Супер эвм назначение возможности принципы построения кратко

Обновлено: 05.07.2024

Супер-ЭВМ — мощные, высокоскоростные вычислительные машины (системы) с производительностью от десятков GFLOPS до нескольких PFLOPS. Супер-ЭВМ выгодно отличаются от больших универсальных ЭВМ по быстродействию числовой обработки, а от специализированных машин, обладающих высоким быстродействием в сугубо ограниченных областях, возможностью решения широкого класса задач с числовыми расчетами.

Развитие суперкомпьютеров идет по следующим направлениям: векторно-конвейерные компьютеры, параллельные компьютеры с общей памятью, массивно-параллельные системы с распределенной памятью, кластерные системы.

Два раза в год формируется официальный список пятисот самых мощных суперкомпьютеров мира – Top500.

В мае 2010 года список Top500 возглавила система Jaguar – Cray XT5-HE, показавшая максимальную производительность в 1,759 PFLOPS (пиковая производительность – 2,331 PFLOPS), созданная американской фирмой Cray Inc. Эта система разработана на шестиядерных процессорах AMD Opteron. На втором месте впервые оказалась китайская система Nebulae компании Dawning с производительностью 1,27 PFLOPS(пиковая - 2,98 PFLOPS). Замыкает тройку лидеров кластер IBM Roadrummer, созданный на блэйд-серверах Blade Center QS22 и процессорах Power X Cell 8i, с максимальной производительностью 1,042 PFLOPS (пиковая производительность 1,375 PFLOPS.

Функциональные возможности, назначение, платформы рабочих станций.

Рабочая станция—однопользовательская система с мощным одним или несколькими процессорами и многозадачной ОС, имеющая развитую графику с высоким разрешением, большую дисковую и оперативную память и встроенные сетевые средства. Ориентация на корпоративное использование и на профессионального пользователя позволяет во многих случаях применять более совершенные и дорогостоящие аппаратные средства.

Рабочие станции, используют те же процессоры и практически не отличаются от ПК по внешнему виду. Однако, присутствует поддержка профессиональной двух- и трехмерной графики и многодисковых конфигураций, большой объем и быстродействие жесткого диска, использование двух процессоров (в старших моделях), применение памяти с коррекцией ошибок. Благодаря этому у них выше производительность, надежность и больше графических возможностей, чем у ПК.

Классификация микро-ЭВМ

Серверы - компьютеры, выполняющие служебные функции в сети(хранение файлов и обеспечение доступа к ним пользователей (клиентов), маршрутизация потоков данных, управление печатью сетевого принтера, обработка писем электронной почты, рассылка факсов и т.д.)

Рабочие станции - однопользовательская система с мощным одним или несколькими процессорами и многозадачной ОС, имеющая развитую графику с высоким разрешением, большую дисковую и оперативную память и встроенные сетевые средства. Ориентируются на профессиональных пользователей.

Персональные компьютеры - однопользовательские микро-ЭВМ, удовлетворяющие требованиям общедоступности и универсальности применения. большинство ПК базируется на х86 процессорах с основной операционной системой из семейства Windows. Эта платформа процессоров является самой распространенной, демократичной, дешевой и универсальной.

Встраиваемые и промышленные компьютеры - входят составным элементом в промышленные и транспортные системы, технические устройства и аппараты, бытовые приборы. Они способствуют существенному повышению их эффективности функционирования, улучшению технико-экономических и эксплуатационных характеристик. В области мобильных и малогабаритных аппаратов традиционно применяются специализированные процессоры, такие как RISC-системы с архитектурой ARM, энергопотребление которых находится на уровне 3 Вт.

Классификация серверов

Файл серверы –хранение данных

Серверы приложений -используются для баз данных и поддержки документооборота

FTP-серверы - для удаленного доступа к данным через Internet

Серверы внешних устройств - печати, сканирования, факсимильной связи

Web-серверы –хостинг web-сайтов

Блэйд-серверы -это модульная одноплатная компьютерная система, включающая процессор и память.

Блэйд-серверы

Организация блейд-серверов основывается на концепции адаптивной инфраструктуры, которая предусматривает гибкость, экономичность и оперативность подстройки под быстро меняющиеся требования пользователей. Blade-сервер – это модульная одноплатная компьютерная система, включающая процессор и память. Лезвия вставляются в шасси с объединительной панелью, обеспечивающей им подключение к сети и подачу электропитания. Это шасси с лезвиями является Blade-системой. Оно выполнено в конструктиве для установки в стандартную 19-дюймовую стойку и занимает в ней 3U, 6U или 10 U. За счет общего использования таких компонентов, как источники питания, сетевые карты, жесткие диски и блоки охлаждения, Blade-серверы обеспечивают более высокую плотность размещения вычислительной мощности в стойке по сравнению с обычными тонкими серверами высотой 1U и 2U.

Преимущества Blade-серверов:

- уменьшение занимаемого объема;

- уменьшение энергопотребления и выделяемого тепла;

- уменьшение стоимости и повышение надежности системы питания и охлаждения;

Фото: Unsplash

Четверть века назад суперкомпьютеры обладали вычислительной мощностью современного смартфона. Объясняем, почему суперкомпьютер — это не просто большая и сверхбыстрая ЭВМ, и каково может быть их будущее развитие

Какой компьютер является мощнейшим на сегодняшний день?

В конце июня 2020 года был опубликован ежегодный рейтинг из 500 самых мощных суперкомпьютеров в мире. Первую строчку в нем занял японский Fugaku. Он в 2,8 раз мощнее, чем прошлогодний лидер — Summit от IBM (он теперь на втором месте). Впервые рейтинг возглавил компьютер на базе процессоров ARM.

Fugaku разработала компания Fujitsu — та самая, что выпускала популярную фото- и видеотехнику Fuji. Разработки велись на базе Института Кобе в составе Института физико-химических исследований (RIKEN). Концепцию придумали еще в 2010 году, а на создание и сборку ушло более шести лет.

Пишут, что Fugaku сможет помочь в борьбе с коронавирусом. Но на самом деле суперкомпьютеры способны решать самые амбициозные задачи, которые приходят нам в голову.

Чем суперкомпьютер отличается от обычного?

Для этого им нужны тысячи супермощных процессоров. В результате вычисления, на которые у мощного игрового компьютера уйдет неделя, суперкомпьютер выполняет за день. Однако важно, чтобы программы работали корректно, с учетом технических особенностей машины. Иначе то, что корректно работает на 100 процессорах, сильно замедлится на 200.

Современные смартфоны работают так же быстро, как самый мощный суперкомпьютер 1994 года.

Суперкомпьютеры работают на специальном ПО. Например, у Fugaku операционная система Red Hat Enterprise Linux 8 c гибридным ядром, состоящим из одновременно работающих ядер Linux и McKernel. В качестве программных средств используют API — то есть интерфейсы или платформы для программирования — и открытое ПО, которое позволяет создавать виртуальные суперкомпьютеры на базе обычных. Часто суперкомпьютер — это несколько высокомощных компьютеров, которые объединены высокоскоростной локальной сетью.

Обычно производительность компьютеров оценивается во флопсах (FLOPS — FLoating-point Operations Per Second) — то есть количестве операций над числами с плавающей точкой в секунду. Для суперкомпьютеров сначала использовали мегафлопсы — MIPS, количество миллионов операций в секунду, а с 2008 года петафлопсы — то есть количество миллионов миллиардов вычислений в секунду. К примеру, у суперкомпьютера Fugaku производительность составляет 415 петафлопс, а у Summit — 148.

Кто придумал суперкомпьютер?

Первой супер-ЭВМ считают Cray-1, созданную в 1974 году. Ее разработал Сеймур Крей — американский инженер в области вычислительной техники и основатель компании Cray Research. Cray-1 выполняла до 180 млн операций в секунду.

За основу Крэй уже имеющиеся разработки — компьютеры CDC 8600 и CDC STAR-100. Он построил процессор, который быстро выполнял и скалярные и векторные вычисления: предшественники хорошо справлялись либо с первыми, либо со вторыми.

Скалярные вычисления — те, где используется одна характеристика, величина и знак. В векторных используют вектора, то есть величину и направление (угол).

Cray-1 впервые презентовали в 1975-м, и за нее тут же начали биться ведущие лаборатории США, занимающиеся сложными вычислениями. В 1977-м компьютер достался Национальному центру атмосферных исследований, где проработал 12 лет. Cray-1 можно было арендовать для работы за $7 500 в час или $210 тыс. в месяц.

В 1980-х годах Крэй выпустил еще две модели суперкомпьютеров нового поколения, включая многопроцессорный Cray X-MP. Начиная с 1990-х лидерство перехватили NEC, Hewlett-Packard и IBM, причем компьютеры последней регулярно занимают верхние строчки того самого ТОП-500.

Где и для чего используют суперкомпьютеры?

Главная задача суперкомпьютеров — выполнять максимум вычислений за минимум времени. Это полезно для многих областей: начиная от создания лекарств и заканчивая разработками новых продуктов и технологий,

Есть суперкомпьютеры, которые работают с одним-единственным приложением, которое задействует всю память. Например, для прогнозирования изменений погоды и климата или моделей ядерных испытаний. В будущем это позволит отказаться от реальных испытаний опасного оружия и исключить риски взрывов или утечек при долгом хранении.

Великобритания выделит $1,6 млрд на создание мощнейшего в мире суперкомпьютера для прогнозирования погоды и климатических изменений.

Министерство энергетики США и Аргоннская национальная лаборатория, совместно с Intel и Cray, обещают в 2021 году представить суперкомпьютер Aurora для исследований в области ядерного оружия. Он будет выполнять 1 квинтиллион операций в секунду и обойдется в $500 млн.

Но суперкомпьютеры не просто вычисляют, а моделируют реальность. То есть просчитывают все возможные варианты развития событий и строят прогнозы. Поэтому с их помощью астрономы и астрофизики воспроизводят самые разные события и процессы во Вселенной.

В марте этого года астрономы из Технологического университета Суинберна (Австралия) и Калифорнийского технологического университета (США) смоделировали на суперкомпьютере эволюцию Млечного Пути. Для этого они использовали все данные о звездных скоплениях в нашей галактике.

Нанокомпьютер, квантовый компьютер и суперкомпьютер: в чем разница?

Все это — вычислительные устройства с выдающимися характеристиками.

Нанокомпьютер — это компьютер микроскопических размеров. Он запрограммирован на определенные химические свойства и поведение. Он может быть очень мощным и высокопроизводительным, но пока что не таким, как суперкомпьютер. В будущем они смогут заменить обычные устройства, так как потребляют намного меньше энергии.

Группа инженеров и ученых из Гарвардского университета и компании Mitre создала простейший нанокомпьютер, который состоит из множества крошечных проводников диаметром 15 нанометров (нанометр = 1 миллиардная метра). Их ядро из германия, а внешняя оболочка — из кремния.

Свой нанокомпьютер есть и у IBM, но уже покрупнее: 1х1 мм. Это полноценный ПК с процессором, памятью и блоком питания. По производительности его можно сравнить с x86-совместимыми процессорами из 1990-х годов. Его можно будет применять для работы с ИИ, сортировки данных, логистики, обнаружения краж.

Квантовый компьютер — это устройство, которое работает по принципам квантовой механики. Он обрабатывает данные не в битах, а в кубитах, которые одновременно равны 0 и 1. В теории, такой компьютер может обрабатывать все возможные состояния одновременно.

Какое будущее ждет суперкомпьютеры?

Очевидно, что производительность суперкомпьютеров будет разгоняться до космических цифр, их размеры — уменьшаться, а потребление энергии — сокращаться. Но самое интересное кроется в задачах, которые они смогут решать.

Эксперты считают, что через 15 лет симуляции отойдут на второй план, а машинное обучение позволит суперкомпьютерам выполнять глубокую аналитику данных. В итоге их будут применять везде: от разработки бесконечных аккумуляторов до лекарства от рака.

Суперкомпьютером называют такую ЭВМ, которая по производительности и другим техническим характеристикам намного превосходит другие, существующие в данный момент. В состав такой ЭВМ входит несколько процессоров. Еще одной отличительной характеристикой таких вычислительных устройств является использование векторной арифметики, то есть они могут выполнять арифметические действия одновременно над несколькими парами чисел. Например, типичный суперкомпьютер может одновременно рассчитывать заработную плату нескольких работников, тогда как обычный компьютер за то же время посчитает зарплату только одного сотрудника.

История супер-ЭВМ: появление суперкомпьютеров в 1960-х гг.

Вам будет интересно: Как узнать чипсет материнской платы: все возможные способы

Первый суперкомпьютер был создан в компании Control Data Corporation (CDC) под руководством Сеймура Крея. Одним из первых разработанных в данной фирме компьютеров был Cray CDC 1604. В нем были заменены вакуумные электронные лампы транзисторами, он быстро завоевал популярность в научных лабораториях. Позже компания CDC разработала супер-ЭВМ CDC 7600 и начала работы над CDC 8600. В 1964 г. самым быстрым компьютером на Земле стал Stretch, который мог выполнять три миллиона операций с плавающей запятой в секунду (FLOPS).

ENIAC - самый первый компьютер

Вам будет интересно: Разгон FX - 8320E. Общий алгоритм реализации

Одним из преимуществ ЭВМ, разработанных под руководством Сеймура Крея, была плотная упаковка электронных компонентов, благодаря чему увеличивалась производительность компьютеров. Все компьютеры Сеймура Крея были оптимизированы для требовательных научных приложений, например, решения дифференциальных уравнений, матричных вычислений, сейсмического анализа, линейного программирования и других подобных задач.

Суперкомпьютеры Cray в 1970-х гг.

Одним из пионеров многопроцессорных вычислений был Cray X-MP, представленный в 1982 г., который связал два компьютера Cray-1. Он также был первым ЭВМ, реализующим векторные вычисления.

Кроме этого, в 1970-х гг. появились первые 32-битные супер-мини-ЭВМ.

Развитие суперкомпьютеров в 1980-х гг.

В 1985 г. компания Cray Research представила четырехъядерный компьютер Cray-2. Он стал первым вычислительным устройством, производительность которого превысила один миллиард FLOPS.

Вам будет интересно: МФУ Xerox WorkCentre 3025BI: отзывы владельцев, описание и характеристики

Супер ЭВМ Cray-2

В 1983 г. Даниэль Хиллис, аспирант Массачусетского технологического института, придумал, как можно повысить производительность многопроцессорных систем, относящихся к 4 поколению ЭВМ. И в том же году он стал соучредителем компании Thinking Machines Corporation. В 1985 г. данная компания разработала свой первый компьютер CM-1. Он использовал 65 536 недорогих однобитовых процессоров, которые были сгруппированы по 16 шт. на одном чипе. Производительность компьютера CM-1 в некоторых операциях достигала нескольких миллиардов FLOPS и была сопоставима с самым быстрым на тот момент суперкомпьютером Cray.

Дальнейшее развитие суперкомпьютеров в 1990-х - начале 2000-х гг.

Важными заказчиками супер-ЭВМ были военные. После подписания Соединенными Штатами Договора о всеобъемлющем запрещении ядерных испытаний в 1996 г. возникла необходимость в альтернативной программе сертификации ядерных боеголовок. Поэтому Департамент энергетики США выделил деньги на новую программу развития суперкомпьютеров, целью которой стала разработка к 2004 г. компьютера, способного имитировать ядерные испытания. Эта ЭВМ должна иметь производительность более 100 триллионов FLOPS, а самым быстрым из существующих компьютеров в то время был Cray T3E, с производительностью до 150 миллиардов FLOPS. Суперкомпьютер ASCI Red, построенный в Национальных лабораториях Sandia в Альбукерке, совместно с корпорацией Intel, первым достиг 1 TFLOPS. В нем было задействовано 9 072 стандартных процессоров Pentium Pro.

Японский суперкомпьютер

В то время как в Соединенных Штатах преобладал многопроцессорный подход, в Японии корпорация NEC вернулась к более старому подходу — к индивидуальному проектированию компьютерного чипа. Сделанный этой корпорацией, компьютер Earth Simulator занял первое место в списке самых производительных ЭВМ в 2002 г.

Современные ЭВМ

В 2004 г. самым быстрым суперкомпьютером стал Blue Gene/L, выпущенный компанией IBM. Его производительность была примерно равна 36 TFLOPS. После двух удвоений в количестве процессоров Blue Gene/L, установленный в 2005 г. в Sandia National Laboratories в Ливерморе, Калифорния, стал первой машиной, преодолевшей барьер производительности в 100 TFLOPS.

Первый компьютер, производительность которого превысила 1000 TFLOPS или 1 петафлоп, был построен IBM в 2008 г.

Применение суперкомпьютеров

Супер-ЭВМ применяются в научной сфере для выполнения трудоемких вычислений и обработки большого количества информации в реальном времени. Кроме этого, прогресс в области вычислительной техники позволил ученым использовать точные модели происходящих процессов, вместо упрощенных, использовавшихся ранее.

В математике при помощи суперкомпьютеров решаются задачи криптографии и статистики. В физике они помогают понять процессы, происходящие внутри атома. Биологам супер-ЭВМ помогают расшифровать ДНК. Также они незаменимы при составлении прогноза погоды, исследовании изменений климата Земли и поиске залежей нефти и газа. Также суперкомпьютеры используются для выполнения военных расчетов, связанных с ядерным оружием.

Использование мощных вычислительных машин позволило осуществить ряд прорывов в таких областях, как метеорология, глобальный климатический анализ, создание новых медицинских препаратов и аэрокосмическая техника.

Обзор суперкомпьютеров

При разговоре о сверхмощных ЭВМ часто возникает вопрос: "Какой компьютер самый быстрый?" Ответ на этот вопрос может дать рейтинг 10-ти наиболее мощных суперкомпьютеров. В данном рейтинге представлены самые новые компьютеры.

Заключение

Развитие супер-ЭВМ оказало большое влияние на многие области науки и промышленности. На данный момент самым большим препятствием, затрудняющим раскрытие всего вычислительного потенциала таких устройств, являются трудности с написанием программ, которые могли бы одновременно загрузить все имеющиеся у суперкомпьютера процессоры на полную мощность. Это происходит, потому что написать программу, которая бы эффективно разбивала вычислительную задачу на несколько потоков, намного сложнее, чем ту, которая будет выполняться последовательно на одном процессоре. Да и не каждая задача поддается такому распараллеливанию. Вот и все, что нужно знать о супер-ЭВМ, назначении, возможностях и принципах построения этих компьютеров.

СУПЕР-ЭВМ, слайд №1
СУПЕР-ЭВМ, слайд №2
СУПЕР-ЭВМ, слайд №3
СУПЕР-ЭВМ, слайд №4
СУПЕР-ЭВМ, слайд №5
СУПЕР-ЭВМ, слайд №6
СУПЕР-ЭВМ, слайд №7
СУПЕР-ЭВМ, слайд №8

Вы можете ознакомиться и скачать СУПЕР-ЭВМ. Презентация содержит 8 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

 СУПЕР-ЭВМ

Слайд 1

 Супер-ЭВМ это достаточно гибкий и очень широкий термин. В общем понимании супер-ЭВМ это компьютер значительно мощнее всех имеющихся доступных на рынке компьютеров. Термин супер-ЭВМ в 60-х годах. Но получил широкое распространение во многом благодаря Сеймуру Крея и его супер-ЭВМ Cray-1, Cray-2. Супер-ЭВМ это достаточно гибкий и очень широкий термин. В общем понимании супер-ЭВМ это компьютер значительно мощнее всех имеющихся доступных на рынке компьютеров. Термин супер-ЭВМ в 60-х годах. Но получил широкое распространение во многом благодаря Сеймуру Крея и его супер-ЭВМ Cray-1, Cray-2. Cray-1 принято считать одним из первых супер-ЭВМ

Слайд 2

Супер-ЭВМ это достаточно гибкий и очень широкий термин. В общем понимании супер-ЭВМ это компьютер значительно мощнее всех имеющихся доступных на рынке компьютеров. Термин супер-ЭВМ в 60-х годах. Но получил широкое распространение во многом благодаря Сеймуру Крея и его супер-ЭВМ Cray-1, Cray-2. Супер-ЭВМ это достаточно гибкий и очень широкий термин. В общем понимании супер-ЭВМ это компьютер значительно мощнее всех имеющихся доступных на рынке компьютеров. Термин супер-ЭВМ в 60-х годах. Но получил широкое распространение во многом благодаря Сеймуру Крея и его супер-ЭВМ Cray-1, Cray-2. Cray-1 принято считать одним из первых супер-ЭВМ

 В самом начале появления супер-ЭВМ было связано с потребностью быстрой обработки больших массивов данных и сложных математически - аналитических вычислениях. Поэтому первые суперкомпьютеры по своей архитектуре мало отличались от обычных ЭВМ. Только их мощность была во много раз больше стандартных рабочих станций. Изначально супер-ЭВМ оснащались векторными процессорами, обычные скалярными. К 80-м перешли на параллельную работу нескольких векторных процессоров. Но данный путь развития оказался не рациональным. Супер-ЭВМ перешли на параллельно работающие скалярные процессоры. Массивно-параллельные процессоры стали базой для супер-ЭВМ. Тысячи процессорных элементов объединялись создавая мощную платформу для вычислений. В самом начале появления супер-ЭВМ было связано с потребностью быстрой обработки больших массивов данных и сложных математически - аналитических вычислениях. Поэтому первые суперкомпьютеры по своей архитектуре мало отличались от обычных ЭВМ. Только их мощность была во много раз больше стандартных рабочих станций. Изначально супер-ЭВМ оснащались векторными процессорами, обычные скалярными. К 80-м перешли на параллельную работу нескольких векторных процессоров. Но данный путь развития оказался не рациональным. Супер-ЭВМ перешли на параллельно работающие скалярные процессоры. Массивно-параллельные процессоры стали базой для супер-ЭВМ. Тысячи процессорных элементов объединялись создавая мощную платформу для вычислений.

Слайд 3

В самом начале появления супер-ЭВМ было связано с потребностью быстрой обработки больших массивов данных и сложных математически - аналитических вычислениях. Поэтому первые суперкомпьютеры по своей архитектуре мало отличались от обычных ЭВМ. Только их мощность была во много раз больше стандартных рабочих станций. Изначально супер-ЭВМ оснащались векторными процессорами, обычные скалярными. К 80-м перешли на параллельную работу нескольких векторных процессоров. Но данный путь развития оказался не рациональным. Супер-ЭВМ перешли на параллельно работающие скалярные процессоры. Массивно-параллельные процессоры стали базой для супер-ЭВМ. Тысячи процессорных элементов объединялись создавая мощную платформу для вычислений. В самом начале появления супер-ЭВМ было связано с потребностью быстрой обработки больших массивов данных и сложных математически - аналитических вычислениях. Поэтому первые суперкомпьютеры по своей архитектуре мало отличались от обычных ЭВМ. Только их мощность была во много раз больше стандартных рабочих станций. Изначально супер-ЭВМ оснащались векторными процессорами, обычные скалярными. К 80-м перешли на параллельную работу нескольких векторных процессоров. Но данный путь развития оказался не рациональным. Супер-ЭВМ перешли на параллельно работающие скалярные процессоры. Массивно-параллельные процессоры стали базой для супер-ЭВМ. Тысячи процессорных элементов объединялись создавая мощную платформу для вычислений.

СУПЕР-ЭВМ, слайд №4

Слайд 4

Читайте также: