Современные достижения микробиологии кратко

Обновлено: 02.07.2024

Микроорганизмы представляют собой самую большую группу живых существ на Земле, и ее члены распространены повсеместно.

Место микробиологии в системе биологических наук определяется спецификой ее объектов, которые, с одной стороны, в большинстве своем представляют собой одну клетку, а с другой – являются полноценным организмом. Как наука об определенном классе объектов и их разнообразии микробиология аналогична таким дисциплинам, как ботаника и зоология. В то же время она относится к физиолого-биохимической ветви биологических дисциплин, так как изучает функциональные возможности микроорганизмов, их взаимодействие с окружающей средой и другими организмами. И наконец, микробиология – это наука, исследующая общие фундаментальные законы существования всего живого, явления на стыке одно- и многоклеточности, развивающая представления об эволюции живых организмов.

Содержание

↑Значение микроорганизмов в природных процессах и человеческой деятельности

Роль микробиологии определяется значением микроорганизмов в природных процессах и в человеческой деятельности. Именно они обеспечивают протекание глобального круговорота элементов на нашей планете. Такие его стадии, как фиксация молекулярного азота, денитрификация или минерализация сложных органических веществ, были бы невозможны без участия микроорганизмов. На деятельности микроорганизмов основан целый ряд необходимых человеку производств продуктов питания, различных химических веществ, лекарственных препаратов и т.д. Микроорганизмы используются для очистки окружающей среды от различных природных и антропогенных загрязнений. В то же время многие микроорганизмы являются возбудителями заболеваний человека, животных, растений, а также вызывают порчу продуктов питания и различных промышленных материалов. Представители других научных дисциплин часто используют микроорганизмы в качестве инструментов и модельных систем при проведении экспериментов.

↑История микробиологии

Физиологический этап развития микробиологии начался приблизительно с середины 19-го века и связан он с работами французского химика-кристаллографа Луи Пастера (1822-1895) и немецкого сельского врача Роберта Коха (1843-1910). Эти ученые положили начало экспериментальной микробиологии и существенно обогатили методологический арсенал этой науки.

Исследуя другие виды брожения, Пастер показал, что каждое брожение имеет главный конечный продукт и вызывается микроорганизмами определенного типа. Эти исследования привели к открытию неизвестного ранее образа жизни - анаэробного (бескислородного) метаболизма, при котором кислород не только не нужен, но и часто вреден для микроорганизмов. В то же время для значительного числа аэробных микроорганизмов кислород является необходимым условием их существования. Изучая на примере дрожжей возможность переключения с одного типа обмена веществ на другой, Л.Пастер показал, что анаэробный метаболизм энергетически менее выгоден. Микроорганизмы, способные к такому переключению, он назвал факультативными анаэробами.

Роберт Кох, начав с доказательства бактериальной этиологии сибирской язвы, затем выделил возбудителей многих болезней в чистой культуре. В своих экспериментах он использовал мелких подопытных животных, а также наблюдал под микроскопом развитие бактериальных клеток в кусочках тканей зараженных мышей. Кохом были разработаны способы выращивания бактерий вне организма, различные методы окраски препаратов для микроскопии и предложена схема получения чистых культур микроорганизмов на твердых средах в виде отдельных колоний. Эти простые приемы до сих пор используются микробиологами всего мира. Кох окончательно сформулировал и экспериментально подтвердил постулаты, доказывающие микробное происхождение заболевания:

  1. микроорганизм должен присутствовать в материале больного;
  2. выделенный в чистой культуре, он должен вызывать ту же болезнь у экспериментально зараженного животного;
  3. из этого животного возбудитель должен быть опять выделен в чистую культуру, и две эти чистые культуры должны быть одинаковыми.

В 1909 г. за труды по иммунитету русский физиолог Илья Ильич Мечников (1845-1916) и немецкий врач-биохимик Пауль Эрлих (1854—1915) получили Нобелевскую премию по физиологии и медицине.

П.Эрлих, занимаясь экспериментальной медициной и биохимией лекарственных соединений, сформулировал гуморальную теорию иммунитета, согласно которой макроорганизм для борьбы с инфекционными агентами производит специальные химические вещества – антитела и антитоксины, нейтрализующие микробные клетки и выделяемые ими агрессивные субстанции. П.Эрлих разработал методы лечения ряда инфекционных заболеваний и участвовал в создании препарата для борьбы с сифилисом (сальварсана). Ученый первым описал феномен приобретения патогенными микроорганизмами устойчивости к лекарственным препаратам.

Русский эпидемиолог Николай Федорович Гамалея (1859-1948) изучал пути передачи и распространения таких серьезных инфекций как бешенство, холера, оспа, туберкулез, сибирская язва и некоторые заболевания животных. Им усовершенствован разработанный Л.Пастером способ профилактических прививок и предложена вакцина против холеры человека. Ученый разработал и внедрил комплекс санитарно-гигиенических и противоэпидемических мероприятий по борьбе с чумой, холерой, оспой, сыпным и возвратным тифами и другими инфекциями. Н.Ф.Гамалея открыл вещества, растворяющие бактериальные клетки (бактериолизины), описал явление бактериофагии (взаимодействия вирусов и бактериальной клетки) и внес существенный вклад в изучение микробных токсинов.

Признание огромной роли микроорганизмов в биологически важных круговоротах элементов на Земле связано с именами русского ученого Сергея Николаевича Виноградского (1856-1953) и голландского исследователя Мартинуса Бейеринка (1851-1931). Эти ученые изучали группы микроорганизмов, способных осуществлять химические превращения основных элементов и участвовать в биологически важных круговоротах на Земле. С.Н.Виноградский работал с микроорганизмами, использующими неорганические соединения серы, азота, железа и открыл уникальный образ жизни, свойственный только прокариотам, при котором для получения энергии используется восстановленное неорганическое соединение, а для биосинтезов – углерод углекислого газа. Ни животные, ни растения не могут существовать таким способом.

С.Н.Виноградский и М.Бейеринк независимо друг от друга показали способность некоторых прокариот использовать атмосферный азот в своем обмене веществ (фиксировать молекулярный азот). Ими были выделены в виде чистых культур свободноживущие и симбиотические микробы-азотфиксаторы и отмечена глобальная роль таких микроорганизмов в цикле азота. Только прокариотические микроорганизмы могут переводить газообразный азот в связанные формы, используя его для синтеза компонентов клетки. После отмирания азотфиксаторов соединения азота становятся доступными для других организмов. Таким образом, азотфиксирующие микроорганизмы замыкают биологический круговорот азота на Земле.

На рубеже XIX-XX веков русский физиолог растений и микробиолог Дмитрий Иосифович Ивановский (1864-1920) открыл вирус табачной мозаики, тем самым обнаружив особую группу биологических объектов, не имеющих клеточного строения. При исследовании инфекционной природы мозаичной болезни табака ученый попытался очистить сок растения от возбудителя, пропуская его через бактериальный фильтр. Однако после этой процедуры сок был способен заражать здоровые растения, т.е. возбудитель оказался гораздо меньше всех известных микроорганизмов. В дальнейшем оказалось, что целый ряд известных заболеваний вызывается подобными возбудителями. Их назвали вирусами. Увидеть вирусы удалось только в электронный микроскоп. Вирусы являются особой группой биологических объектов, не имеющих клеточного строения, изучением которых в настоящее время занимается наука вирусология.

В XX веке микробиология полностью сложилась как самостоятельная наука. Дальнейшее ее развитие происходило с учетом открытий, сделанных в других областях биологии (биохимии, генетике, молекулярной биологии и т.д.). В настоящее время многие микробиологические исследования проводятся совместно специалистами разных биологических дисциплин. Многочисленные достижения микробиологии конца XX – начала XXI веков будут кратко изложены в соответствующих разделах учебника.

↑Основные направления в современной микробиологии.

Уже к концу XIX века микробиология в зависимости от выполняемых задач начинает подразделяться на ряд направлений. Так, исследования основных законов существования микроорганизмов и их разнообразия относят к общей микробиологии, а частная микробиология изучает особенности их разных групп. Задача природоведческой микробиологии – выявление способов жизнедеятельности микроорганизмов в естественных местах обитания и их роли в природных процессах. Особенности болезнетворных микроорганизмов, вызывающих заболевания человека и животных, и их взаимодействие с организмом хозяина изучают медицинская и ветеринарная микробиология, а микробные процессы в земледелии и животноводстве исследует сельскохозяйственная микробиология. Почвенная, морская, космическая и т.д. микробиология – это разделы, посвященные свойствам специфических для этих природных сред микроорганизмам и процессам, с ними связанным. И наконец, промышленная (техническая) микробиология как часть биотехнологии изучает свойства микроорганизмов, используемых для различных производств. В то же время от микробиологии отделяются новые научные дисциплины, занимающиеся изучением определенных более узких групп объектов (вирусология, микология, альгология и др.). В конце XX века усиливается интеграция биологии наук и многие исследования происходят на стыке дисциплин, образуя такие направления, как молекулярная микробиология, генная инженерия и др.

В современной микробиологии можно выделить несколько основных направлений. С развитием и совершенствованием методологического арсенала биологии активизировались фундаментальные микробиологические исследования, посвященные выяснению путей метаболизма и способов их регуляции. Бурно развивается систематика микроорганизмов, ставящая цель создать такую классификацию объектов, которая отражала бы место микроорганизмов в системе всего живого, родственные связи и эволюцию живых существ, т.е. осуществить построение филогенетического древа. Изучение роли микроорганизмов в природных процессах и антропогенных системах (экологическая микробиология) крайне актуально в связи с повышенным интересом к современным экологическим проблемам. Значительное внимание привлекают исследования популяционной микробиологии, занимающейся выяснением природы межклеточных контактов и способов взаимодействия клеток в популяции. Не теряют актуальности те направления микробиологии, которые связаны с применением микроорганизмов в человеческой деятельности.

↑Основные разделы общей микробиологии

Основными разделами общей микробиологии являются:

    – наука о строении клеток микроорганизмов – наука о формах, сочетаниях и размерах клеток микроорганизмов, их дифференциации, а также размножении и развитии. – наука о наследственности и изменчивости микроорганизмов, в круг вопросов которой также входят диссоциация микроорганизмов и проблема генетически модифицированных микроорганизмов. – наука о многообразии микроорганизмов и их классификации по степени родства. В настоящее время в основу систематики микроорганизмов положены молекулярно-биологические методы. – особый раздел общей микробиологии, занимающийся изучением процессов роста микроорганизмов в экспериментальных условиях (в периодической и непрерывной культуре). – наука об обмене веществ (метаболизме) микроорганизмов, включающая способы потребления питательных веществ, их разложение, синтез веществ, а также способы получения микроорганизмами энергии в результате процессов брожения, анаэробного дыхания, аэробного дыхания и фотосинтеза. – наука, изучающая влияние факторов внешней среды на микроорганизмы, взаимоотношения микроорганизмов с другими микроорганизмами и роль микроорганизмов в экосистемах. – наука о практическом применении микроорганизмов, производстве биологически активных веществ (антибиотиков, ферментов, аминокислот, низкомолекулярных регуляторных соединений, органических кислот) и биотоплива (биогазы, спирты) с помощью микроорганизмов, условиях образования и способы регуляции образования данных продуктов.

↑Рекомендуемая литература

Поль де Крюи. Охотники за микробами. Научно-популярное издание.

Гучев М.В., Минеева Л.А. Микробиология. Учебник для ВУЗов.

Нетрусов А.И., Котова И.Б. Общая микробиология. Учебник для ВУЗов.

Нетрусов А.И., Котова И.Б. Микробиология. Учебник для ВУЗов.

Практикум по микробиологии. Под ред. А.И. Нетрусова. Учебное пособие для ВУЗов.

Экология микроорганизмов. Под ред. А.И. Нетрусова. Учебное пособие для ВУЗов.

Заварзин Г.А. Лекции по природоведческой микробиологии. Научное издание.

Колотилова Н.Н., Заварзин Г.А. Введение в природоведческую микробиологию. Учебное пособие для ВУЗов.

Кондратьева Е.Н. Автотрофные прокариоты. Учебное пособие для ВУЗов.

Егоров Н.С. Основы учения об антибиотиках. Учебник для ВУЗов.

Промышленная микробиология. Под ред. Н.С. Егорова. Учебное пособие для ВУЗов.

Микробиология (от микро. и биология), наука, изучающая микроорганизмы — бактерии, микоплазмы, актиномицеты, дрожжи, микроскопические грибы и водоросли — их систематику, морфологию, физиологию, биохимию, наследственность и изменчивость, распространение и роль в круговороте веществ в природе, практическое значение.

Файлы: 1 файл

микр готов.docx

Микробиология (от микро. и биология), наука, изучающая микроорганизмы — бактерии, микоплазмы, актиномицеты, дрожжи, микроскопические грибы и водоросли — их систематику, морфологию, физиологию, биохимию, наследственность и изменчивость, распространение и роль в круговороте веществ в природе, практическое значение.

Наука о мельчайших организмах, не видимых невооруженным глазом. Микробиология изучает строение микробов (морфология), их химическую организацию и закономерности жизнедеятельности (физиология), изменчивость и наследственность (генетика микроорганизмов), взаимоотношения с другими организмами, включая человека, и их роль в формировании биосферы. В ходе исторического развития микробиологии как наука разделилась на общую, сельскохозяйственную, ветеринарную, медицинскую и промышленную. Общая микробиология изучает закономерности жизнедеятельности микробов как организмов, а также роль микробов для поддержания жизни на Земле, в частности их участие в круговороте углерода, азота, энергии и пр.

Несколько лет назад ученые при попытке установить уровень радиоактивного загрязнения в глубине свалки ядерных отходов Саванна-Ривер открыли новый вид микроорганизмов, которые способы жить и размножаться в условиях повышенного радиоактивного загрязнения. Обнаружение этих микроорганизмов стало огромным прорывом в области микробиологии. Микроорганизмы–экстремофилы, как их назвали ученые, способны переносить огромные температуры и высокие дозы радиации. Учитывая их уникальные свойства, ученые планируют использовать микроорганизмы для очистки огромных хранилищ ядерных и химических отходов.

Ученые предположили, что при помощи бактерий можно утилизировать ядерные и токсические отходы в предельно короткие сроки. По расчетам министерства природных ресурсов для утилизации всех отходов традиционными способами при помощи роботов потребуется примерно 260 миллиардов долларов. Использование микробов-экстремофилов значительно снизит затраты, так как они уничтожают токсины, поедая и разлагая их на безвредные компоненты.

Главные аналитики NASA предполагают, что если удастся разгадать механизм адаптации микроорганизмов к токсинам и радиации, то это позволит создать защитные скафандры, которые на протяжении очень длительного времени смогут защищать человека от опасных излучений. В министерстве здравоохранения считают, что уникальные свойства этих организмов помогут больным раком переносить интенсивные формы лучевой терапии. Экстремофилы, которые обитают в природе, не опасны для человека; опасения вызывают микрооргнаизмы, выращенные в лабораторных условиях, так как очень сложно предсказать их поведение.

Бактерии, которые были обнаружены в Саванна-Ривере, имеют круглые очертания, за что их стали называть радиотолернтными микробами Kineococcus. Удалось изучить 99% их генетического кода, однако до сих пор не известен механизм их живучести, так как радиация разрушает генетический код любого живого существа. Экстремофилы легко разрушают токсины, гербициды, хлорированные вещества и промышленные растворители в радиоактивной среде. В таких условиях даже кварцевое стекло принимает коричневый окрас. Возможно, эти бактерии попали на землю вместе с метеоритами и кометами, точный ответ до сих пор не может дать никто. Экстремофилы, которые обитают в природных условиях, поедают радиацию, но не химикаты. Бактерии, которые уничтожают и радиацию и химикаты, выведены только в лабораторных условиях. Исследователи надеются найти их аналог в природе, так как очень сложно предсказать, как поведут искусственные бактерии в природе, так как на данный момент известна только 1/100 от общего количества бактерий на нашей планете.

Бактерия способна очищать сточные воды. Интересное открытие сделали исследователи Американского микробиологического общества. Микробиологи утверждают, что достаточно известная бактерия семейства DesulfitoBacterium способна очищать сточные воды от нечистот и при этом вырабатывать электричество. Такая бактерия функционирует круглосуточно семь дней в неделю. DesulfitoBacterium — это одноклеточные микроорганизмы размером от 0,5 до 3 мкм. У них только одна цитоплазматическая мембрана. Их повсеместная распространенность и метаболический потенциал играет огромную роль в природе. Так как они обеспечивают круговорот веществ в природе и поддерживают равновесие в биосфере. Микроорганизм DesulfitoBacterium можно встретить на дне мирового океана, в горячих источниках, в воде, в земной коре и много где еще. Они выполняют роль продуцента. Микроорганизмы являются первыми живыми существами, которые появились на земле.

Ученые предполагают, что топливные устройства на основе бактерии DesulfitoBacterium будут иметь неограниченный ресурс, что позволит их использовать очень продолжительное время. Даже если устройство не использовать, его можно хранить в неработающем состоянии до следующего использования

Создан новый генетически модифицированный штамм лактобактерий. Микробиологи университета Гронингена (Германия), работающие под руководством профессора Оскара Куперса (Oscar Kuipers), создали новый генетически модифицированный штамм лактобактерий, осуществляющий ферментацию молочного сахара лактозы, но только до глюкозы.

Это исключает необходимость добавления в молочную продукцию дополнительных подсластителей, а также значительно снижает содержание в ней лактозы, что делает продукты пригодными для употребления людьми, страдающими лактозной непереносимостью.

Бактерии Lactococcus lactis используются при производстве кисломолочной продукции. Удаление из генома бактерии генов, ответственных за метаболизм глюкозы, привело к появлению нового штамма, который не вызывает скисания молока, а, напротив, делает его слаще.

На настоящий момент главной проблемой внедрения этих бактерий в производство молочной продукции заключается в отношении потребителей к генетически модифицированным организмам, а также в официальных ограничениях на их использование.

Однако разработчики считают, что бактериям, скорее всего, удаться преодолеть бюрократические барьеры, т.к. при их создании использовалась только собственная ДНК бактерии, методы нокаутирования и рекомбинации генов без встраивания в геном чужеродного генетического материала.

Активно участвуя в круговороте веществ в природе, микроорганизмы играют важнейшую роль в плодородии почв, в продуктивности водоёмов, в образовании и разрушении залежей полезных ископаемых. Особенно важна способность микроорганизмов минерализовать органические остатки животных и растений. Всё возрастающее применение микроорганизмов в практике привело к возникновению микробиологической промышленности и к значительному расширению микробиологических исследований в различных отраслях промышленности и сельского хозяйства. Ранее техническая Микробиология в основном изучала различные брожения, а микроорганизмы использовались преимущественно в пищевой промышленности. Быстро развиваются и новые направления технической микробиологии, которые потребовали иного аппаратурного оформления микробиологических процессов. Выращивание микроорганизмов стали проводить в закрытых ферментёрах большой ёмкости, совершенствовались методы отделения клеток микроорганизмов от культуральной жидкости, выделения из последней и химической очистки их продуктов обмена. Одним из первых возникло и развилось производство антибиотиков. В широких масштабах микробиологическим путём получают аминокислоты (лизин, глютаминовая кислота, триптофан и др.), ферменты, витамины, а также кормовые дрожжи на непищевом сырье (сульфитные щелока, гидролизаты древесины, торфа и сельскохозяйственные растительные отходы, углеводороды нефти и природного газа, фенольные или крахмалсодержащие сточные воды и т.д.). Осуществляется получение микробиологическим путём полисахаридов и осваивается промышленный биосинтез липидов. Резко возросло применение микроорганизмов в сельском хозяйстве. Увеличилось производство бактериальных удобрений, в частности нитрагина, приготовляемого из культур клубеньковых бактерий, фиксирующих азот в условиях симбиоза с бобовыми растениями, и применяемого для заражения семян бобовых культур. Новое направление сельскохозяйственной микробиологии связано с микробиологическими методами борьбы с насекомыми и их личинками — вредителями растений и лесов. Найдены бактерии и грибы, убивающие своими токсинами этих вредителей, освоено производство соответствующих препаратов. Высушенные клетки молочнокислых бактерий используют для лечения кишечных заболеваний человека и сельскохозяйственных животных.

Деление микроорганизмов на полезных и вредных условно, т.к. оценка результатов их деятельности зависит от условий, в которых она проявляется. Так, разложение целлюлозы микроорганизмами важно и полезно в растительных остатках или при переваривании пищи в пищеварительном тракте (животные и человек не способны усваивать целлюлозу без её предварительного гидролиза микробным ферментом целлюлозой). В то же время микроорганизмы, разлагающие целлюлозу, разрушают рыболовные сети, канаты, картон, бумагу, книги, хлопчатобумажные ткани и т.д. Для получения белка микроорганизмы выращивают на углеводородах нефти или природного газа. Одновременно с этим большие количества нефти и продуктов её переработки разлагаются микроорганизмами на нефтяных промыслах или при их хранении. Даже болезнетворные микроорганизмы не могут быть отнесены к абсолютно вредным, т.к. из них приготовляют вакцины, предохраняющие животных или человека от заболеваний. Порча микроорганизмами растительного и животного сырья, пищевых продуктов, строительных и промышленных материалов и изделий привела к разработке различных способов их предохранения (низкая температура, высушивание, стерилизация, консервирование, добавление антибиотиков и консервантов, подкисление и т.п.). В др. случаях возникает необходимость ускорить разложение определённых химических веществ, например пестицидов, в почве.

Микробиология (от микро. и биология), наука, изучающая
микроорганизмы — бактерии, микоплазмы, актиномицеты, дрожжи,
микроскопические грибы и водоросли — их систематику, морфологию,
физиологию, биохимию, наследственность и изменчивость, распространение
и роль в круговороте веществ в природе, практическое значение.

ИСТОРИЯ РАЗВИТИЯ МИКРОБИОЛОГИИ
Микробиология прошла длительный
путь развития, исчисляющийся
многими тысячелетиями. Уже в V.VI
тысячелетии до н.э. человек
пользовался плодами деятельности
микроорганизмов, не зная об их
существовании. Виноделие,
хлебопечение, сыроделие, выделка
кож . не что иное, как процессы,
проходящие с участием
микроорганизмов. Тогда же, в
древности, ученые и мыслители
предполагали, что многие болезни
вызываются какими-то посторонними
невидимыми причинами, имеющими
живую природу. Следовательно,
микробиология зародилась задолго до
нашей эры. В своем развитии она
прошла несколько этапов, не столько
связанных хронологически, сколько
обусловленных основными
достижениями и открытиями.

ДОСТИЖЕНИЯ МИКРОБИОЛОГИИ
Микроорганизмы–экстремофилы
– новый вид микроорганизмов, которые способы
жить и размножаться в условиях повышенного радиоактивного загрязнения.
DesulfitoBacterium - это одноклеточные микроорганизмы размером от 0,5 до 3 мкм,
способна очищать сточные воды от нечистот и при этом вырабатывать электричество.
Lactococcus lactis - используется в производстве пахты и сыра, но также стала
известна как первый генетически модифицированный организм, который будет
использоваться живым для лечения заболеваний человека.

МИКРООРГАНИЗМЫ–ЭКСТРЕМОФИЛЫ
Несколько лет назад ученые при
попытке установить уровень
радиоактивного загрязнения в глубине
свалки ядерных отходов СаваннаРивер открыли новый вид
микроорганизмов, которые способы
жить и размножаться в условиях
повышенного радиоактивного
загрязнения. Обнаружение этих
микроорганизмов стало огромным
прорывом в области микробиологии.
Микроорганизмы–экстремофилы, как
их назвали ученые, способны
переносить огромные температуры и
высокие дозы радиации. Учитывая их
уникальные свойства, ученые
планируют использовать
микроорганизмы для очистки огромных
хранилищ ядерных и химических
отходов.

DESULFITOBACTERIUM
Интересное открытие сделали исследователи
Американского микробиологического
общества. Микробиологи утверждают, что
достаточно известная бактерия семейства
DesulfitoBacterium способна очищать сточные
воды от нечистот и при этом вырабатывать
электричество. Такая бактерия функционирует
круглосуточно семь дней в неделю.
DesulfitoBacterium - это одноклеточные
микроорганизмы размером от 0,5 до 3 мкм. У
них только одна цитоплазматическая
мембрана. Их повсеместная
распространенность и метаболический
потенциал играет огромную роль в природе.
Так как они обеспечивают круговорот веществ
в природе и поддерживают равновесие в
биосфере. Микроорганизм DesulfitoBacterium
можно встретить на дне мирового океана, в
горячих источниках, в воде, в земной коре и
много где еще. Они выполняют роль
продуцента. Микроорганизмы являются
первыми живыми существами, которые
появились на земле.

LACTOCOCCUS LACTIS
Бактерии Lactococcus lactis используются
при производстве кисломолочной
продукции. Удаление из генома бактерии
генов, ответственных за метаболизм
глюкозы, привело к появлению нового
штамма, который не вызывает скисания
молока, а, напротив, делает его слаще.
На настоящий момент главной проблемой
внедрения этих бактерий в производство
молочной продукции заключается в
отношении потребителей к генетически
модифицированным организмам, а также в
официальных ограничениях на их
использование.
Однако разработчики считают, что
бактериям, скорее всего, удаться
преодолеть бюрократические барьеры, т.к.
при их создании использовалась только
собственная ДНК бактерии, методы
нокаутирования и рекомбинации генов без
встраивания в геном чужеродного
генетического материала.

СОВРЕМЕННЫЙ МОЛЕКУЛЯРНОГЕНЕТИЧЕСКИЙ ЭТАП
•Создание электронного микроскопа
•Доказательство роли ДНК в передаче наследственных признаков
•Использование бактерий, вирусов и плазмид в качестве объектов молекулярнобиологических и генетических исследований

ЭЛЕКТРОННЫЙ МИКРОСКОП
История электронной микроскопии (в
частности, и РЭМ), началась с
теоретических работ немецкого
физика Ганса Буша о влиянии
электромагнитного поля на
траекторию заряженных частиц. В
1926 году он доказал, что такие поля
могут быть использованы в качестве
электромагнитных линз[1], установив
таким образом основополагающие
принципы геометрической
электронной оптики. В ответ на это
открытие возникла идея электронного
микроскопа и две команды — Макс
Кнолл и Эрнст Руска из Берлинского
технического университета и Эрнст
Бруш из лаборатории EAG
попробовали реализовать эту идею на
практике. И в 1932 году Кнолл и Руска
создали первый просвечивающий
электронный микроскоп[2].

ДОКАЗАТЕЛЬСТВО РОЛИ ДНК В ПЕРЕДАЧЕ НАСЛЕДСТВЕННЫХ
ПРИЗНАКОВ
В 1928 г. Ф. Гриффит впервые получил
доказательства возможной передачи
наследственных задатков от одной бактерии к
другой. Ученый вводил мышам вирулентный
капсульный и авирулентный бескапсульный
штаммы пневмококков. При введении
вирулентного штамма мыши заболевали
пневмонией и погибали. При введении
авирулентного штамма мыши оставались
живыми. При введении вирулентного
капсульного штамма, убитого нагреванием,
мыши также не погибали. Следовательно,
живые бактерии авирулентного
бескапсульного штамма
трансформировались — приобрели свойства
убитых болезнетворных бактерий. В
дальнейшем другими учеными были
подтверждены результаты опытов Ф.
Гриффита в условиях пробирки. Основываясь
на этих опытах, в 1944 г.

БАКТЕРИИ
Бактерии — самая древняя группа
организмов из ныне существующих на
Земле. Первые бактерии появились,
вероятно, более 3,5 млрд. лет назад и на
протяжении почти миллиарда лет были
единственными живыми существами на
нашей планете. Поскольку это были первые
представители живой природы, их тело
имело примитивное строение. Со
временем их строение усложнилось, но и
поныне бактерии считаются наиболее
примитивными одноклеточными
организмами.

ВИРУСЫ
Вирус (лат. virus - яд) - неклеточная
форма жизни, мельчайшие
болезнетворные микроорганизмы, не
видимые в микроскоп. Они значительно
меньше бактерий: легко проходят через
бактериальные
фильтры. Вирусы способны
размножаться только внутри живых
клеток, до проникновения в
них вирусы не имеют признаков жизни:
пассивно перемещаются во внешней
среде, ожидая встречи с клеткоймишенью.

ПЛАЗМИДЫ
Плазмиды - внехромосомные генетические
элементы, способные к автономному
поддержанию в цитоплазме бактерий или
существованию в нтегрированном в хромосому
состоянии, откуда они могут свободно выходить в
цитоплазму (иногда с фрагментами хромосомы).
Некоторые хромосомы могут распространяться в
бактериальной популяции между ее членами.
Плазмиды определяют ряд важных свойств
бактерий:
-являются факторами фертильности - определяют
донорский фенотип клетки;
-контролируют резистентность к антибиотикам,
сульфаниламидам, катионам тяжелых металлов,
бактериоцинам, бактериофагам, к сыворотке
крови;
-чувствительность к бактериоцинам;
-синтез тиамина, пролина, внеклеточной ДНКазы и
др.;
-синтез антибиотиков и бактериоцинов;
-метаболизм углеводов, углеводсодержащих
соединений, галогеновых соединений, белков;

ЗАКЛЮЧЕНИЕ
Благодаря огромным научным достижениям в области микробиологии и смежных биологических дисциплин
(молекулярной биологии, генетики, биохимии и др.) появилась реальная возможность сделать микроорганизмы
неисчерпаемым источником биологически активных веществ (кормового и пищевого белка, аминокислот,
ферментов, витаминов, гормонов, антибиотиков, спиртов, органических кислот, средств защиты растений и
др.). Эти продукты микробного синтеза находят широкое применение в различных отраслях народного
хозяйства
В настоящее время микробиология стала не только фундаментальной наукой – в стране плодотворно работают
научно-исследовательские учреждения по многим разделам микробиологической науки.

Достижения современных микробиологии и иммунологии

Открытия в молекулярной биологии, генетике и генной инженерии не могли не сказаться на общем уровне развития микробиологии и иммунологии. Перечислим только основные, наиболее существенные и современные достижения микробиологии и иммунологии.


• Расшифровка на молекулярном уровне биологических процессов микробных клеток, обеспечивающих их жизнедеятельность.
• Выявление факторов патогенности микробов и процессов патогенеза инфекционных болезней.
• Расшифровка антигенной структуры бактерий и создание более чувствительных и информативных методов индикации и идентификации микробов. Осуществление химического и генно-инженерного синтеза многих антигенов.
• Установление химической структуры антител (иммуноглобулинов) и синтез антител в биологических системах. Разработка способа получения моноклональных антител гиб-ридомной техникой.
• Расшифровка генома многих бактерий и вирусов, в том числе таких как ВИЧ, вируса гепатита В, оспы и др.
• Создание рекомбинантных штаммов бактерий и вирусов, не существовавших ранее в природе.
• Использование рекомбинантных штаммов бактерий и вирусов для получения в промышленных условиях разнообразных биологически активных веществ (антибиотиков, гормонов, ферментов, иммуномодуляторов, антигенов и др.), а также для разрушения (деградации) с помощью микробов веществ, загрязняющих окружающую среду.
• Разработка диагностических систем, основанных на иммунологических и генетических принципах, для клинической микробиологии и иммунологии.
• Разработка принципиально новых молекулярных и генно-инженерных противобактериальных и противовирусных вакцин.
• Развитие учения об иммунитете как способе зашиты организма от генетически чужеродных веществ инфекционной и неинфекционной природы. Расшифровка строения и основных принципов функционирования иммунной системы, основанных на кооперации Г-, В- и Л-клеток.
• Открытие основных форм реагирования иммунной системы и принципов ее регуляции с помощью иммуноцитокинов.
• Создание современных теорий иммунитета: клонально-се-лекционной (Ф.Бернет) и молекулярно-генетической (С.То-негава). Открытие явления иммунологической толерантности (П.Медовар и М.Гашек) и иммунологической памяти (Ф.Бернет).
• Развитие клинической иммунологии. Разработка комплекса методов для оценки нормального состояния иммунной системы (иммунный статус) и отклонений в ее функционировании (первичные и вторичные иммунодефициты). Разработка способов коррекции работы иммунной системы с помощью иммуномодуляторов.
• Генодиагностика и генотерапия иммунодефицитов.

Микробиология играет огромную роль в развитии человечества. Становление науки началось еще 5-6 веке до н. э. Уже тогда предполагали, что многие болезни вызваны невидимыми живыми существами. Краткая история развития микробиологии, которая описана в нашей статье, позволит выяснить, как образовалась наука.

Общая информация о микробиологии. Предмет и задачи

Существует общая и частная микробиология. Первая изучает строение и жизнедеятельность микроорганизмов на всех уровнях. Предмет изучения частной - отдельные представители микромира.

Достижения медицинской микробиологии в 19 веке способствовали развитию иммунологии, которая сегодня является общебиологической наукой. Становление микробиологии происходило в три этапа. На первом было установлено, что в природе существуют бактерии, которые нельзя увидеть невооруженным глазом. На втором этапе становления были дифференцированы виды, а на третьем началось изучение иммунитета и инфекционных заболеваний.

Задачи микробиологии - изучение свойств бактерий. Для исследований используют приборы для микроскопии. Благодаря этому можно увидеть форму, расположение и структуру бактерий. Нередко ученые подсаживают микроорганизмы здоровым животным. Это необходимо для воспроизведения инфекционных процессов.

краткая история развития микробиологии

Пастер Луи

Луи Пастер родился 27 декабря 1822 года на востоке Франции. В детстве он увлекался искусством. Со временем его начали привлекать естественные науки. Когда Луи Пастеру исполнился 21 год, он отправился в Париж для обучения в Высшей школе, после окончания которой должен был стать преподавателем естествознания.

В 1848 году Луи Пастер представил в Парижской академии наук результаты своей научной работы. Он доказал, что в винной кислоте есть два типа кристаллов, которые по-разному поляризуют свет. Это было блестящим началом его карьеры ученого.

Пастер Луи - это основатель микробиологии. Ученые до начала его деятельности предполагали, что дрожжи образуют химический процесс. Однако именно Пастер Луи, проведя ряд исследований, доказал, что образование алкоголя при брожении связано с процессом жизнедеятельности мельчайших организмов - дрожжей. Он выяснил, что существует два типа таких бактерий. Один вид создает алкоголь, а другой - так называемую молочную кислоту, которая портит спиртосодержащие напитки.

На этом ученый не остановился. Через некоторое время он выяснил, что при нагревании до 60 градусов по Цельсию нежелательные бактерии погибают. Он рекомендовал технику постепенного подогревания виноделам и поварам. Однако первое время они относились к такому методу отрицательно, считая, что это испортит качество продукции. Со временем они поняли, что такой способ действительно положительно сказывается на процессе изготовления алкоголя. Сегодня метод Пастера Луи известен как пастеризация. Он используется при сохранении не только спиртосодержащих напитков, но и других продуктов.

Ученый нередко задумывался об образовании плесени на продуктах. После ряда исследований, он понял, что пища портится только в том случае, если она на протяжении длительного периода времени контактирует с воздухом. Однако если воздух нагреть до 60 градусов по Цельсию, процесс гниения останавливается на некоторое время. Не портятся продукты и высоко в Альпах, где воздух разреженный. Ученый доказал, что плесень образуется из-за спор, которые находятся в окружающей среде. Чем меньше их в воздухе, тем медленнее портится пища.

Вышеперечисленные исследования принесли ученому успех. Его попросили изучить неизвестную болезнь, которая поражает шелкопрядов и тем самым угрожает экономике. Ученый выяснил, что причиной заболевания является паразитирующая бактерия. Он рекомендовал уничтожить все тутовые деревья и зараженных червей. Производители шелка прислушались к совету ученых. Благодаря этому была восстановлена шелковая промышленность Франции.

Популярность ученого росла. В 1867 году Наполеон III распорядился предоставить Пастеру хорошо оснащенную лабораторию. Именно там ученый создал прививку от бешенства, благодаря которой он стал известен по всей Европе. Умер Пастер 28 сентября 1895 года. Основателя микробиологии похоронили со всеми государственными почестями.

луи пастер

Кох Роберт

Вклад ученых в микробиологию позволил сделать массу открытий в медицине. Благодаря этому человечество знает, как избавиться от многих опасных для здоровья заболеваний. Считается, что Кох Роберт - это современник Пастера. Ученый родился в декабре 1843 года. С детства он интересовался природой. В 1866 году он окончил обучение в университете и получил медицинский диплом. После этого работал в нескольких больницах.

Роберт Кох начал деятельность бактериолога. Он сосредоточился на изучении сибирской язвы. Кох изучал под микроскопом кровь больных животных. Ученый нашел в ней массу микроорганизмов, которые отсутствуют у здоровых представителей фауны. Роберт Кох решил привить их мышам. Подопытные погибли спустя сутки, а в их крови присутствовали такие же микроорганизмы. Ученый выяснил, что сибирскую язву вызывают болезнетворные бактерии, которые имеют форму палочки.

После успешных исследований Роберт Кох начал задумываться об изучении туберкулеза. Это неслучайно, ведь в Германии (место рождения и проживания ученого) от данного заболевания погибал каждый седьмой житель. В то время врачи еще не знали, как бороться с туберкулезом. Они считали, что это наследственное заболевание.

Для своих первых исследований Кох использовал труп молодого рабочего, который погиб от чахотки. Он исследовал все внутренние органы и не обнаружил никаких болезнетворных бактерий. Затем ученый решил окрашивать препараты и рассматривать их на стекле. Однажды, рассматривая под микроскопом такой препарат, окрашенный в синий цвет, Кох заметил между тканями легких маленькие палочки. Он привил их морской свинке. Животное погибло спустя несколько недель. В 1882 году Роберт Кох рассказал на заседании Общества врачей о результатах своего исследования. Позже он попытался создать вакцину от туберкулеза, которая, к сожалению, не помогла, но применяется до сих пор при диагностировании заболевания.

Краткая история развития микробиологии в то время вызывала интерес у многих. Вакцина от туберкулеза была создана только спустя несколько лет после смерти Коха. Однако это не уменьшает его заслуги в исследовании данного заболевания. В 1905 году ученый был удостоен Нобелевской премии. Бактерии туберкулеза получили название в честь исследователя - палочка Коха. Умер ученый в 1910 году.

роберт кох

Виноградский Сергей Николаевич

Сергей Николаевич Виноградский - это известный бактериолог, который сделал огромный вклад в развитие микробиологии. Родился он в 1856 году в Киеве. Его отец был состоятельным юристом. Сергей Николаевич после окончания местной гимназии получил образование в Консерватории Санкт-Петербурга. В 1877 году он поступил на второй курс естественного факультета. Окончив его в 1881 году, ученый посвятил себя изучению микробиологии. В 1885 году он поехал для обучения в Страсбург.

Сегодня Сергей Николаевич Виноградский считается основателем экологии микроорганизмов. Он изучал грунтовое микробное сообщество и разделил все микроорганизмы, живущие в нем, на автохтонных и аллохтонных. В 1896 году Виноградский сформулировал представление о жизни на Земле как о системе взаимосвязанных биогеохимических циклов, которые катализируют живые существа. Его последняя научная работа была посвящена систематике бактерий. Умер ученый в 1953 году.

Возникновение микробиологии

Краткая история развития микробиологии, описанная в нашей статье, позволит выяснить, как человечество начало борьбу с опасными заболеваниями. С процессами жизнедеятельности бактерий человек сталкивался задолго до их открытия. Люди сквашивали молоко, использовали брожение теста и вина. В трудах врача из Древней Греции были названы предположения о связи опасных заболеваний и особых болезнетворных испарений.

Подтверждение было получено Антони ван Левенгуком. Стачивая стекла, он смог создать линзы, которые увеличивали исследуемый предмет более чем в 100 раз. Благодаря этому он смог рассмотреть все окружающие его объекты.

Он выяснил, что на них проживают мельчайшие организмы. Полная и краткая история развития микробиологии началась именно с результатов исследований Левенгука. Он не смог доказать предположения о причинах заразных заболеваний, но практическая деятельность врачей со времен древности подтверждала их. Законы индусов предусматривали профилактические мероприятия. Известно, что специальной обработке поддавались вещи и жилища больных людей.

В 1771 году военный врач Москвы впервые производит дезинфекцию вещей больных чумой и делает прививки людям, которые контактировали с переносчиками заболевания. Темы по микробиологии разнообразны. Наиболее интересной считается та, которая описывает создание прививки от оспы. Она с давних времен использовалась персами, турками и китайцами. Ослабленные бактерии вводились в тело человека, потому что считалось, что так болезнь протекает легче.

Эдвард Дженнер (английский врач) заметил, что большинство людей, которые не болели оспой, не заражаются при близком контакте с переносчиками заболевания. Наиболее часто это наблюдалось у доярок, которые заражались при доении коров больных коровьей оспой. Исследования врача длились 10 лет. В 1796 году Дженнер ввел кровь больной коровы здоровому мальчику. Спустя некоторое время он попытался привить ему бактерии заболевшего человека. Так была создана прививка, благодаря которой человечество избавилось от заболевания.

темы по микробиологии

Вклад отечественных ученых

Во время образования микробиологии как науки Лев Семенович Ценковский опубликовал свою работу, в которой он отнес микроорганизмы к растительным организмам. Он также использовал метод Пастера для угнетения сибирской язвы.

Немалую роль в микробиологии сыграл Илья Ильич Мечников. Он считается одним из основоположников науки о бактериях. Ученый создал теорию иммунитета. Он доказал, что многие клетки организма могут угнетать вирусные бактерии. Его исследования стали основой для изучения воспаления.

Микробиология, вирусология и иммунология, а также сама медицина в то время вызывали огромный интерес почти у каждого. Мечников исследовал человеческий организм и пытался понять, почему он стареет. Ученый желал найти способ, который позволил бы продлить жизнь. Он считал, что ядовитые вещества, которые образуются из-за жизнедеятельности гнилостных бактерий, отравляют человеческий организм. По мнению Мечникова, необходимо заселить тело молочнокислыми микроорганизмами, которые угнетают гнилостных. Ученый считал, что таким образом можно существенно продлить жизнь.

Мечников изучал множество опасных заболеваний, таких как тиф, туберкулез, холера и другие. В 1886 году он создал бактериологическую станцию и школу микробиологов в Одессе (Украина).

открытия в микробиологии

Микробиология техническая

Техническая микробиология изучает бактерии, которые используют при создании витаминов, некоторых препаратов и заготовке продуктов. Основной задачей данной науки является интенсификация технологических процессов на производстве (чаще пищевом).

достижения медицинской микробиологии


Освоение технической микробиологии ориентирует специалиста на необходимость тщательного соблюдения всех санитарных норм на производстве. Изучив данную науку, можно предупредить порчу продукта. Предмет чаще всего изучают будущие специалисты пищевой промышленности.

Дмитрий Иосифович Ивановский

Основой для создания множества других наук стала микробиология. История науки началась еще задолго до ее общественного признания. Вирусология была образована в 19 веке. Данная наука изучает не все бактерии, а лишь те, которые являются вирусными. Ее основоположником считается Дмитрий Иосифович Ивановский. В 1887 году он начал исследовать заболевания табака. Он обнаружил в клетках больного растения кристаллические вкрапления. Таким образом, он открыл возбудителей заболеваний небактериальной и непротозойной природы, которые в дальнейшем были названы вирусами.

Дмитрий Иосифович Ивановский опубликовал несколько работ об особенностях физиологических процессов в больных растениях и влиянии кислорода на спиртовое брожение у дрожжей.

Результаты своих исследований о больных растениях Ивановский представил на заседании Общества естествоиспытателей. Дмитрий Иосифович также активно изучал почвенную микробиологию.

Учебная литература

Микробиология - это наука, которую невозможно изучить за несколько дней. Она играет важную роль в развитии медицины. Книги по микробиологии позволяют самостоятельно изучить данную науку. В нашей статье вы можете ознакомиться с наиболее популярными.

    (2011) - это книга, которая описывает жизнедеятельность бактерий, которые проживают при высоких температурах. Они существуют на большой глубине, где тепло поступает от магмы. В книге собраны статьи различных ученых со всех уголков Российской Федерации.
  • "Три жизни великого микробиолога. Документальная повесть о Сергее Николаевиче Виноградском" - это книга о величайшем ученом, автор которой Георгий Александрович Заварзин. Написана она по дневникам Виноградского. Ученым было заложено несколько крупных направлений в микробиологии (микробная, почвенная, хемосинтез). Книга будет необычайно полезна будущим врачам и просто любознательным людям.
  • "Общая микробиология", написанная Гансом Шлегелем - это издание, которое позволит познакомиться с удивительным миром бактерий. Стоит отметить, что Ганс Шлегель - известный во всем мире немецкий микробиолог, который еще жив. Издание множество раз обновлялось и дополнялось. Считается, что это одна из лучших книг по микробиологии. Она кратко описывает строение, а также процесс жизнедеятельности и размножения бактерий. Книга легко читается. В ней нет лишней информации.
  • "Микробы хорошие и плохие. Наше здоровье и выживание в мире" - это современная книга, написанная Джессикой Сакс и изданная в прошлом году. После улучшения санитарных условий и возникновения антибиотиков продолжительность жизни у людей существенно возросла. Книга посвящена проблеме возникновения иммунных заболеваний, которая связана с чрезмерной заботой об улучшении санитарных условий.
  • "Смотри, что у тебя внутри" - это книга Роба Найта. Она была издана в прошлом году. В книге рассказывается о микробах, которые проживают в разных уголках нашего тела. Автор утверждает, что микроорганизмы играют более важную роль, чем мы думали ранее.

Основа новейших технологий

Микробиология - это основа новейших технологий. Мир бактерий изучен еще не до конца. Многие ученые не сомневаются в том, что благодаря микроорганизмам можно создавать не имеющие аналогов технологии. Биотехнология будет служить для них основой.

При разработке месторождения угля и нефти используются микроорганизмы. Не секрет, что ископаемое топливо уже заканчивается, несмотря на то, что человечество использует его на протяжении около 200 лет. В случае его исчерпания ученые рекомендуют использовать микробиологические способы получения спиртов из возобновляемых источников сырья.

техническая микробиология

Подводим итоги

Читайте также: