованиях, к примеру, закономерности Марковникова. Но давно открытой таблицей Менделеева, принципами органической химии, условиями критической температуры жидкостей и прочим мы пользуемся до сих пор. Русские химики прошлых лет оставили важный след в мировой истории, и этот факт неоспорим.

наука о химических элементах и образуемых ими простых и сложных веществах (кроме соединений углерода, составляющих, за немногими исключениями, предмет органической химии. Н. х. — важнейшая область химии — науки о превращениях вещества, сопровождающихся изменениями его состава, свойств и (или) строения. Н. х. теснейшим образом связана, помимо органической химии, с др. разделами химии — аналитической химией ,коллоидной химией, кристаллохимией, физической химией, термодинамикой химической, электрохимией, радиохимией, химической физикой; на стыке неорганической и органической химии лежит химия металлоорганических соединений и элементоорганических соединений

Содержание

Предпосылки возникновения химии как науки……………………………….1
Этапы развития неорганической химии…………………………………………. 2
Вклад русских ученых в развитие неорганической химии…………….…3
Роль химии в современном мире………………………………………………….…..7
Заключение:
Библиографический список литературы………………

Работа содержит 1 файл

химия неорганика открытие.docx

  1. Предпосылки возникновения химии как науки……………………………….1
  2. Этапы развития неорганической химии…………………………………………. 2
  3. Вклад русских ученых в развитие неорганической химии…………….…3
  4. Роль химии в современном мире………………………………………………….…..7

Библиографический список литературы………………………………………………. 11

Предпосылки возникновения химии как науки.

наука о химических элементах и образуемых ими простых и сложных веществах (кроме соединений углерода, составляющих, за немногими исключениями, предмет органической химии. Н. х. — важнейшая область химии — науки о превращениях вещества, сопровождающихся изменениями его состава, свойств и (или) строения. Н. х. теснейшим образом связана, помимо органической химии, с др. разделами химии — аналитической химией ,коллоидной химией, кристаллохимией, физической химией, термодинамикой химической, электрохимией, радиохимией, химической физикой; на стыке неорганической и органической химии лежит химия металлоорганических соединений и элементоорганических соединений. Н. х. ближайшим образом соприкасается с геолого-минералогическими науками, особенно с геохимией и минералогией, а также с техническими науками — химической технологией (её неорганической частью), металлургией — и агрохимией. В Н. х. постоянно применяются теоретические представления и экспериментальные методы физики.

Историческая справка. История Н. х., особенно до середины 19 в., тесно переплетается с общей историей химических знаний. Важнейшие достижения химии конца 18 — начала 19 вв. (создание кислородной теории горения, химической атомистики, открытие основных стехиометрических законов) явились результатами изучения неорганических веществ.

Уже в глубокой древности были известны металлы, которые либо встречаются в природе в самородном состоянии (Au, Ag, Cu, Hg), либо легко получаются (Cu, Sn, Pb) нагреванием их окисленных руд с углем, а также некоторые неметаллы (углерод в виде угля и алмаза, S, возможно As). За 3—2 тыс. лет до н. э. в Египте, Индии, Китае и др. странах умели получать железо из руд, изготовлять изделия из стекла.

Этапы развития неорганической химии.

Вклад русских ученых в развитие неорганической химии.

В дальнейшем становлению Н. х. как науки послужили работы М. В. Ломоносова и А. Лавуазье. Ломоносов сформулировал закон сохранения вещества и движения (1748), определил химию как науку об изменениях, происходящих в сложных веществах, приложил атомистические представления к объяснению химических явлений, предложил (1752) деление веществ на органические и неорганические, показал, что увеличение веса металлов при обжигании происходит за счёт присоединения некоторой части воздуха (1756), Лавуазье опроверг гипотезу флогистона, показал роль кислорода в процессах обжигания и горения, конкретизировал понятие химического элемента, создал первую рациональную номенклатуру химическую (См. Номенклатура химическая) (1787). В начале 19 в. Дж. Дальтон ввёл в химию атомизм, открыл Кратных отношений закон и дал первую таблицу атомных весов химических элементов. Тогда же были открыты Гей-Люссака законы (1805—08), Постоянства состава закон (Ж. Пруст, 1808) и Авогадро закон (1811). В 1-й половине 19 в. И. Берцелиус окончательно утвердил атомизм в химии. В середине 19 в. были сформулированы и разграничены понятия атома, молекулы и эквивалента (Ш. Жерар, С. Канниццаро). К тому времени было известно свыше 60 химических элементов. Проблему их рациональной классификации разрешило открытие в 1869 периодического закона Менделеева (См. Периодический закон Менделеева) и построение периодической системы элементов (См. Периодическая система элементов) Менделеева. На основе своих открытий Д. И. Менделеев исправил атомные веса многих элементов и предсказал атомные веса и свойства ещё неизвестных тогда элементов — Ga, Ge, Sc и др. После их открытия периодический закон получил всеобщее признание и стал прочной научной основой химии.

В конце 19 — начале 20 вв. особое внимание химиков-неоргаников привлекли две малоизведанные области — металлические Сплавы и Комплексные соединения. Исследование полированной и протравленной поверхности стали при помощи микроскопа, начатое в 1831 П. П. Аносовым, было продолжено Г. К. Сорби (1863), Д. К. Черновым (1868), немецким учёным А. Мартенсом (с 1878). Оно было усовершенствовано, а также существенно дополнено методом термического анализа (См. Термический анализ) (А. Ле Шателье, Ф. Осмондом — в 1887, английским учёным У. Робертс-Остоном — в 1899). В дальнейшем крупнейшие работы по исследованию сплавов с применением новой методики были выполнены Н. С. Курнаковым (с 1899), А. А. Байковым (с 1900) и их научными школами. Обширные исследования сплавов были проведены в Германии Г. Тамманом (с 1903) и его учениками. Теоретическую основу учения о сплавах дало правило фаз Дж. У. Гиббса. Систематические исследования комплексных соединений, предпринятые в 1860-х гг. К. Бломстрандом и датским учёным С. Йёргенсеном, были в 1890-гг. развиты А. Вернером, создавшим координационную теорию, и Н. С. Курнаковым. Особенно широко работы в этой области были поставлены в России и СССР Л. А. Чугаевым и его школой.

Успехи ядерной физики позволили синтезировать трансурановые элементы, имеющие атомные номера от 93 по 105 (см. Актиноиды, Элементы химические, Ядерная химия). Работы по синтезу трансурановых элементов открыли новую эпоху в истории Н. х. Исследования в этой области ведутся в СССР, США, Франции, ФРГ и некоторых др. странах.

Методы исследования. В Н. х. применяются два основных приёма исследования: препаративный метод и метод физико-химического анализа. Препаративный метод практиковался с древнейших времён. Его основу составляют проведение реакций между исходными веществами и разделение образующихся продуктов посредством перегонки, возгонки, кристаллизации, фильтрования и др. операций. Особенно распространён препаративный метод в химии комплексных соединений. Метод физико-химического анализа в основном создан Н. С. Курнаковым, его учениками и последователями. Сущность метода заключается в измерении различных физических свойств (температур начала и конца кристаллизации, а также электропроводности, твёрдости и др.) систем из 2, 3 или многих компонентов. Полученные данные изображают в виде диаграмм состав-свойство. Их геометрический анализ позволяет судить о составе и природе образующихся в системе продуктов, не выделяя и не анализируя их. Физико-химический анализ указывает пути синтеза веществ, даёт научную основу процессов переработки руд, получения солей, металлов, сплавов и др. важных технических материалов. Физико-химический анализ признан во всём мире ведущим методом Н. х.

Для современной Н. х. характерен необычайно обширный круг новых методов исследования строения и свойств веществ и материалов. С середины 20 в. основное внимание уделяется изучению атомного и молекулярного строения неорганических соединений прямым определением их структуры (т. е. взаимного расположения атомов в молекуле). Оно производится методами кристаллохимии, спектроскопии (См. Спектроскопия), рентгеновского структурного анализа (См. Рентгеновский структурный анализ), ядерного магнитного резонанса (См. Ядерный магнитный резонанс), ядерного квадрупольного резонанса (См. Ядерный квадрупольный резонанс), гамма-спектроскопии (См. Гамма-спектроскопия), электронного парамагнитного резонанса (См. Электронный парамагнитный резонанс) и др. Большое значение имеет определение важных для техники свойств и особенностей (механические, магнитные, электрические и оптические свойства, жаропрочность, жаростойкость, отношение к радиоактивному облучению и др.). Н. х. превратилась в такую науку о неорганических материалах, которая основывается преимущественно на данных о строении веществ на атомном и молекулярном уровнях.

Успехи неорганической химии. Открытие трансурановых элементов, эффективное разделение (посредством хроматографии (См. Хроматография), экстрагирования и др.) редкоземельных и иных трудно разделимых элементов (например, платиновых металлов) на индивидуально-чистые, экономичное получение редких элементов и материалов из них с особыми свойствами или заданным комплексом свойств привели к качественным изменениям в Н. х. Необходимо также отметить прогресс в технологии получения высокочистых элементов и соединений; получение из них и применение монокристаллов с определёнными свойствами (например, пьезоэлектриков, диэлектриков (См. Диэлектрики), полупроводников (См. Полупроводники), сверхпроводников (См. Сверхпроводники), кристаллов для Лазеров и др.) составило специальную ветвь промышленности. Особенно быстро развивается химия редких элементов. В 60-е годы возникла химия инертных газов, которые ранее считались неспособными к химическому взаимодействию; получены многие соединения Kr, Xe и Rn с фтором, окислы Xe и др.

Роль химии в современном мире.

Неорганические вещества и материалы используются в различных рабочих условиях, при интенсивном воздействии среды (газов, жидкостей), механических нагрузок и др. факторов. Поэтому важное значение имеет изучение кинетики неорганических реакций, в частности при разработке новых технологий и материалов.

Практические применения. Н. х. даёт новые виды горючего для авиации и космических ракет, вещества, препятствующие обледенению самолётов, а также посадочных полос на аэродромах. Она создаёт новые твёрдые и сверхтвёрдые материалы для абразивных и режущих инструментов. Так, использование в них компактного кубического Бора нитрида (боразона) позволяет обрабатывать очень твёрдые сплавы при таких высоких температурах и скоростях, при которых алмазные резцы сгорают. Получены новые составы флюсов для сварки металлов; новые комплексные соединения, применяемые в технологии, сельском хозяйстве и медицине; новые строительные материалы, в том числе значительно облегчённые (например, на основе или с участием фосфатов), новые полупроводниковые и лазерные материалы, жаропрочные металлические сплавы, новые минеральные удобрения и многое другое. Н. х. удовлетворяет самые разнообразные запросы практики, весьма бурно развивается и принадлежит к важнейшим основам научно-технического прогресса.

Научные учреждения, общественные организации, периодические издания. До 1917 исследования по Н. х. велись в России лишь в лабораториях АН и вузов (горного, политехнического и электротехнического институтов в Петербурге, университетов в Петербурге, Москве, Казани, Киеве, Одессе). В 1918 начали свою деятельность основанные при АН в Петрограде институт физико-химического анализа (основатель Н. С. Курнаков) и институт по изучению платины и др. благородных металлов (основатель Л. А. Чугаев). В 1934 оба эти института и Лаборатория общей химии АН СССР объединены в институт общей и неорганической химии АН СССР (в 1944 ему присвоено имя Н. С. Курнакова). О др. институтах см. Химические институты научно-исследовательские (См. Химические институты). Проблемы Н. х. рассматриваются на конгрессах Международного союза теоретической и прикладной химии (См. Международный союз теоретической и прикладной химии), который имеет секцию Н. х., и на съездах национальных химических обществ, в том числе Химического общества (См. Химическое общество) имени Д. И. Менделеева.

вклад русских ученых в открытие химических элементов

Хронологические периоды открытия химических элементов

В истории открытия химических элементов можно отметить два больших периода. В первый, доменделеевский, период открытие элементов происходило эмпирически, без общей идеи, чисто аналитическим путём. Этот период занял наибольший отрезок времени и длился вплоть до последней четверти XIX в., до открытия естественной системы химических элементов. Второй, послеменделеевский, период был тесно связан с периодической системой. Вначале это вылилось в проверку самого периодического закона, предсказаний Менделеева о существовании ещё некоторых элементов. Этот этап заключает и главный триумф периодической системы — открытие Ga, Sc и Ge. Следующий этап связан с электронной интерпретацией системы Менделеева. Закономерности электронного наслоения атомов дали возможность правильно предсказать открытие, например, гафния. Последний этап, длящийся и поныне, состоит в углублении знаний атомов. Здесь речь идёт не столько о поисках естественных химических элементов, сколько об искусственных синтезах их путём осуществления ядерных реакций.

Максимальное количество открытых элементов (две трети общего числа) приходится на первый аналитический период поисков химиков. С именами русских учёных мы встречаемся уже и в доменделеевское время.

Карл Карлович Клаус

Карл Карлович Клаус был современником и другом основоположников русских химических школ — Н. Н. Зинина (1812—1880) и А. А. Воскресенского (1809 —1880). Наиболее плодотворная деятельность Клауса относится к периоду, когда он в течение 15 лет возглавлял кафедру химии Казанского университета. Преемником и любимым учеником Клауса был А. М. Бутлеров.

Русское платиновое сырьё исследовалось и с целью нахождения в нём новых химических начал. Дважды ошибочно объявлялось об открытии новых элементов (Варвинским и Озанном). Г. В. Озанн даже дал названия трём, якобы им открытым, элементам: плюраниум, рутениум и полониум, но затем снова повторил свои исследования и отказался от ошибочного мнения. Интересно, что два из трёх названий Озанна оказались живучими и были присвоены позже открытым элементам (Ро и Ru).

Карл Карлович Клаус

Карл Карлович Клаус

Открытие рутения было сделано Клаусом в лаборатории Казанского университета. По оборудованию она не уступала лучшим зарубежным лабораториям. Несомненно, такая обстановка способствовала тому, что этот университет стал колыбелью русских химических школ с мировой славой. Клаусу по праву принадлежит яркая страница в истории химии. Он оказал большое содействие возвеличению своей родины. Факт открытия нового химического элемента Клаусом ещё раз доказывает, что и в прошлом развития русской химической мысли есть великие достижения, в которых проявляется превосходство русских учёных над иностранцами.

Дмитрий Иванович Менделеев

Наиболее важный в методологическом отношении период в открытии новых элементов начинается с Менделеева. Именно Дмитрию Ивановичу принадлежит направляющая научная идея в систематических поисках ещё не открытых химических начал. Поразительных результатов в своей многогранной деятельности Менделеев достиг именно в этой области. Гениальное мастерство теоретического обобщения и научной прозорливости, проявленные русским учёным в деле систематизации накопленного в течение веков химиками всех стран фактического материала, открытие важнейшего закона, которому подчиняется вещество, и предсказания на основании анализа и развития периодического закона достойны удивления.

Иногда можно встретить ошибочное мнение, что Менделеев на основании своих периодической системы и таблицы предсказал существование только трёх новых ещё не открытых элементов (речь идёт о галлии, скандии и германии). Этой ошибкой чаще всего грешат учебники, но её можно встретить и в работах авторов, незнакомых с трудами Менделеева в оригинале. Такая постановка вопроса является недооценкой Менделеева и не соответствует действительности.

Дмитрий Иванович Менделеев

Дмитрий Иванович Менделеев

Дело началось с поправок констант хорошо известных элементов. Исправления касались атомных весов, ошибочно определённых в связи с неточным установлением эквивалента или валентности. Так, например, у ближайших аналогов платины в то время атомные веса считались возрастающими от Pt к Os, Менделеев же, согласно своей системе, требовал диаметрально противоположного возрастания от Os к Ir и Pt. Урану приписывалась валентность, равная трём; отсюда по эквиваленту вычислялся атомный вес, равный 120. Менделеев же по свойствам увидел, что для урана наиболее естественным оказывается место под вольфрамом в 6 группе. Стало быть, максимальная валентность U по кислороду должна быть равной 6, а прежний атомный вес следует удвоить и принять равным 240. Аналогичные исправления были предложены и для некоторых других элементов. Все эти поправки вскоре подтвердились (за исключением теллура и кобальта). При исправлениях атомного веса бериллия в основу брались точные данные об эквиваленте его, определённом в 1842 г. русским учёным Авдеевым. До оригинальных экспериментов Авдеева бериллий (или глициний, как его называли) не был в должной мере изучен. В результате для Be был определён атомный вес, практически совпавший с современной величиной 9.02.

Величайший триумф Менделеева начался тогда, когда стали открывать предсказанные им новые элементы. Д. И. при жизни трижды (в 1875, 1879 и 1886 гг.) испытал счастье быть свидетелем претворения своих гениальных пророчеств. Интересно; что после опытного обнаружения предсказанных элементов были случаи, когда авторы этих открытий вначале ошибались в определении некоторых констант для обнаруженных простых тел, но потом исправляли свои ошибки, согласно указаниям Менделеева. Так случилось с удельным весом галлия и атомным весом скандия. Детали в подтверждении предсказаний Д. И. о Ga, Sc и Ge широко известны.

Выдвинутая в 1932 г. Д. Д. Иваненко теория строения ядер атомов из нейтронов и протонов, при последующем развитии привела к убеждению, что в процессе эволюции и превращения элементов масса ядра играет не менее существенную роль, чем его заряд, что изменение электрических свойств элемента (заряда ядра и электронной структуры) тесно связано с изменением массы атома.

Таким образом, диалектическое развитие учения об атоме привело исследователей к мысли, что Менделеев и в этом вопросе был не так неправ, как это казалось вначале.

Александр Михайлович Бутлеров

Большой вклад в науку сделали русские химики и в изучении разновидностей элементов — изотопов. Вероятность существования изотопов предсказывал ещё в 1879 г. величайший химик-мыслитель Александр Михайлович Бутлеров, являющийся наряду с Ломоносовым и Менделеевым гордостью русской передовой науки. Как известно, Бутлеров создал научную систему органической химии, но он также высказал ряд ценнейших идей и в области общей неорганической химии.

Александр Михайлович Бутлеров

Александр Михайлович Бутлеров

Георгий Николаевич Антонов

Хотелось бы воскресить в памяти химиков ещё одно имя русского учёного, который внёс очень ценный вклад в изучение изотопов в связи со своими фундаментальными исследованиями по радиоактивности в дореволюционной России. Речь идёт о Георгии Николаевиче Антонове, который пять лет (1910— 1914) подробно изучал радиоактивный распад самого радия и урана, некоторое время, сотрудничая с Э. Резерфордом в Манчестере. Правила сдвига при альфа и бета-распаде в значительной степени выводились с использованием тонких экспериментальных данных Антонова. В 1911 —1913 гг. Антонов опубликовал очень важные работы, в которых сообщалось об открытии им нового радиоактивного элемента урана-игрек. Когда радиоактивные элементы были размещены в последнем десятом ряде периодической системы, UY Антонова, как элемент, имеющий заряд ядра 90, попал в одну клетку с торием. Сводку своих ценных экспериментальных исследований Антонов дал в своей диссертации на учёную степень магистра химии. Позже Антонов переключился на изучение поверхностных явлений.

Читайте также: