Управляемый выпрямитель принцип работы кратко

Обновлено: 05.07.2024

Часто необходимо не только выпрямить переменное напряжение, но и плавно изменять значение выпрямленного напряжения. Управлять величиной напряжения можно как в цепи переменного тока, так и в цепи выпрямленного тока. В цепи переменного тока регулирование осуществляется с помощью трансформаторов и автотрансформаторов. Это направление связано с низким КПД выпрямителя и его громоздкостью, в связи с чем используется только при малых мощностях.

Более экономично регулирование в цепи постоянного тока путем совмещения функций выпрямления и регулирования в одном устройстве. Управляемый выпрямитель основан на использовании тиристоров. Управление тиристором сводится к управлению моментом отпирания (включения) тиристора. Это осуществляется за счет сдвига фазы напряжения управления тиристором относительно анодного напряжения. Такой сдвиг фаз называют углом управления a.

Рассмотрим простейший однополупериодный управляемый выпрямитель — рис. 3.33. Отпирание тиристора производится импульсами, формируемыми схемой управления, а запирание происходит автоматически обратным напряжением. Зависимость среднего значения выпрямленного напряжения от угла управления Ud = f(a) называется характеристикой управления (рис.3.34). Максимальное значение выпрямленного напряжения получается при a = 0; В этом случае управляемый выпрямитель вырождается в неуправляемый. Таким образом, изменяя угол управления, можно уменьшать величину выпрямленного напряжения относительно величины Udo при a = 0.

Двухполупериодный однофазный выпрямитель представлен на рис.3.36. Временная диаграмма приведена для случая активной нагрузки. В этом выпрямителе при a = 0 среднее значение выпрямленного напряжениям Udo =0,9 × U2 как и в неуправляемом выпрямителе. При a = p выпрямленное напряжение отсутствует. Аналитическое выражение регулировочной характеристики

В отличие от нерегулируемого выпрямителя, в рассматриваемой схеме существует прямое напряжение на вентиле в течение интервала a перед отпиранием тиристора. При величина прямого напряжения будет максимальной, равной амплитуде вторичною напряжения U2m. Обратное напряжение на вентиле после перехода тока через нуль на интервале a определяется отрицательной полуволной анодного напряжения U2 этого тиристора. С момента включения очередного тиристора обратное напряжение на первом тиристоре скачком возрастает до величины . Амплитуда обратного напряжения будет максимальной и равной 2 × U2m если угол регулирования не превышает p/2.

При индуктивной нагрузке ток открываемого тиристора будет возрастать не скачком, а плавно. Тиристоры остаются в открытом состоянии еще некоторое время после спада вторичного напряжения до нуля U2 — так называемый период коммутации g. На этапе коммутации ток в заканчивающем свою работу вентиле падает до нуля, а ток во вступающем в роботу вентиле повышается от нуля до нормального значения, т.е. происходит переход нагрузки с одного вентиля на другой. Длительность периода коммутации тем больше, чем больше отношение Lн/Rн. Коммутация характерна как для управляемых, так и для неуправляемых выпрямителей. К появлению периода коммутации приводят также индуктивности рассеяния обмоток трансформатора, достигающие заметных значений в мощных выпрямителях.

Коммутационные процессы приводят к уменьшению выпрямленного напряжения и ухудшению коэффициента мощности выпрямителях.

В течение периода коммутации через тиристор протекает реактивный ток коммутации, ограниченный только индуктивным сопротивлением трансформатора и сети, приведенным ко вторичной обмотке Xа:

Здесь L2s — индуктивность рассеяния вторичной обмотки; L1s — то же первичной обмотки; Lc - индуктивность питающей сети. Угол коммутации увеличивает сдвиг первой гармоники первичного тока относительно напряжения сети:

Наличие индуктивности в нагрузке уменьшает пульсации выпрямленного тока, при очень большой Lн выпрямленный ток практически постоянный. Регулировочная характеристика выпрямителя приобретает вид:

В управляемом выпрямителе ток первичной обмотки трансформатора приобретает несинусоидальную форму: первая гармоника тока сдвигается относительно питающего напряжения и тем больше, чем больше угол регулирования. Это приводит к снижению коэффициента мощности выпрямителя, т.е. потреблению им из сети реактивной мощности, даже при чисто активной нагрузке. При индуктивном характере нагрузки этот эффект усугубляется за счет угла коммутации.




Для уменьшения потребляемой из сети реактивной мощности, а, следовательно, улучшения коэффициента мощности выпрямителя, при работе с большой индуктивностью в схему добавляют дополнительный вентиль (так называемый нулевой вентиль), шунтирующий нагрузку. Нулевой вентиль включается в те моменты, когда вторичное напряжение меняет знак с положительного на отрицательный. На интервале a энергия, запасенная в индуктивности нагрузки, расходуется на ток, замыкающийся через нулевой диод. В результате уменьшается сдвиг первой гармоники первичного тока относительно напряжения сети и улучшается коэффициент мощности.

Характеристики управления двухполупериодного управляемого выпрямителя с активной и индуктивной нагрузкой показаны на рис. 3.37.

Однофазные двухполупериодные выпрямители могут выполняться по мостовой схеме. При этом можно использовать управляемые тиристоры во всех четырех плечах моста или только в двух, а в остальных двух — неуправляемые диоды. Известен вариант мостового выпрямителя с четырьмя неуправляемыми и одним управляемым вентилем — рис. 3.38.

Трехфазные управляемые выпрямители могут выполняться по схеме с нулевым выводом или по мостовой схеме. Трехфазный выпрямитель с нулевым выводом показан на рис.3.39. Особенностью трехфазного управляемого выпрямителя является то, что при больших углах регулирования выходное напряжение приобретает импульсный характер. При и активной нагрузке выпрямленный ток (напряжение) имеет непрерывный характер (область непрерывных токов), а при — прерывистый характер (область прерывистых токов). В случае активно-индуктивной нагрузки прерывистость тока в цепи нагрузки зависит не только от угла регулирования, но и от соотношения Lн/Rн. Если , непрерывный режим тока имеет место при любых соотношениях Rн и Lн. В случае дальнейшего увеличения угла регулирования непрерывный режим тока сохраняется при значительном преобладании индуктивности. Для исключения отрицательных участков в кривой выпрямленного напряжения и улучшения коэффициента мощности, нагрузка индуктивного характера может шунтироваться нулевым диодом.

В трехфазном мостовом выпрямителе режим прерывистых токов наступает при других значениях угла регулирования.

КПД выпрямителя оценивают отношением:

Здесь SDP — сумма активных потерь, состоящих из потерь в вентилях DPв, потерь в силовом трансформаторе DPст и потерь в сглаживающем дросселе DPд, если последний имеется.

Потери в вентилях:

где m — число вентилей в схеме, DUа — падение напряжения на вентиле в прямом направлении, Iа — среднее значение тока через вентиль.

Потери в трансформаторе:

где DPс — потери в стали (потери на перемагничивание), DPм — потери в меди.

Потери в дросселе:

где Id — выпрямленный ток, Rд - активное сопротивление обмотки дросселя.

Коэффициент мощности выпрямителя определяется отношением активной мощности, потребляемой из сети, к полной мощности

Активная мощность определяется первой гармоникой тока первичной обмотки

и без учета потерь в выпрямителе равна полезной мощности

Полная мощность определяется всеми гармониками первичного тока:

Здесь K — коэффициент искажения формы кривой потребляемого тока. сosj1 — коэффициент сдвига первой гармоники тока, зависящий от угла регулирования a и угла коммутации g.

K зависит от схемы выпрямления и характера нагрузки. Для однофазных двухтактных выпрямителей при ; для трехфазного мостового выпрямителя .

Для формирования импульсов управления, подаваемых на управляющий электрод тиристоров управляемых выпрямителей разработаны схемы СИФУ. Схемы обеспечивают формирование импульсов определенной длительности и амплитуды, подаваемых на вентили фаз выпрямителя в нужные моменты времени. В зависимости от способа реализации величины угла управления α СИФУ может быть аналоговой или цифровой.

При помощи управляемых вентилей можно регулировать величину не только постоянного, но и переменного напряжения. В простейшем случает это можно осуществить по схеме (рис.3.40). Но такие схемы приводят к искажению формы сетевого напряжения.

Часто необходимо не только выпрямить переменное напряжение, но и плавно изменять значение выпрямленного напряжения. Управлять величиной напряжения можно как в цепи переменного тока, так и в цепи выпрямленного тока. В цепи переменного тока регулирование осуществляется с помощью трансформаторов и автотрансформаторов. Это направление связано с низким КПД выпрямителя и его громоздкостью, в связи с чем используется только при малых мощностях.

Более экономично регулирование в цепи постоянного тока путем совмещения функций выпрямления и регулирования в одном устройстве. Управляемый выпрямитель основан на использовании тиристоров. Управление тиристором сводится к управлению моментом отпирания (включения) тиристора. Это осуществляется за счет сдвига фазы напряжения управления тиристором относительно анодного напряжения. Такой сдвиг фаз называют углом управления a.

Рассмотрим простейший однополупериодный управляемый выпрямитель — рис. 3.33. Отпирание тиристора производится импульсами, формируемыми схемой управления, а запирание происходит автоматически обратным напряжением. Зависимость среднего значения выпрямленного напряжения от угла управления Ud = f(a) называется характеристикой управления (рис.3.34). Максимальное значение выпрямленного напряжения получается при a = 0; В этом случае управляемый выпрямитель вырождается в неуправляемый. Таким образом, изменяя угол управления, можно уменьшать величину выпрямленного напряжения относительно величины Udo при a = 0.

Двухполупериодный однофазный выпрямитель представлен на рис.3.36. Временная диаграмма приведена для случая активной нагрузки. В этом выпрямителе при a = 0 среднее значение выпрямленного напряжениям Udo =0,9 × U2 как и в неуправляемом выпрямителе. При a = p выпрямленное напряжение отсутствует. Аналитическое выражение регулировочной характеристики

В отличие от нерегулируемого выпрямителя, в рассматриваемой схеме существует прямое напряжение на вентиле в течение интервала a перед отпиранием тиристора. При величина прямого напряжения будет максимальной, равной амплитуде вторичною напряжения U2m. Обратное напряжение на вентиле после перехода тока через нуль на интервале a определяется отрицательной полуволной анодного напряжения U2 этого тиристора. С момента включения очередного тиристора обратное напряжение на первом тиристоре скачком возрастает до величины . Амплитуда обратного напряжения будет максимальной и равной 2 × U2m если угол регулирования не превышает p/2.

При индуктивной нагрузке ток открываемого тиристора будет возрастать не скачком, а плавно. Тиристоры остаются в открытом состоянии еще некоторое время после спада вторичного напряжения до нуля U2 — так называемый период коммутации g. На этапе коммутации ток в заканчивающем свою работу вентиле падает до нуля, а ток во вступающем в роботу вентиле повышается от нуля до нормального значения, т.е. происходит переход нагрузки с одного вентиля на другой. Длительность периода коммутации тем больше, чем больше отношение Lн/Rн. Коммутация характерна как для управляемых, так и для неуправляемых выпрямителей. К появлению периода коммутации приводят также индуктивности рассеяния обмоток трансформатора, достигающие заметных значений в мощных выпрямителях.

Коммутационные процессы приводят к уменьшению выпрямленного напряжения и ухудшению коэффициента мощности выпрямителях.

В течение периода коммутации через тиристор протекает реактивный ток коммутации, ограниченный только индуктивным сопротивлением трансформатора и сети, приведенным ко вторичной обмотке Xа:

Здесь L2s — индуктивность рассеяния вторичной обмотки; L1s — то же первичной обмотки; Lc - индуктивность питающей сети. Угол коммутации увеличивает сдвиг первой гармоники первичного тока относительно напряжения сети:

Наличие индуктивности в нагрузке уменьшает пульсации выпрямленного тока, при очень большой Lн выпрямленный ток практически постоянный. Регулировочная характеристика выпрямителя приобретает вид:

В управляемом выпрямителе ток первичной обмотки трансформатора приобретает несинусоидальную форму: первая гармоника тока сдвигается относительно питающего напряжения и тем больше, чем больше угол регулирования. Это приводит к снижению коэффициента мощности выпрямителя, т.е. потреблению им из сети реактивной мощности, даже при чисто активной нагрузке. При индуктивном характере нагрузки этот эффект усугубляется за счет угла коммутации.

Для уменьшения потребляемой из сети реактивной мощности, а, следовательно, улучшения коэффициента мощности выпрямителя, при работе с большой индуктивностью в схему добавляют дополнительный вентиль (так называемый нулевой вентиль), шунтирующий нагрузку. Нулевой вентиль включается в те моменты, когда вторичное напряжение меняет знак с положительного на отрицательный. На интервале a энергия, запасенная в индуктивности нагрузки, расходуется на ток, замыкающийся через нулевой диод. В результате уменьшается сдвиг первой гармоники первичного тока относительно напряжения сети и улучшается коэффициент мощности.

Характеристики управления двухполупериодного управляемого выпрямителя с активной и индуктивной нагрузкой показаны на рис. 3.37.

Однофазные двухполупериодные выпрямители могут выполняться по мостовой схеме. При этом можно использовать управляемые тиристоры во всех четырех плечах моста или только в двух, а в остальных двух — неуправляемые диоды. Известен вариант мостового выпрямителя с четырьмя неуправляемыми и одним управляемым вентилем — рис. 3.38.

Трехфазные управляемые выпрямители могут выполняться по схеме с нулевым выводом или по мостовой схеме. Трехфазный выпрямитель с нулевым выводом показан на рис.3.39. Особенностью трехфазного управляемого выпрямителя является то, что при больших углах регулирования выходное напряжение приобретает импульсный характер. При и активной нагрузке выпрямленный ток (напряжение) имеет непрерывный характер (область непрерывных токов), а при — прерывистый характер (область прерывистых токов). В случае активно-индуктивной нагрузки прерывистость тока в цепи нагрузки зависит не только от угла регулирования, но и от соотношения Lн/Rн. Если , непрерывный режим тока имеет место при любых соотношениях Rн и Lн. В случае дальнейшего увеличения угла регулирования непрерывный режим тока сохраняется при значительном преобладании индуктивности. Для исключения отрицательных участков в кривой выпрямленного напряжения и улучшения коэффициента мощности, нагрузка индуктивного характера может шунтироваться нулевым диодом.

В трехфазном мостовом выпрямителе режим прерывистых токов наступает при других значениях угла регулирования.

КПД выпрямителя оценивают отношением:

Здесь SDP — сумма активных потерь, состоящих из потерь в вентилях DPв, потерь в силовом трансформаторе DPст и потерь в сглаживающем дросселе DPд, если последний имеется.

Потери в вентилях:

где m — число вентилей в схеме, DUа — падение напряжения на вентиле в прямом направлении, Iа — среднее значение тока через вентиль.

Потери в трансформаторе:

где DPс — потери в стали (потери на перемагничивание), DPм — потери в меди.

Потери в дросселе:

где Id — выпрямленный ток, Rд - активное сопротивление обмотки дросселя.

Коэффициент мощности выпрямителя определяется отношением активной мощности, потребляемой из сети, к полной мощности

Активная мощность определяется первой гармоникой тока первичной обмотки

и без учета потерь в выпрямителе равна полезной мощности

Полная мощность определяется всеми гармониками первичного тока:

Здесь K — коэффициент искажения формы кривой потребляемого тока. сosj1 — коэффициент сдвига первой гармоники тока, зависящий от угла регулирования a и угла коммутации g.

K зависит от схемы выпрямления и характера нагрузки. Для однофазных двухтактных выпрямителей при ; для трехфазного мостового выпрямителя .

Для формирования импульсов управления, подаваемых на управляющий электрод тиристоров управляемых выпрямителей разработаны схемы СИФУ. Схемы обеспечивают формирование импульсов определенной длительности и амплитуды, подаваемых на вентили фаз выпрямителя в нужные моменты времени. В зависимости от способа реализации величины угла управления α СИФУ может быть аналоговой или цифровой.

При помощи управляемых вентилей можно регулировать величину не только постоянного, но и переменного напряжения. В простейшем случает это можно осуществить по схеме (рис.3.40). Но такие схемы приводят к искажению формы сетевого напряжения.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Тема: Классификация и принцип работы управляемых выпрямителей ФИО Спикера: Ан.

Описание презентации по отдельным слайдам:

Тема: Классификация и принцип работы управляемых выпрямителей ФИО Спикера: Ан.

Тема: Классификация и принцип работы управляемых выпрямителей ФИО Спикера: Андреенок Татьяна Николаевна

* Очень часто необходимо, чтобы выпрямитель не только преобразовывал переменн.

* Очень часто необходимо, чтобы выпрямитель не только преобразовывал переменное напряжение, но и был способен изменять его значение. Выпрямители, которые совмещают выпрямление переменного напряжения (тока) с управлением выпрямленным напряжением (током), называются управляемыми выпрямителями. Основным элементом управляемых выпрямителей является тиристор. Тирристорные схемы более эффективны, так как они обеспечивают одновременно управление и выпрямление на одном элементе. В управляемых выпрямителях используются те же схемы, что и в неуправляемых, но диоды заменяют тиристорами (управляемыми вентилями)

* ВРЕМЕННЫЕ ДИАГАРММЫ НАПРЯЖЕНИЙ НА ВХОДЕ И ВЫХОДЕ УПРАВЛЯЮЩЕГО ЭЛЕМЕНТА UВХ.

* ВРЕМЕННЫЕ ДИАГАРММЫ НАПРЯЖЕНИЙ НА ВХОДЕ И ВЫХОДЕ УПРАВЛЯЮЩЕГО ЭЛЕМЕНТА UВХ, UВЫХ UВЫХ UВХ

Управление выходным выпрямленным напряжением сводится к управлению во времени.

Управление выходным выпрямленным напряжением сводится к управлению во времени моментом отпирания тиристора. Это делается короткими импульсами с крутым фронтом (иголка). Если тиристор открыт в течении всего полупериода, то на выходе получается пульсирующее напряжение, аналогично неуправляемому выпрямителю. При изменении времени задержки отпирания тиристоров меняется выпрямленное напряжение в сторону уменьшения. Это видно из графиков. Для каждой задержки соответствует определенный угол сдвига по фазе между напряжением на тиристоре и сигналом управления. Этот угол называется углом управления или регулирования и определяется как α=ωtз. tз - то самое время задержки, ω - угловая частота (ω=2πf). Управляемые выпрямители позволяют преобразовать переменный ток в постоянный и плавно изменять выпрямленное напряжение от нуля до номинального значения.

* UВХ UУ UВЫХ UВХ, UВЫХ UВХ UВЫХ ВРЕМЕННЫЕ ДИАГАРММЫ НАПРЯЖЕНИЙ НА ВХОДЕ, ВЫХ.

* UВХ UУ UВЫХ UВХ, UВЫХ UВХ UВЫХ ВРЕМЕННЫЕ ДИАГАРММЫ НАПРЯЖЕНИЙ НА ВХОДЕ, ВЫХОДЕ И УПРАВЛЯЮЩЕГО UУ

* С БЛОКИРОВОЧНЫМ ДИОДОМ БЕЗ БЛОКИРОВОЧНОГО ДИОДА

* С БЛОКИРОВОЧНЫМ ДИОДОМ БЕЗ БЛОКИРОВОЧНОГО ДИОДА

Рассмотрим принцип действия управляемого тиристорного однофазного выпрямителя.

Рассмотрим принцип действия управляемого тиристорного однофазного выпрямителя. Два плеча такого выпрямителя работают как однофазные независимо один от другого со сдвигом на полпериода. Момент включения каждого тиристора определяется напряжением, подаваемым на управляющий электрод. В результате ток I1 проходит через тиристор VS1 не весь полупериод, а только часть его. Также работает тиристор VS2 во втором полупериоде. Соответственно падает среднее напряжение на выходе выпрямителя, и при этом оно может регулироваться системой управления. Следует отметить, что на выходе управляемых выпрямителей имеют место большие скачки тока и напряжения, поэтому они применяются только с сглаживающими фильтрами. В качестве фильтрующего элемента используется катушка индуктивности L или дроссель, включаемые последовательно с нагрузкой. В управляемые выпрямители также встраиваются устройства защиты от перегрузок и коротких замыканий.

Тиристоры — не полностью управляемые полупроводниковые приборы, обладающие дв.

Тиристоры — не полностью управляемые полупроводниковые приборы, обладающие двумя устойчивыми состояниями равновесия: открытым (проводящим ток) и закрытым (не проводящим тока). Схема включения в цепь неуправляемого тиристора (динистора). Схема включения в цепь управляемого тиристора (тринистора).

Если увеличивать напряжение источника питания, ток тиристора увеличивается не.

Если увеличивать напряжение источника питания, ток тиристора увеличивается незначительно, пока это напряжение не приблизится к некоторому критическому значению, равному напряжению включения Uвкл. При напряжении Uвкл в динисторе создаются условия для лавинного размножения носителей заряда в области коллекторного перехода. Происходит обратимый электрический пробой коллекторного перехода (участок 2 на рис.).

В n-области коллекторного перехода образуется избыточная концентрация электро.

В n-области коллекторного перехода образуется избыточная концентрация электронов, а в p-области - избыточная концентрация дырок. С увеличением этих концентраций снижаются потенциальные барьеры всех переходов динистора. Возрастает инжекция носителей через эмиттерные переходы. Процесс носит лавинообразный характер и сопровождается переключением коллекторного перехода в открытое состояние. Рост тока происходит одновременно с уменьшением сопротивлений всех областей прибора. Поэтому увеличение тока через прибор сопровождается уменьшением напряжения между анодом и катодом. На ВАХ этот участок обозначен цифрой 3. Здесь прибор обладает отрицательным дифференциальным сопротивлением. Напряжение на резисторе возрастает и происходит переключение динистора.

После перехода коллекторного перехода в открытое состояние ВАХ имеет вид, соо.

После перехода коллекторного перехода в открытое состояние ВАХ имеет вид, соответствующий прямой ветви диода (участок 4). После переключения напряжение на динисторе снижается до 1 В. Если и дальше увеличивать напряжение источника питания или уменьшать сопротивление резистора R, то будет наблюдаться рост выходного тока, как в обычной схеме с диодом при прямом включении. При уменьшении напряжения источника питания восстанавливается высокое сопротивление коллекторного перехода. Время восстановления сопротивления этого перехода может составлять десятки микросекунд.

Напряжение Uвкл при котором начинается лавинообразное нарастание тока, может.

Напряжение Uвкл при котором начинается лавинообразное нарастание тока, может быть снижено введением не основных носителей заряда в любой из слоев, прилегающих к коллекторному переходу. Дополнительные носители заряда вводятся в тиристоре вспомогательным электродом, питаемым от независимого источника управляющего напряжения (Uупр). Схема включения такого тиристора показана на рис. Возможность снижения напряжения U при росте тока управления, показывает семейство ВАХ. Если к тиристору приложить напряжение питания, противоположной полярности, то эмиттерные переходы окажутся закрытыми. В этом случае ВАХ тиристора напоминает обратную ветвь характеристики обычного диода (цифра 5). При очень больших обратных напряжениях наблюдается необратимый пробой тиристора (цифра 6).

Рассматриваемый выпрямитель (рис. 4.26) широко используется в устройствах большой мощности.

Управляемый трехфазный мостовой выпрямитель - как работает


Опишем работу выпрямителя при подключении его к активной (рис. 4.26, а) и активноиндуктивной (рис. 4.26, б) нагрузке. Изучаемый выпрямитель подобен рассмотренному однофазному мостовому, но получает питание от трехфазного источника напряжения, содержит 6 тиристоров, представляет собой достаточно сложную систему и вследствие этого более труден для анализа.

Так как тиристоры Th Т2 и Т3 соединены катодами, принято говорить, что они составляют катодную группу тиристоров. Тиоисторы 74, Т5 и Г6, соединенные анодами, составляют анодную группу.

В однофазном мостовом выпрямителе каждый тиристор может проводить ток в паре с единственным тиристором и таких пар всего две. В трехфазном мостовом выпрямителе каждый тиристор может проводить ток в паре с одним из двух тиристоров противоположной группы. К примеру, тиристор Г, может проводить ток или в паре с тиристором Г5, или в паре с тиристором Г6. Вследствие этого имеется 6 пар тиристоров, совместно проводящих ток нагрузки.

Основная трудность при анализе выпрямителя состоит в том, чтобы определить, какая пара тиристоров находится во включенном состоянии или может в нем находиться (т. е. может быть включена импульсами управления). Подобные проблемы типичны для всех электронных устройств, содержащих нелинейные и, в частности, работающие в ключевом режиме элементы. При анализе таких устройств очень полезно выявить их характерные особенности, сужающие круг возможных сочетаний режимов работы элементов и упрощающие определение токов и напряжений.

Укажем такие особенности для рассматриваемой схемы.

— Не могут быть включены два тиристора одной группы (так как их проводящее состояние обеспечило бы протекание под действием соответствующего линейного напряжения очень большого обратного тока одного из тиристоров, что невозможно для исправного прибора).
— Если имеется пара включенных тиристоров, то напряжение ивых равно определенному линейному напряжению, причем возможны 6 вариантов:

Управляемый трехфазный мостовой выпрямитель - как работает


Например, при включенных тиристорах Г, и Т5 ивых = = иаЬ а при включенных тиристорах Т4 и Т2 ивых = — иаЬ

Пусть в некоторый момент времени при включенной одной паре тиристоров ивых = и< Тогда не может быть включена другая пара, для которой ивых = и2ии2

Это выпрямительная схема, допускающая плавную регулировку напряжения и выпрямленного тока. В таких схемах чаще всего используются тиратроны или тиристоры. В маломощных электронных устройствах, требующих чаще всего питания низким напряжением при относительно больших токах, как правило, применяют тиристоры.

На рис. 6.16 представлена простейшая схема выпрямителя на тиристоре.


Рис. 6.16. Схема управляемого выпрямителя с тиристором:

1 — входное напряжение; 2 — ток в нагрузке; 3 — задержка по фазе

Схема работает следующим образом. Ток через нагрузку тиристора протекает только тогда, когда напряжение на аноде тиристора и управляющее напряжение на его затворе имеют соответствующие положительные значения. При подведении к тиристору синусоидального переменного напряжения протекание тока через нагрузку происходит только в течение положительной полуволны (однополупериодное выпрямление). Если затвор управляется синусоидальным напряжением, то время, в течение которого тиристор находится в состоянии пропускания, будет зависеть от фазового сдвига между переменным напряжением на аноде и на затворе. Если этот сдвиг равен нулю, то тиристор проводит в течение времени, соответствующего длительности почти всей положительной полуволны синусоидального напряжения. В этом случае среднее значение тока, протекающего через нагрузку, максимально. Если фазовый сдвиг между напряжениями увеличивается, то время отпирания тиристора уменьшается, поскольку отрезок времени, в течение которого напряжения на аноде и затворе одновременно положительны, сокращается. В связи с этим средний ток, протекающий через нагрузку, уменьшается. Регулировка фазового сдвига между напряжением, управляющим затвором, и входным напряжением, подведенным к тиристору, дает возможность регулировать протекающий через нагрузку ток и, следовательно, напряжение на этой нагрузке. Регулировку фазового сдвига осуществляют путем использования фазосдвигающих цепей типа LR или RC, в которых сопротивление резистора R устанавливается потребителем. В двухполупериодных выпрямительных схемах с регулировкой выходного тока необходимо использовать два тиристора.

Читайте также: