Уникальность солнечной системы кратко

Обновлено: 30.06.2024

Самое продолжительное исследование далеких планет показало, что Солнечная система вовсе не уникальна. Большинство планетных систем в Млечном Пути имеет похожее строение, а значит, может оказаться колыбелью жизни, считает научный обозреватель, кандидат физико-математических наук Анатолий Глянцев

Астрономы опубликовали результаты самого длительного исследования планетных систем. Наблюдая 719 звезд и 177 планет, ученые пришли к выводу, что большинство планетных систем похожи на Солнечную по весьма важному показателю: положению планет-гигантов. Именно удачное расположение этих исполинов когда-то позволило Земле стать благоприятным для жизни миром. Это значит, что и в системах других звезд могут существовать обитаемые планеты.

Охота за планетами

Экзопланетами называются планеты, которые обращаются не вокруг Солнца, а вокруг какой-нибудь другой звезды. Первые подобные объекты были открыты в 1990-х годах. На сегодня астрономам известно более 4700 далеких миров, и чуть ли не ежедневно открываются новые.

Правда, наши телескопы все еще слабоваты для того, чтобы экзопланеты можно было буквально увидеть. Лишь для немногих из них получены изображения, и то не в видимом свете, а в инфракрасных лучах. Но у исследователей есть способы обнаружить планету, не заставляя ее позировать.

Понятно, что оба метода работают тем лучше, чем больше планета. Массивный объект заслонит больше света и сильнее подействует на свою звезду гравитацией, чем миниатюрный. Еще один важный фактор — расстояние от экзопланеты до звезды. Чем больше дистанция, тем слабее гравитация планеты воздействует на светило.

Но есть еще одна причина, по которой расстояние от планеты до звезды очень важно. Чем ближе мир к своему солнцу, тем быстрее он обращается вокруг него. А наблюдателям нужно зафиксировать хотя бы несколько оборотов, чтобы убедиться, что обнаруженный сигнал периодически повторяется, то есть не является ошибкой в данных. Это верно как для метода транзитов, так и для метода лучевых скоростей.

Между тем один оборот вокруг Солнца у Юпитера занимает 12 лет, у Сатурна — 29 лет. Уран и Нептун обходят нашу звезду еще медленнее. Чтобы обнаружить все эти планеты нашими методами, инопланетянам пришлось бы непрерывно наблюдать Солнце в течение десятилетий. В таком же положении находятся и земные астрономы, ищущие экзопланеты. Вполне вероятно, что множество миров ускользает от нашего внимания просто потому, что мы недостаточно долго смотрим на их родительские звезды. Это печальное обстоятельство мешает специалистам разобраться в том, как устроены планетные системы, по каким законам они рождаются, живут и умирают.

Терпение и труд

Однако ученые могут переупрямить даже Вселенную. Тридцать лет назад стартовал проект California Legacy Survey, суть которого — долгие непрерывные наблюдения одних и тех же 719 звезд. Это не очень большая выборка, но она охватывает четыре класса звезд, вместе составляющих абсолютное большинство в Галактике. Так что можно надеяться, что сделанные выводы останутся справедливыми для сотен миллиардов солнц Млечного Пути.

Всего авторы зафиксировали 177 экзопланет. Только 14 из них были обнаружены впервые, а остальные 163 на момент публикации уже были известны науке. Но даже эти старые знакомцы были изучены куда более тщательно благодаря этому самому долгому в истории исследованию планетных систем. Три десятилетия наблюдений позволили отследить движение миров, тратящих долгие годы на один оборот вокруг звезды.

Самые миниатюрные из этих экзопланет массивнее Земли в три раза, а самые массивные — в 6000 раз (это почти 20 масс Юпитера).

Где живут великаны

Больше всего данных было собрано о планетах-гигантах с массой порядка массы Юпитера и выше, поскольку их проще обнаружить и исследовать. Подобные колоссы состоят в основном из газа, а не из твердых пород. Они не могут быть обитаемыми, хотя жизнь может обосноваться на их спутниках (эксперты не исключают наличия микробов на некоторых лунах Юпитера и Сатурна, где под слоем льда скрываются океаны жидкой воды). Однако роль гигантских планет в зарождении жизни может быть столь же грандиозной, как их размер. Согласно некоторым теориям, именно их гравитация помогла Земле сформироваться в своем нынешнем виде и обрести солидные запасы воды.

Неизвестно, сформировалась ли бы Земля в пригодную для жизни планету, если бы не тяготение двух гигантов, дирижировавшее потоками вещества в новорожденной Солнечной системе. Можно сказать, что Юпитер и Сатурн оказались в нужное время в нужном месте. Будь они дальше от Солнца или, наоборот, ближе к нему, судьба земного шара могла бы сложиться совсем иначе.

Именно поэтому астрономов интересует местоположение планет-гигантов в системах других звезд. Любопытно, что эра открытия экзопланет в свое время началась с горячих юпитеров — гигантов, расположенных ближе к своей звезде, чем Меркурий к Солнцу. Какое-то время они даже составляли большинство известных экзопланет. В Солнечной системе подобных объектов нет, и их открытие стало для ученых полной неожиданностью.

Недавно опубликованные данные California Legacy Survey окончательно поставили точку в вопросе, где живут планеты-гиганты. По подсчетам исследователей, на каждую сотню звезд приходится 12–16 гигантских экзопланет на расстоянии от 2 до 8 астрономических единиц (а.е.) от светила, и еще 7–12 миров-гигантов на дистанциях 8–32 а.е. Ближе или дальше от звезды космические колоссы встречаются значительно реже.

Напомним, что одна а.е. равна дистанции от Земли до Солнца. Юпитер находится в 5 а.е. от Солнца, Сатурн — в 10 а.е. Другими словами, местоположение планет-гигантов Солнечной системы совершенно типично. Значит ли это, что совершенно типична и Земля, некогда сформированная под действием гравитации Юпитера и Сатурна? Пока рано утверждать это с уверенностью, но надежда есть.

Команда California Legacy Survey продолжает накапливать данные. Более того, в 2022 году ожидается подключение к проекту нового инструмента, способного обнаруживать планеты массой с Землю. Так что через несколько лет мы можем узнать, есть ли по соседству с экзопланетами-гигантами миры, похожие на наш хотя бы размерами.

Варианты формирования планетных систем при разной плотности газового диска

Солнечная система была рождена в особых условиях, чтобы стать тем спокойным местом, которое мы видим. Огромное большинство других планетных систем не соответствовало в момент появления этим особым условиям и очень сильно отличаются.

Большинство прежних теоретических моделей, объясняющих формирование Солнечной системы из протопланетного газопылевого диска, строились на предположении, что наша система является "средней" во всех отношениях.

В последние десятилетия было открыто около 300 экзопланет - планет, обращающихся вокруг других звезд. Обобщив эти данные, астрономы из американского Северо-Западного университета (штат Иллинойс) и канадского университета Гуэлф, пришли к выводу, что Солнечная система является во многом уникальным случаем и что для ее формирования нужны совершенно особые условия.

"Солнечная система была рождена в особых условиях, чтобы стать тем спокойным местом, которое мы видим. Огромное большинство других планетных систем не соответствовало в момент появления этим особым условиям и очень сильно отличаются", - говорит ведущий автор исследования, профессор астрономии Фредерик Расио (Frederic Rasio), слова которого цитируются в пресс-релизе Северо-Западного университета.

Астрономы впервые создали компьютерную модель всего процесса формирования планетной системы с начала до конца - с образования газопылевого диска, который остается после формирования центрального светила, до появления полноценных планет.

До 1990-х годов планеты Солнечной системы были единственными, которые были известны, и астрономы не имели оснований считать нашу систему чем-то необычным, но после открытия экзопланет ситуация изменилась.

"Теперь мы знаем, что другие планетные системы совсем не похожи на Солнечную систему", - говорит ведущий автор исследования, профессор астрономии Фредерик Расио (Frederic Rasio) из Северо-Западного университета.

"Форма орбит экзопланет вытянутая, а не круговая. Планеты оказываются не там, где мы ожидаем их увидеть. Многие подобные Юпитеру планеты-гиганты, известные как "горячие юпитеры", оказываются так близко к звездам, что обращаются вокруг них за несколько дней. Очевидно, нам необходимо освежить наши представления о процессе формирования планет в связи с тем огромным разнообразием планет, которое мы видим теперь", - добавляет Расио.

Моделирование показало, что газовый диск, из которого образуются планеты, безжалостно толкает их к центральной звезде, из-за чего они могут сталкиваться друг с другом. Среди растущих планет идет жесткая конкуренция за газ, в результате этого хаотического процесса появляется большое разнообразие масс планет. По мере сближения планет друг с другом, они часто попадают в гравитационный резонанс, что превращает их орбиты в эллиптические. Некоторые планеты в результате могут быть выброшены из планетной системы в космос.

"Такая бурная история оставляет очень мало шансов для образования спокойной Солнечной системы, подобной нашей, и наши модели подтверждают это. Должны быть точно соблюдены определенные условия, чтобы солнечная система появилась", - говорит ученый.

Слишком массивный газовый диск, например, приводит к появлению "горячих юпитеров" и тел на эллиптических орбитах. Слишком легкий диск - к образованию "ледяных гигантов", подобных Нептуну, с небольшим содержанием газа.

"Теперь мы лучше понимаем процесс формирования планет и можем объяснить свойства странных экзопланет, которые мы наблюдаем. Мы также знаем, что наша Солнечная система - особенная, и понимаем, что делает ее особенной", - сказал Расио.

Американские и канадские ученые с помощью компьютерного моделирования доказали, что для формирования Солнечной системы были необходимы уникальные условия, и она представляет собой совершенно особый случай среди других планетных систем.

Уникальность Солнечной системы

Большинство прежних теоретических моделей, объясняющих формирование Солнечной системы из протопланетного газопылевого диска, строились на предположении, что наша система является "средней" во всех отношениях.

В последние десятилетия было открыто около 300 экзопланет - планет, обращающихся вокруг других звезд. Обобщив эти данные, астрономы из американского Северо-Западного университета (штат Иллинойс) и канадского университета Гуэлф, пришли к выводу, что Солнечная система является во многом уникальным случаем и что для ее формирования нужны совершенно особые условия.

"Солнечная система была рождена в особых условиях, чтобы стать тем спокойным местом, которое мы видим. Огромное большинство других планетных систем не соответствовало в момент появления этим особым условиям и очень сильно отличаются", - говорит ведущий автор исследования, профессор астрономии Фредерик Расио (Frederic Rasio), слова которого цитируются в пресс-релизе Северо-Западного университета.

Астрономы впервые создали компьютерную модель всего процесса формирования планетной системы с начала до конца - с образования газопылевого диска, который остается после формирования центрального светила, до появления полноценных планет.

До 1990-х годов планеты Солнечной системы были единственными, которые были известны, и астрономы не имели оснований считать нашу систему чем-то необычным, но после открытия экзопланет ситуация изменилась.

"Теперь мы знаем, что другие планетные системы совсем не похожи на Солнечную систему", - говорит ведущий автор исследования, профессор астрономии Фредерик Расио (Frederic Rasio) из Северо-Западного университета.

"Форма орбит экзопланет вытянутая, а не круговая. Планеты оказываются не там, где мы ожидаем их увидеть. Многие подобные Юпитеру планеты-гиганты, известные как "горячие юпитеры", оказываются так близко к звездам, что обращаются вокруг них за несколько дней. Очевидно, нам необходимо освежить наши представления о процессе формирования планет в связи с тем огромным разнообразием планет, которое мы видим теперь", - добавляет Расио.

Моделирование показало, что газовый диск, из которого образуются планеты, безжалостно толкает их к центральной звезде, из-за чего они могут сталкиваться друг с другом. Среди растущих планет идет жесткая конкуренция за газ, в результате этого хаотического процесса появляется большое разнообразие масс планет. По мере сближения планет друг с другом, они часто попадают в гравитационный резонанс, что превращает их орбиты в эллиптические. Некоторые планеты в результате могут быть выброшены из планетной системы в космос.

"Такая бурная история оставляет очень мало шансов для образования спокойной Солнечной системы, подобной нашей, и наши модели подтверждают это. Должны быть точно соблюдены определенные условия, чтобы солнечная система появилась", - говорит ученый.

Слишком массивный газовый диск, например, приводит к появлению "горячих юпитеров" и тел на эллиптических орбитах. Слишком легкий диск - к образованию "ледяных гигантов", подобных Нептуну, с небольшим содержанием газа.

"Теперь мы лучше понимаем процесс формирования планет и можем объяснить свойства странных экзопланет, которые мы наблюдаем. Мы также знаем, что наша Солнечная система - особенная, и понимаем, что делает ее особенной", - сказал Расио.

Солнечная система оказалась одновременно типичной и уникальной.

Распределение исследованных систем по количеству планет.
Иллюстрация Nanna Bach-Moller, Uffe G. Jorgensen/Monthly Notices of the Royal Astronomical Society (2020).

Закон, связывающий эксцентриситет орбит с количеством планет. Масштаб по обеим осям логарифмический.

Закон, связывающий эксцентриситет орбит с количеством планет. Масштаб по обеим осям логарифмический.
Иллюстрация Nanna Bach-Moller, Uffe G. Jorgensen/Monthly Notices of the Royal Astronomical Society (2020).

Солнечная система оказалась одновременно типичной и уникальной.

Распределение исследованных систем по количеству планет.

Закон, связывающий эксцентриситет орбит с количеством планет. Масштаб по обеим осям логарифмический.

Учёные получили ответ на давно мучивший их вопрос: почему орбиты планет Солнечной системы почти круговые? Это свойство долго считалось удивительным, но оказалось лишь проявлением всеобщего закона. Однако причины считать Солнечную систему уникальной всё равно есть.

Как известно, планеты обращаются вокруг звёзд по эллипсам. Эллипсы бывают более вытянутыми (больше похожими на овал) или менее вытянутыми (больше похожими на окружность). Чтобы измерять, насколько "более" превосходит "менее", математики придумали специальную величину – эксцентриситет. Чем больше эксцентриситет, тем больше эллипс вытянут. Так, у окружности (совершенно невытянутого эллипса) эксцентриситет равен нулю.

Орбиты планет Солнечной системы почти не отличаются от круговых, то есть имеют почти нулевой эксцентриситет. Когда астрономы стали массово открывать другие планетные системы, выяснилось, что это совершенно не типичная ситуация. Обычно миры обращаются вокруг звёзд по куда более вытянутым эллиптическим траекториям.

С другой стороны, семья Солнца уникальна обилием планет: их восемь. Астрономам известно крайне мало настолько богатых систем. Связаны ли между собой две эти странности? Этим вопросом и задались авторы нового исследования.

Они взяли за основу каталог экзопланет с сайта exoplanet.eu по состоянию на август 2019 года. В этот каталог попадают все планеты, существование которых подтверждено несколькими независимыми наблюдениями.

Экспертов интересовали только миры, для которых известно значение эксцентриситета орбиты. Таких нашлась 1171 штука в 895 системах. Из этих систем 75% были однопланетными, ещё 17% – двухпланетными. В 45 системах нашлось по три планеты, а в 20 системах – по четыре. Также в выборку попали четыре пятипланетные, шесть шестипланетных и по одной семи- и восьмипланетной системе.


Авторы оговариваются, что на самом деле в любой из этих систем может быть больше миров, чем нам известно. Ведь обычные методы поиска экзопланет требуют наблюдать за родительской звездой хотя бы в течение трёх оборотов планеты, а для миров с длинным "годом" это проблематично. Кроме того, астрономам всё ещё сложно обнаруживать экзопланеты, которые существенно меньше Земли.

Что, если бы Солнечная система наблюдалась извне, скажем, три года? К слову, обычно период наблюдений гораздо короче. Инопланетные астрономы обнаружили бы в ней не восемь, а только три планеты: Меркурий, Венеру и Землю. А если бы не сумели засечь Меркурий из-за его скромных размеров, то и две. Так что "недонаселённость" экзопланетных систем по сравнению с Солнечной может быть лишь следствием недостаточно долгих наблюдений.

Тем не менее для начала можно предположить, что в каждой системе ровно столько миров, сколько нам известно. Исходя из этого, авторы обнаружили интересную закономерность.

Эксцентриситет планетных орбит подчинялся весьма чёткому математическому закону (степенному). Проще говоря, чем больше в системе планет, тем менее вытянуты их орбиты. Это правило не зависит от размеров планет в системе, метода их обнаружения и других параметров. Учёные также отмечают, что именно такая закономерность была получена в некоторых моделях образования планетных систем.


Открытому авторами закону подчиняются все известные мультипланетные системы. А вот однопланетные (которых, напомним, 75%) "вываливаются" из общей картины. Учёные говорят, что причина может быть в том, что не все эти системы в действительности однопланетные. В них могут быть неоткрытые миры. Видимо, обнаруженную закономерность придётся не раз перепроверять по мере накопления данных.

Но если она всё же верна, получается следующая картина. Удивительная почти круговая форма планетных орбит – не случайность. Это проявление закона: чем больше планет, тем больше орбиты похожи на окружности. При этом всего 1% известных нам планетных систем могут сравниться с Солнечной по количеству миров. Поэтому и неудивительно, что "солнечная" форма орбит встречается так редко.

Подробности исследования изложены в научной статье, опубликованной в журнале Monthly Notices of the Royal Astronomical Society.

Читайте также: