Сформулируйте принцип наложения в линейных цепях кратко

Обновлено: 02.07.2024

Наряду с методом контурных токов для анализа электрических цепей используется другой метод – метод наложения . Этот метод основан на принципе наложения, который применяется только к линейным системам.

Метод наложения относительно прост, и в основном применяется для не сложных электрических цепей.

Его суть заключается в том, что токи в ветвях определяются как алгебраическая сумма их составляющих от каждого источника. То есть каждый источник тока вносит свою часть в каждый ток в цепи, а чтобы найти эти токи, нужно найти и сложить все составляющие. Таким образом, мы сводим решение одной сложной цепи к нескольким простым (с одним источником).

Порядок расчета

1 – Составление частных схем, с одним источником ЭДС, остальные источники исключаются, от них остаются только их внутренние сопротивления.

2 – Определение частичных токов в частных схемах, обычно это несложно, так как цепь получается простой.

3 – Алгебраическое суммирование всех частичных токов, для нахождения токов в исходной цепи.

Пример решения методом наложения

1. Для начала произвольно выберем направление токов, если в итоге какой либо ток получится со знаком минус, значит нужно изменить направление данного тока на противоположное.


2. Составим частную схему с первым источником ЭДС и рассчитаем частные токи в ней, убрав второй источник. Для удобства частичные токи будем обозначать штрихами.


Свернем схему к одному контуру, с сопротивлением источника и эквивалентным сопротивлением цепи для нахождения тока источника I1. Для тех, у кого возникают затруднения с нахождением эквивалентного сопротивления рекомендуем прочесть статью виды соединения проводников.


Найдем ток по закону Ома для полной цепи


Найдем напряжение на R 2345


Тогда ток I3 равен



Определим напряжение на R25



3. Составим частную схему со вторым источником ЭДС


Аналогичным образом вычислим все частичные токи от второй ЭДС


4. Найдем токи в исходной цепи, для этого просуммируем частичные токи, учитывая их направление. Если направление частичного тока совпадает с направлением исходного тока, то берем со знаком плюс, в противном случае со знаком минус.


5. Проверим с правильность решения с помощью баланса мощностей.


Небольшая погрешность связана с округлениями промежуточных значений в ходе выполнения вычислений.

Метод наложения основан на свойстве линейности электрических цепей. Метод наложения справедлив только для линейных цепей. Метод наложения применяется для определения токов в ветвях схемы с несколькими источниками.

Алгоритм метода наложения:

1) выбирают положительные направления токов в ветвях цепи;

2) находят частичные токи в ветвях, вызванные каждым источником по отдельности (схему рассчитывают столько раз, сколько источников действует в схеме);

3) токи в ветвях по методу наложения находят как алгебраическую сумму частичных токов (знак частичного тока при суммировании определяется по положительному направлению тока ветви).

Решение задач методом наложения

Задача 1.2.1 . В электрической цепи рис. 1.2.1 с тремя источниками энергии определить все токи в ветвях, воспользовавшись методом наложения.

1. Выполним расчет цепи при воздействии источника ЭДС E1, полагая E3 = 0, J = 0. Источники считаем идеальными, поэтому внутренние сопротивления ЭДС равны нулю, а источника тока – бесконечности. С учетом этого изобразим расчетную схему (рис. 1.2.2).

Определение токов в полученной схеме будем вести, пользуясь методом эквивалентных преобразований:

R ′ Э = R 5 + R 2 ⋅ ( R 3 + R 4 ) R 2 + ( R 3 + R 4 ) = 15 + 30 ⋅ ( 10 + 5 ) 30 + ( 10 + 5 ) = 25 О м ; I ′ 1 = E 1 R ′ Э = 150 25 = 6 A ; I ′ 5 = I ′ 1 = 6 A ; I ′ 2 = I ′ 1 ⋅ R 3 + R 4 R 2 + ( R 3 + R 4 ) = 6 ⋅ 10 + 5 30 + ( 10 + 5 ) = 6 A ; I ′ 3 = I ′ 1 ⋅ R 2 R 2 + ( R 3 + R 4 ) = 6 ⋅ 30 30 + ( 10 + 5 ) = 4 A ; I ′ 3 = I ′ 4 = 4 A .

2. Расчет электрической цепи при воздействии ЭДС источника Е3 выполним, полагая Е1 = 0, J = 0 (рис. 1.2.3).

В соответствии с рис. 1.2.3 имеем:

R ″ Э = R 3 + R 4 + R 2 ⋅ R 5 R 2 + R 5 = 10 + 5 + 30 ⋅ 15 30 + 15 = 25 О м ; I ″ 3 = E 3 R ″ Э = 50 25 = 2 A ; I ″ 4 = I ″ 3 = 2 A ; I ″ 2 = I ″ 4 ⋅ R 5 R 2 + R 5 = 2 ⋅ 15 15 + 30 = 0,66 A ; I ″ 5 = I ″ 4 ⋅ R 2 R 2 + R 5 = 2 ⋅ 30 15 + 30 = 1,33 A ; I ″ 1 = I ″ 5 = 1,33 A .

3. Расчет электрической цепи при действии источника тока выполним, полагая E1 = 0, Е2 = 0 (рис. 12.4).

В соответствии с рис. 1.2.4 имеем:

R ? Э = R 4 + R 2 ⋅ R 5 R 2 + R 5 = 5 + 30 ⋅ 15 30 + 15 = 15 О м .

Находим токи в параллельных ветвях:

I ? 3 = J ⋅ R ? Э R ? Э + R 3 = 15 ⋅ 15 15 + 10 = 9 A ; I ? 4 = J ⋅ R 3 R ? Э + R 3 = 15 ⋅ 10 15 + 10 = 6 A ; I ? 2 = I ? 4 ⋅ R 5 R 2 + R 5 = 6 ⋅ 15 15 + 30 = 2 A ; I ? 5 = I ? 4 ⋅ R 2 R 2 + R 5 = 6 ⋅ 30 15 + 30 = 4 A .

Ток I ? рассчитываем по первому закону Кирхгофа:

I ? 1 + I ? 5 − J = 0 ; I ? 1 = J − I ? 5 = 15 − 4 = 11 A .

4. В соответствии с принятыми направлениями токов в исходной схеме определим их значения по методу наложения как алгебраическую сумму частичных токов всех промежуточных расчетных схем:

I 1 = I ′ 1 + I ″ 1 − I ? 1 = 6 + 1,33 − 11 = − 3,67 A ; I 2 = I ′ 2 − I ″ 2 − I ? 2 = 2 − 0,66 − 2 = − 0,66 A ; I 3 = − I ′ 3 − I ″ 3 + I ? 3 = − 4 − 2 + 9 = 3 A ; I 4 = I ′ 4 + I ″ 4 + I ? 4 = 4 + 2 + 6 = 12 A ; I 5 = I ′ 5 + I ″ 5 + I ? 5 = 6 + 1,33 + 4 = 11,33 A .

Правильность решения задачи проверяем по первому закону Кирхгофа:

− J + I 3 + I 4 = 0 ; − 15 + 3 + 12 = 0 ; − I 2 − I 4 + I 5 = 0 ; − ( − 0,66 ) − 12 + 11,33 = 0.

Токи I1 и I2 получились отрицательными, т.е. их истинное направление в схеме противоположно принятому положительному направлению.

Выбор того или иного метода расчета электрической цепи в конечном итоге определяется целью решаемой задачи. Поэтому анализ линейной цепи не обязательно должен осуществляться с помощью таких общих методов расчета, как метод контурных токов или узловых потенциалов. Ниже будут рассмотрены методы, основанные на свойствах линейных электрических цепей и позволяющие при определенных постановках задач решить их более экономично.

Метод наложения

Данный метод справедлив только для линейных электрических цепей и является особенно эффективным, когда требуется вычислить токи для различных значений ЭДС и токов источников в то время, как сопротивления схемы остаются неизменными.

Данный метод основан на принципе наложения (суперпозиции), который формулируется следующим образом: ток в k – й ветви линейной электрической цепи равен алгебраической сумме токов, вызываемых каждым из источников в отдельности.

Аналитически принцип наложения для цепи, содержащей n источников ЭДС и m источников тока, выражается соотношением

Здесь - комплекс входной проводимости k – й ветви, численно равный отношению тока к ЭДС в этой ветви при равных нулю ЭДС в остальных ветвях; - комплекс взаимной проводимости k – й и i– й ветвей, численно равный отношению тока в k – й ветви и ЭДС в i– й ветви при равных нулю ЭДС в остальных ветвях.

Аналогично определяются коэффициенты передачи тока , которые в отличие от проводимостей являются величинами безразмерными.

Доказательство принципа наложения можно осуществить на основе метода контурных токов.

Если решить систему уравнений, составленных по методу контурных токов, относительно любого контурного тока, например , то получим

где - определитель системы уравнений, составленный по методу контурных токов; - алгебраическое дополнение определителя .

Каждая из ЭДС в (2) представляет собой алгебраическую сумму ЭДС в ветвях i–го контура. Если теперь все контурные ЭДС в (2) заменить алгебраическими суммами ЭДС в соответствующих ветвях, то после группировки слагаемых получится выражение для контурного тока в виде алгебраической суммы составляющих токов, вызванных каждой из ЭДС ветвей в отдельности. Поскольку систему независимых контуров всегда можно выбрать так, что рассматриваемая h-я ветвь войдет только в один -й контур, т.е. контурный ток будет равен действительному току h-й ветви, то принцип наложения справедлив для токов любых ветвей и, следовательно, справедливость принципа наложения доказана.

Таким образом, при определении токов ветвей при помощи метода наложения следует поочередно оставлять в схеме по одному источнику, заменяя остальные их внутренними сопротивлениями, и рассчитать составляющие искомых токов в этих схемах. После этого полученные результаты для соответствующих ветвей суммируются – это и будут искомые токи в ветвях исходной цепи.

В качестве примера использования метода наложения определим ток во второй ветви схемы на рис. 1,а.

Принимая источники в цепи на рис. 1,а идеальными и учитывая, что у идеального источника ЭДС внутреннее сопротивление равно нулю, а у идеального источника тока – бесконечности, в соответствии с методом наложения приходим к расчетным схемам на рис. 1,б…1,г.

В качестве другого примера использования метода определим взаимные проводимости и в цепи на рис. 2, если при переводе ключа в положение 1 токи в первой и второй ветвях соответственно равны и , а при переводе в положение 2 - и .

Учитывая, что в структуре пассивного четырехполюсника не содержится источников энергии, на основании принципа наложения для состояния ключа в положении “1” можно записать

При переводе ключа в положение “2” имеем

Тогда, вычитая из уравнения (3) соотношение (5), а из (4)-(6), получим

откуда искомые проводимости

Принцип взаимности

Принцип взаимности основан на теореме взаимности, которую сформулируем без доказательства: для линейной цепи ток в k – й ветви, вызванной единственной в схеме ЭДС , находящейся в i – й ветви,

будет равен току в i – й ветви, вызванному ЭДС , численно равной ЭДС , находящейся в k – й ветви,

Отсюда в частности вытекает указанное выше соотношение .

Иными словами, основанный на теореме взаимности принцип взаимности гласит: если ЭДС , действуя в некоторой ветви схемы, не содержащей других источников, вызывает в другой ветви ток (см. рис. 3,а), то принесенная в эту ветвь ЭДС вызовет в первой ветви такой же ток (см. рис. 3,б).

В качестве примера использования данного принципа рассмотрим цепь на рис. 4,а, в которой требуется определить ток , вызываемый источником ЭДС .

Перенесение источника ЭДС в диагональ моста, где требуется найти ток, трансформирует исходную схему в цепь с последовательно-параллельным соединением на рис. 4,б. В этой цепи

В соответствии с принципом взаимности ток в цепи на рис. 4,а равен току, определяемому соотношением (7)

Линейные соотношения в линейных электрических цепях

При изменении в линейной электрической цепи ЭДС (тока) одного из источников или сопротивления в какой-то ветви токи в любой паре ветвей m и n будут связаны между собой соотношением

где А и В – некоторые в общем случае комплексные константы.

Действительно, в соответствии с (1) при изменении ЭДС в k – й ветви для тока в m – й ветви можно записать

и для тока в n – й ветви –

Здесь и - составляющие токов соответственно в m – й и n – й ветвях, обусловленные всеми остальными источниками, кроме .

Умножив левую и правую части (10) на , вычтем полученное соотношением из уравнения (9). В результате получим

Обозначив в (11) и , приходим к соотношению (8).

Отметим, что в соответствии с законом Ома из уравнения (8) вытекает аналогичное соотношение для напряжений в линейной цепи.

В качестве примера найдем аналитическую зависимость между токами и в схеме с переменным резистором на рис. 5, где ; ; .

Коэффициенты А и В можно рассчитать, рассмотрев любые два режима работы цепи, соответствующие двум произвольным значениям .

Выбрав в качестве этих значений и , для первого случая ( ) запишем

При (режим короткого замыкания)

Принцип компенсации

Принцип компенсации основан на теореме о компенсации, которая гласит: в любой электрической цепи без изменения токов в ее ветвях сопротивление в произвольной ветви можно заменить источником с ЭДС, численно равной падению напряжения на этом сопротивлении и действующей навстречу току в этой ветви.

Для доказательства теоремы выделим из схемы произвольную ветвь с сопротивлением , по которой протекает ток , а всю остальную часть схемы условно обозначим некоторым активным двухполюсником А (см. рис. 6,а).

При включении в ветвь с двух одинаковых и действующих навстречу друг другу источников ЭДС с (рис. 6,б) режим работы цепи не изменится. Для этой цепи

Равенство (12) позволяет гальванически соединить точки а и c, то есть перейти к цепи на рис. 6,в. Таким образом, теорема доказана.

В заключение следует отметить, что аналогично для упрощения расчетов любую ветвь с известным током можно заменить источником тока .

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Каплянский А.Е. и др. Теоретические основы электротехники. Изд. 2-е. Учеб. пособие для электротехнических и энергетических специальностей вузов. –М.: Высш. шк., 1972. –448 с.

Контрольные вопросы и задачи

  1. Для каких цепей применим принцип суперпозиции?
  2. В каких случаях эффективно применение метода наложения?
  3. Как определяются входные и взаимные проводимости ветвей?
  4. Докажите теорему взаимности.
  5. Какими линейными соотношениями связаны токи и напряжения в ветвях линейной цепи?
  6. Можно ли распространить принцип компенсации на нелинейную электрическую цепь?
  7. Определить методом наложения ток в первой ветви цепи на рис. 1,а.

ads

Этот метод заключается в том, что воздействие нескольких источников на какой либо элемент цепи можно рассматривать как результат воздействия на элемент каждой ЭДС по отдельности независимо от других источников.

Если в рассчитываемой цепи присутствует несколько источников ЭДС, то расчет электрической цепи сводится к расчету нескольких цепей с одним источником. Ток в любой ветви рассматривается как алгебраическая сумма частных токов созданных каждой ЭДС по отдельности.

Рассмотрим метод наложения на примере данной схемы рисунок 1.

Снимок

E1=100 B, E2=50 B; R1=4 Om, R2=10 Om; R3=12 Om, r01=1Om, r02=2 Om.

Порядок расчета:

Читайте также: