История развития динамики кратко

Обновлено: 05.07.2024

Известно, что бурное развитие науки и техники (технический прогресс) произошло в последние столетия. Произошло это после того, как были сформулированы основные законы динамики и закон всемирного тяготения. До этого времени развитию науки и техники препятствовали неверные, господствующие в течение 20 веков, представления Аристотеля, древнегреческого философа и учёного, жившего в 3 веке до н.э., о строении мира и о механическом движении тел.

Далее коротко изложу исторические факты.

Считалось, что в центре Вселенной находится неподвижная Земля, а вокруг её вращаются Солнце, Луна, звёздная сфера. С развитием мореплавания стали составлялись таблицы взаимного расположения планет и звёзд (астрономические таблицы), но они оказывались не совсем точными и их приходилось улучшать. Этим же занимался и польский астроном Коперник. Наблюдая за движением планет и Солнца, Коперник пришёл к выводу, что не звёздная сфера делает оборот вокруг Земли за сутки, а Земля делает суточный оборот вокруг своей оси; что Земля, как и другие планеты, вращается вокруг Солнца. Таким образом, Коперник явился основателем гелиоцентрической системы мира. Коперник понимал, какие могут быть последствия таких выводов, поэтому долго держал их в секрете. Он опубликовал свой труд под названием "Об обращении небесных сфер" только в 1542 году, незадолго до своей смерти. Сначала результаты его исследований были приняты спокойно, но затем, когда взгляды Коперника приняли Галилей и Кеплер, этот труд был признан еретическим и запрещён к распространению. Кеплер и Галилей испытывали преследования со стороны церкви. Галилею (итальянскому физику, механику, астроному, философу, математику, 1564 г.р.) в возрасте 70 лет, даже пришлось публично отказаться от "еретических" взглядов Коперника, но в действительности он оставался верен гелиоцентрической системе мира.

Он создал свой телескоп с увеличением в 8 раз, затем в 34 раза. Увидел, что поверхность Луны не гладкая, как считал Аристотель, увидел пятна на Солнце. Установил, что Млечный путь состоит из множества звёзд. Объяснил свечение Луны отражением солнечного света Землёй. Открыл 4 спутника Юпитера, подтвердив этим гелиоцентрическую систему мира.

Современник Галилея, немецкий астроном Кеплер, 1571 г.р., очень подробно исследовавший орбиты 6 ближних к Солнцу планет, точно описал их движение в виде трёх законов: 1) каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце; 2) линия, проведённая от Солнца к планете, за равное время описывает равные площади (на рисунке они заштрихованы); 3) квадраты времён обращения любых двух планет относятся как кубы больших полуосей их орбит.

Кеплер обнаружил, что, чем ближе планета расположена к Солнцу, тем больше её скорость вращения. Скорость движения планеты по орбите несколько увеличивается при приближении к Солнцу и несколько уменьшается при удалении от Солнца. Но эти изменения незначительны и можно считать орбиты планет окружностями с Солнцем в центре, а их движения по орбитам можно считать равномерными. Тогда, согласно законам Кеплера, получается, что нормальное ускорение каждой планеты обратно пропорционально квадрату её расстояния от Солнца и вектор ускорения направлен к Солнцу:

Если умножить ускорение движения планеты на её массу, то получим силу, с которой планета притягивается к Солнцу.

В 1627 году Кеплером были составлены очень точные астрономические таблицы. Причиной тому явились верно открытые им законы движения планет.

Теперь про взгляды Аристотеля на механическое движение тел. Аристотель считал, что если на тело не действует сила, то тело, движущееся равномерно и прямолинейно, все равно придёт к состоянию покоя. А чтобы тело двигалось равномерно прямолинейно на него должна действовать одна сила.

Можно представить равномерное прямолинейное движение санок, когда к ним прикладывают силу (тянут за верёвку). Но здесь обычно не думают о силе трения, действующей на санки, которая уравновешивает внешнюю силу. Санки двигаются равномерно, потому что равнодействующая сила равна нулю. Если дорога очень скользкая, то санки под действием внешней силы будут двигаться с ускорением.

Согласно Галилею, если равнодействующая сила равна нулю , то тело не только будет сохранять состояние покоя , но и будет продолжать двигаться равномерно прямолинейно . Этим Галилей поставил на один уровень состояние покоя и равномерного прямолинейного движения, то есть что движение тела с постоянной скоростью не требует силы (не требует причины движения). В этом смысл закона инерции Галилея , который мы называем первым законом Ньютона. Справедливо было бы его называть законом Галилея.

Можно пояснить данное Галилеем понятие "движение по инерции" следующим примером. Представим, что отполированный металлический шарик, толчком пустили по горизонтальной зеркальной поверхности. Здесь силы в направлении движения нет, практически нет и силы трения - шарик двигается по инерции равномерно прямолинейно.

Можно ещё представить человека, стоящего на полу вагона равномерно прямолинейно движущегося поезда. Подпрыгнув, казалось бы человек должен опуститься на пол вагона в другом месте - "отстать" от вагона. Но человек опускается на то же место, с которого подпрыгнул. Это значит, что за время прыжка человек "по инерции" продолжал двигаться с той же скоростью и в ту же сторону, что и поезд. Человек сохранил по инерции ту скорость, которую он имел к моменту прекращения взаимодействия с полом вагона.

Галилеем был сформулирован ещё принцип относительности : все инерциальные системы отсчёта равноправны относительно причин ускорений (принцип относительности Галилея). Это означает, что в разных инерциальных системах отсчёта тело под действием одинаковой силы приобретёт одинаковое ускорение.

Теперь о мнении Аристотеля, что тяжёлое тело падает на Землю быстрее, чем лёгкое. Кажется, что с этим надо согласиться, так как в жизни это и наблюдаем. Но Галилей с этим не согласился. Согласно Галилею, на падение тел влияет не только притяжение Земли, но и сопротивление воздуха. Если сравнить падение массивных тел, на движение которых воздух будет мало влиять, то с одинаковой высоты они упадут за одно время и движение их будет ускоренным. Опыты подтвердили это. Если из высокой трубки откачать воздух и одновременно отпустить дробинку и пёрышко, то они одновременно упадут на дно трубки и оба будут двигаться с ускорением свободного падения, для Земли равного 9,81м/с2.

Ньютон - английский физик, математик, механик, астроном , 1642 г.р., обобщив результаты исследований предшественников, сформулировал основные законы динамики и закон всемирного тяготения, описав их в работе "Математические начала натуральной философии". Формулировки законов, их смысл см. в Занятии 14 .

Отметим важность сформулированных Ньютоном законов динамики. Эти законы позволили решать в каждой области знаний, в каждой области техники основную задачу - это получение уравнений движения тела. А именно, зная действующие на тело силы и начальные условия движения (координаты, скорость тела в какой-то момент времени), можно найти ускорение тела. Затем, используя уравнения кинематики, можно получить уравнение зависимости скорости от времени, координаты от времени. Умение решать конкретную задачу - это самое важное в физике. Поэтому предлагаемые на канале занятия, наряду с теорией, содержат большое количество решённых задач.

Favorite

В закладки

Сегодня мы уже не представляем нашей жизни без звуков, музыки, наушников, недорогих колонок и брендовых акустических систем по несколько сотен ватт, повергающих соседей в ужас. Давайте окунемся в почти двухвековую историю развития акустических систем и проследим нелегкий путь эволюции этого неотъемлемого атрибута нашей жизни.

Тишина стала громче.
Терри Пратчет

В 1831 году мир ждало одно из величайших открытий современности: английский физик-эксперементатор Майкл Фарадей наблюдает за таким явлением, как электромагнитная индукция. Через три года появится понятие электрического и магнитного полей, электромагнетизма, а чуть позднее и пьезоэлектричества. Человек плавно входит в эру электричества. Тогдашний быт нам может показаться несколько скучным: отсутствие телевидения, радио, электрического освещения. Для развлечения – балы и театры, для души – живая музыка, для работы – ручная сила, водяное колесо, ветряные мельницы и механические приспособления.

1Meuchi

2Reise

3Bell

4Phonograph

Принцип воспроизведения звука фонографом заключался в скольжении иглы-резца по углублениям и неровностям (звуковой дорожке), образовавшихся при записи на покрытом фольгой валике. Механические колебания иглы передавались на мебрану-излучатель, оснащенную рупором. Физика звука позволяла при помощи простейшего акустического устройства значительно усилить мизерные колебания иглы. Впрочем, у подобной чисто механической акустической системы был целый ряд недостатков. Уровень громкости и коэффициент усиления был недостаточным, а качество звучания оставляло желать лучшего. К тому же, рупорные динамики были слишком громоздкими и о мобильности не могло идти и речи. Их пик популярности приходится на период с 1880 по 1920 год, как раз в то время, когда пытливые умы со всех уголков мира занимаются изобретением и освоением электродинамических акустических систем.

К рупорному оформлению динамиков производители вернутся и в дальнейшем, а уже в XXI веке именно этот тип излучателей, но работающих по законам электродинамики, будет считаться одним из эталонных по качеству звучания.

5Lodge

Заложив принцип преобразования входных сигналов переменного тока для получения звука, Сименс фактически изобрел велосипедную раму до появления колес: решения, которое бы позволило усилить звуковую волну у немецкого изобретателя не было и раскачать головку громкоговорителя для получения достаточного уровня громкости в конце XIX века так и не представлялось возможным.

Проведя серию опытов в рамках лаборатории компании General Electric, изобретатели Честер Райс и Эдвард Келлог в 1924 году патентуют принцип работы электродинамического излучателя. В его основу легла простая физика: акустическая мощность растет пропорционально квадрату частоты входного сигнала. Используя колебания диафрагмы в области частот с максимальным превышением резонанса подвижной системы можно получить мало искаженное воспроизведение звука. Связав оба принципа воедино, Райс и Келлог получили излучатель, оснащенный диафрагмой и звуковой катушкой.

6Radiola28

1926 год стал переломным в дальнейшей эволюции акустических систем. На рынок выходит первая промышленная модель радиолы Radiola Model 104 со встроенным усилителем мощностью в 1 Вт. Ее стоимость в 1926 году составляла $260, сумма, эквивалентная $3000 в 2015 году.

7Record

Конструкция первых электродинамических громкоговорителей предусматривала наличие высокоомных катушек, которые по сути выполняли роль магнита, приводящего в действие бумажную или тканевую мембрану. На тот момент в промышленности уже активно использовались мощные магниты и в 1927 году Гарольд Хартлей предлагает заменить громоздкую катушку на постоянный магнит.

8Philips

Удивительно, но заложенный Оливером Лоджем и доработанный Райсом и Келлогом принцип работы электродиамических излучателей остался неизменным вплоть до сегодняшнего дня. Колонки, которые вы видите на своем столе, и те, что стоят в комнате или пылятся на родительском шкафу – все они работают по тому же принципу, что и установленные динамики в вышедшей почти 90 лет назад радиоле Radiola Model 104. Принцип остался прежним, но вот их акустическое оформление изменилось кардинально.

Если бы в эволюции акустических систем не появился гениальный изобретатель по имени Эдгар Вильчур, ответить однозначно что именно вам бы довелось слушать сегодня и как бы выглядели современные колонки было бы нелегко. Но Вильчур не только появился на свет в далеком 1917 году, он сумел произвести настоящую революцию в мире электрической акустики.

9EdgarVil4ur

С целью облегчения конструкции упругого подвеса в электродинамических громкоговорителях и уменьшения действующих на него нагрузок (вызывающих значительные искажения звука), Вильчур предлагает включить в работу воздух. Идея может показаться немыслимо простой, но секрет гениальности всегда заключается в простоте. Для осуществления своей задумки Вильчур предлагает использовать закрытый деревянный ящик, в который и поместить электродинамический громкоговоритель.

10Vil4ur

Еще одним не менее гениальным изобретением Эдгара Вильчура по праву считается использование купольной пищалки (ВЧ-изулчателя или твитера). Первое использование отдельного динамика для воспроизведения высоких частот можно найти в легендарной акустической системе AR3, ставшей логичным эволюционным продолжением систем AR1 и AR2, выпущенных компанией Acoustic Research.

11AR3

В 1972 году компания Sansui представляет первую колонку SF1 с 360-градусным излучением звука. Свой ответ тут же дает и японский производитель Pioneer, презентуя модель CS-3000 с использованием купольных динамиков.

1Sansui

Благодаря рупору с неординарной конструкцией и захвату излучения с тыльной стороны диффузора, небольшая колонка Victor FB-5-2 позволяет озвучить стандартное жилое помещение, потребляя всего 1 Вт.

3VictorFB2

Первая колонка с действительно внушительным басом (нижняя частота воспроизведения стартует от 20 Гц) выходит в 1973 году. Technics SB-1000: 22-сантиметровые магниты, 10-сантиметровые катушки и вес в 52 килограмма.

4TechnicsSB-1000

Год спустя на рынок выходит одна из самых популярных колонок за всю истории существования индустрии. В 1974 году компания Yamaha презентует акустическую систему NS 1000. Используя при производстве диффузоров бериллий, японские инженеры сумели превзойти представленные на рынке головки практически по всем характеристикам.

5YamahaNS1000

Начав изучение вопроса достоверности звучания акустических систем, Technics вновь осуществляет технологический прорыв в этой сфере. В марте 1975 года на пресс-конферении в Токио она демонстрирует трехполосную АС Technics SB-7000 – бестселлер своего времени.

6TechnicsSB-7000-

7S90

8JBL

Перечислить все то обилие акустических систем, которое нахлынуло на рынок в период с начала 70-х до середины 80-х не представляется возможным. Производители экспериментируют со всем чем можно: от размещения динамиков, их формы и звукоизоляции, до использования самых неординарных материалов при изготовлении головок. В 1976 году английская компания Bowers & Wilkins впервые берется за изготовление диффузора среднечастотного динамика из кевлара. Так на рынок выходит модель B&W DM6.

10B&W-DM6

Дальнейшие поиски производителей акустических систем уже направлены на получение максимального погружение слушателя в атмосферу музыки. Но эксперименты в области звука могут продолжаться бесконечно долго, но только точное оборудование, необходимое техническое оснащение и понимание того, к чему действительно стремятся все производители акустических систем могло дать свои плоды. В 1981 году сооснователь компании Bowers & Wilkins Джон Бауэрс принимает решение открыть отдельную исследовательскую лабораторию в небольшом английском городке Стейнинге.

BWResearch

После общепринятого стерео-формата 2.0 на рынок поступают акустически системы, состоящие из 3, 5, 7 и даже 9 колонок, позволяя слушателю наслаждаться многоканальным звуком и ощущением пространственного 3D-звучания.

Появление в 1994 году технологии Bluetooth для беспроводной передачи данных не могло не повлиять и на сферу акустических систем. В октябре 2009 года компания Creative представила первую акустическую систему формата 2.1, использующую для передачи аудио сигнала от источника звука технологию Bluetooth.

11Creative

Год спустя, 1 сентября 2010, в рамках презентации в Сан-Франциско компания Apple представит собственную технологию для беспроводной потоковой передачи данных между устройствами – AirPlay. Вслед за AirPlay начинается новая страница в истории электроакустики – эра беспроводных акустических систем, сочетающих удивительный дизайн, отменное звучание и потрясающую функциональность. Но это уже тема для отдельной статьи.

Рекомендуем почитать:

Favorite

В закладки

Сегодня мы уже не представляем нашей жизни без звуков, музыки, наушников, недорогих колонок и брендовых акустических систем по несколько сотен ватт, повергающих соседей в ужас. Давайте окунемся в почти двухвековую историю развития акустических систем и проследим нелегкий путь эволюции этого неотъемлемого атрибута нашей жизни. Тишина стала громче. Терри Пратчет Электричество и звук: первые опыты В.

Динамика. Основные понятия и модели

Этот урок посвящён разделу физики, который называется динамика. Мы узнаем, что изучает динамика, основные понятия и физические величины этого раздела. Также совершим небольшой экскурс в историю, чтобы узнать о первых научных работах, легших в основу современной динамики. На этом уроке будут подробно показаны решения трёх типовых задач различной сложности, которые взяты из сборника задач для подготовки к единому государственному экзамену.

Важнейшие элементы конструкции громкоговорителей остались неизменными с момента их изобретения в начале прошлого века. Современная электроакустика появилась на рынке с изобретением А. Г. Беллом и Т. Ватсоном телефона в 1876 году. И хотя с тех пор совершенствование электроакустических преобразователей (то есть громкоговорителей) было темой бесконечной череды научных изысканий и статей, значительно большей, чем посвященных любому другому элементу звукоусилительного тракта, кардинальных изменений практически нет.

Динамик Kellogg и Rice, 1925 год

История динамиков началась в далеком 19 веке.

Первая заявка на патент на электродинамическую конструкцию с подвижной катушкой была подана в 1877 году, а на электродинамический громкоговоритель — в 1898 году.

Однако практического применения эти изобретения тогда не получили — еще не было достаточно мощного источника, который позволил бы раскачать головку громкоговорителя с подвижной катушкой.

Коммерческие модели появились только в 20-х годах, когда стали доступны ламповые усилители. В первых электродинамических громкоговорителях катушки были высокоомные, использовались тканая подвеска и электромагниты с питанием постоянным током. Некоторые историки техники указывают, что первой электродинамическую головку в максимальном приближении к ее современной конструкции запатентовала в 1925 году фирма General Electric.

Запатентованная конструкция динамиков General Electric Corporation (GE)

Рис. 2. Запатентованная конструкция динамиков General Electric Corporation (GE)

Внешне конструкции динамических головок для воспроизведения низких и высоких частот различаются, но содержат одни и те же компоненты. НЧ-головка имеет металлическую (реже пластиковую) раму, которую также называют корзиной за ее форму или диффузородержателем — это уже ее назначение.

Окна диффузородержателя обеспечивают свободное движение воздуха у задней стороны диффузора. При отсутствии окон воздух мог бы воздействовать на подвижную систему как дополнительная акустическая нагрузка, уменьшая отдачу в области низких частот.

Основное требование — обеспечение жесткой конструкции, свободной от вибраций, способных вызвать призвуки. С этой точки зрения лучше использовать литые конструкции из металлов или композитных материалов.

На раме закрепляется конический диффузор, обычно изготавливаемый из бумаги (на самом деле — из измельченной древесины), чистого или с наполнителем пластика и реже — металла или керамики.

К задней (более узкой) части конуса прикрепляется гильза (бумажная с пропиткой или металлическая), на которую наматывается звуковая катушка.

Звуковая катушка наматывается обычно в два (реже — четыре) слоя медным или алюминиевым проводом в эмалевой изоляции на каркас (гильзу) и закрепляется на нем лаком. Обычно используется стандартный провод круглого сечения, но для очень мощных головок применяется провод с прямоугольным сечением, обеспечивающим почти 100-процентное заполнение зазора.При сборке подвижной части головки широко используются современные материалы.

Например, для приклеивания каркаса звуковой катушки к керамическому или металлическому купольному диффузору используются полимерные клеи с ультрафиолетовым отверждением.

Выводы катушки с помощью специальных очень гибких проводов подключаются к контактам на плате соединений.

Несмотря на непрерывные исследования в области материаловедения, для большинства НЧ- и СЧ- головок, имеющих схожую конструкцию, но отличающихся размерами, используются конические диффузоры из бумажной массы. Кроме этого, используются такие материалы как полипропилен, бекстрен, а в последнее время и легкие металлы (алюминий, титан, магний).

Фирмы с именем и историей динамиков, имеющие собственные исследовательские центры или заказывающие разработку, активно экспериментируют с различными наполнителями и композиционными материалами, создавая комбинированные диффузоры.

Тут в качестве наиболее известного примера можно привести СЧ-головки B&W с диффузором из тканого кевлара с пропиткой.


Рис. 3. СЧ-головки B&W 800 серия Diamond LF02359 с диффузором из тканого кевлара с пропиткой

Конусы с прямолинейной образующей использовались в низкочастотных головках только в самых первых головках. Жесткости такой конструкции не хватает на весь рабочий диапазон частот, и выше некоторой частоты излучение приобретает изгибной характер: реально работает только центральная его часть.

Диффузор оказывается слишком тяжел и слишком мягок, чтобы точно следовать за перемещением катушки. Он просто не успевает полностью отклониться и вернуться, а изгибные колебания порождают призвуки и дополнительное окрашивание звука.

Самый простой и древний способ борьбы с этим явлением — формирование в процессе изготовления на поверхности конуса серии концентрических канавок. В современных громкоговорителях используется целый комплекс мер для подавления параметрических резонансов.

Во-первых, практически все диффузоры имеют криволинейную образующую.

Во-вторых, все больше из них изготавливаются из материалов, эффективно гасящих продольные колебания и, кроме того, они имеют переменное сечение: у катушки оно больше, а у подвеса меньше. Конечно, все зависит от выбранного материала. Для бумажного диффузора подойдет специальная пропитка, а для слоистой или композитной структуры важно сочетание физико-механических свойств составляющих ее материалов.

Поскольку диапазон воспроизводимых частот головки громкоговорителя определяется областью поршневого движения его диффузора, важно чтобы он был максимально жестким, но при этом еще имел бы и минимальную массу.

Внешний подвес диффузора, который обеспечивает его поступательное движение при работе, может быть выполнен как единое целое с диффузором (в виде гофра с одной или несколькими канавками) или как автономное кольцо из резины, каучука, полиуретана и других материалов с аналогичными свойствами, которое затем приклеивается к внешнему краю диффузора. Подвес, особенно низкочастотной головки, должен обладать большой гибкостью: это обеспечивает низкую частоту собственного резонанса.

Практически сразу ниже этой частоты эффективность головки резко падает, то есть собственный резонанс определяет границу воспроизведения басов.

Второе основное требование к подвесу — упругие свойства должны сохранять линейность во всем диапазоне перемещений подвижной системы громкоговорителя.

Достаточно долго высокочастотные головки имели такой же конический диффузор, только меньшего размера. Однако сегодня наиболее распространенным у ВЧ- головок является купольный диффузор. Он может быть мягкий (из текстиля, например шелка с пропиткой) или жесткий — из металла или керамики.

Конструкция типичного ВЧ- динамика отличается не только размером диффузора. Обычно купольный диффузор с подвеской изготавливается как единое целое, к которому приклеивается гильза со звуковой катушкой. При этом в конструкции отсутствует гибкая центрирующая шайба. Магнитная система, как и диффузор, закрепляется на пластине переднего фланца.

Купольные диффузоры, которые могут быть выпуклыми или реже вогнутыми, изготавливаются прессованием из натуральных или синтетических тканей с обязательной последующей пропиткой. Все большее распространение получают диффузоры ВЧ-головок из синтетических полимерных пленок или металлической фольги.

Для повышения жесткости диффузоры изготавливают методом осаждений из паровой фазы различных материалов: бора, бериллия, золота и даже алмаза. Существуют многочисленные примеры купольных диффузоров из керамики, которая, по сути, является окислом металлов, например, алюминия.

Центрирующая шайба — непременная часть НЧ- или СЧ-головки; ее задача обеспечить правильное положение гильзы со звуковой катушкой в воздушном зазоре магнитной системы.

Требования к шайбе такие же, как и к подвесу — максимальная гибкость в осевом направлении и сохранение линейности во всем диапазоне перемещений, дополняются еще и требованием максимальной жесткости в радиальном направлении.

Для повышения эффективности головки зазор должен быть минимальным, и малейшее смещение в радиальном направлении неминуемо приведет к заклиниванию звуковой катушки. На всем пути совершенствования головок центрирующая шайба изготавливалась из разных материалов (картона, бумаги, текстолита, ткани). Сегодня практически все головки имеют центрирующую шайбу с концентрическими канавками, прессованную из ткани с последующей пропиткой.

Важнейший элемент конструкции и динамика, который во многом определяет ее электроакустические характеристики, — это магнитная система. Она образуется кольцевым магнитом, расположенным между двумя кольцевыми фланцами и цилиндрическим керном, который образует с передним фланцем воздушный зазор.

Конструкция магнитной системы с керновым магнитом, широко распространенная в середине прошлого века, ныне в головках, предназначенных для многополосных акустических систем, практически не используется.

Магнитная система создает в зазоре постоянное магнитное поле. При подаче сигнала на катушку ее магнитное поле взаимодействует с полем магнитной системы, заставляя ее перемещаться в зависимости от направления тока вперед и назад и двигать прикрепленный к ней диффузор.

Зазор должен быть как можно меньше: так повышается эффективность взаимодействия катушки и постоянного магнита.

Магнитное поле системы с кольцевым магнитом не замыкается полностью в магнитопроводах. Эта конструкция имеет внешнее поле рассеяния, которое может влиять на другие устройства, например, кинескоп цветного телевизора. Поэтому в случае использования таких динамиков в акустических системах домашнего кинотеатра требуется дополнительный магнитный экран, представляющий собой стакан из магнитомягкого материала, которым закрывают снаружи всю магнитную систему.

Форма полюсных наконечников (отверстия верхнего фланца) и керна определяет величину магнитной индукции в воздушном зазоре и равномерность распределения в нем магнитного потока. От размеров элементов магнитной системы и ширины воздушного зазора зависит степень нагрева звуковой катушки и, следовательно, ее термостойкость.

Здесь сталкиваются противоречивые требования. Для улучшения вентиляции нужно увеличить зазор, но это снижает чувствительность головки и требует увеличения магнита. Тут появляется поле деятельности для поиска компромиссного инженерного решения. Поэтому, например, в мощных НЧ - головках диаметр катушки больше, и часто используются два кольцевых магнита.

В некоторых конструкциях в центральном сердечнике магнитной системы делают отверстие, закрытое звукопоглотителем, а в качестве материала колпачка используют плотную ткань или нетканый материал с большим акустическим сопротивлением. Поршневое движение диффузора в широкой полосе частот возможно только при его идеальной жесткости. Для реальных диффузоров из-за возникновения продольных колебаний диффузора эффективная полоса существенно сужается.

Заметим, что и для идеального диффузора полоса ограничена его физическими размерами, но уже по другой причине. Скорость звука в воздухе имеет конечное значение около 340 м/с при комнатной температуре. При некоторой частоте длина звуковой волны становится соизмерима с размером диффузора и даже меньше его.

На практике это проявляется как сужение диаграммы направленности динамической головки с повышением частоты.

То есть чем выше частота, тем ближе к оси головки должен находиться слушатель, чтобы услышать высокие частоты. Так для диффузора диаметром 10 дюймов (250 см) теоретическая максимальная частота, на которой диаграмма акустического излучения сжимается до узкого луча, равна 1335 Гц.

Для наиболее часто используемого размера 8 дюймов (200 мм) она составит уже 2015 Гц, для головки с диффузором 5 дюймов (125 мм) — 3316 Гц, а для типичного твитера диаметром 1 дюйм (25 мм) — 13680 Гц. На низких и средних частотах конструкторы стараются не заставлять головки работать выше этих частот.

Для ВЧ-головок приходится идти на технические хитрости. Как правило, перед диффузором устанавливается рассекатель той или иной формы, в зависимости от того, в какой плоскости необходимо расширить диаграмму направленности излучения.

В нашем примере конструкции ВЧ-головки шестилучевой рассекатель обеспечивает оптимальное рассеивание, как в вертикальной, так и в горизонтальной плоскостях. В СЧ -головках для расширения диаграммы также используют рассекатели в виде конусов со сложной образующей.

Очень важным параметром динамиков является линейность его амплитудной характеристики. Это зависимость звукового давления от амплитуды колебания диффузора. В некотором диапазоне средних значений все работает нормально. Однако при малых значениях входного сигнала силы взаимодействия поля катушки и постоянного магнита не хватает на преодоление упругих сил подвеса. Это проявляется на слух как ухудшение воспроизведения низких частот при малых уровнях сигнала.

При больших амплитудах катушка выходит за пределы поля магнита в зазоре, что резко увеличивает уровень нелинейных искажений. Амплитуда перемещения диффузора, в пределах которой амплитудная характеристика головки сохраняет линейность, очень небольшая. Для НЧ-головок она редко превышает 6 мм, а для ВЧ-головок — 0,3 мм.

Благодаря столь малому ходу для улучшения теплопередачи в ВЧ-головках зазор магнитной системы заполняют магнитной жидкостью, которая представляет собой смесь силиконовой смазки и мельчайшего порошка ферромагнитного материала.

Однако их применение ограничивает срок службы головки из-за значительного увеличения со временем вязкости смазки.

Выбор акустики остается самым важным среди других компонентов системы для окончательного звучания, которое вы хотите получить в своей комнате прослушивания. Кроме всего прочего, для акустических систем очень велик диапазон цен: от менее $100 до более чем $70000 за пару.

Ответ так же прост, как и в случае с дорогими усилителями. Более дорогие акустические системы выпускаются малыми партиями, в них установлены сделанные на заказ головки (и, кроме того, тщательно отобраны по параметрам) и высококлассные корпуса, чаще всего ручной работы.

В общем случае вы видите, за что платите деньги, но тональные характеристики акустических систем индивидуальны: отличия от образца к образцу возможно больше, чем у всех остальных компонентов системы звуковоспроизведения. Необходимо слушать и слушать различные системы, чтобы наконец найти ту одну, звук которой наиболее приятен вашему уху. Одна акустика дает яркий звук на высоких, другая — жесткое звучание на средних, а третья — очень глубокий бас.

Хотя, конечно, существуют системы с более нейтральным (тонально правильным) звуком, но громкоговорителя, воспроизводящего правильно весь звуковой диапазон (тот, что слышит человеческое ухо), нет. Все они окрашивают звук в разной степени, которая зависит от их цены. Иногда тональная окраска специально добавляется в соответствии со вкусом создателя акустической системы. Поиски акустики, удовлетворяющей ваш вкус, требуют усилий и времени.

Читайте также: