Сетевая технология fddi кратко

Обновлено: 02.07.2024

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Использование двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят им воспользоваться, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля первичного (Primary) кольца, поэтому этот режим назван режимом Thru - "сквозным" или "транзитным". Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным (рисунок 2.1), образуя вновь единое кольцо. Этот режим работы сети называется Wrap, то есть "свертывание" или "сворачивание" колец. Операция свертывания производится силами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются против часовой стрелки, а по вторичному - по часовой. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

В стандартах FDDI отводится много внимания различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию. Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.

Рис. 2.1. Реконфигурация колец FDDI при отказе

Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных, поэтому для нее определен специальный метод доступа. Этот метод очень близок к методу доступа сетей Token Ring и также называется методом маркерного (или токенного) кольца - token ring (рисунок 2.2, а).

Станция может начать передачу своих собственных кадров данных только в том случае, если она получила от предыдущей станции специальный кадр - токен доступа (рисунок 2.2, б). После этого она может передавать свои кадры, если они у нее имеются, в течение времени, называемого временем удержания токена - Token Holding Time (THT). После истечения времени THT станция обязана завершить передачу своего очередного кадра и передать токен доступа следующей станции. Если же в момент принятия токена у станции нет кадров для передачи по сети, то она немедленно транслирует токен следующей станции. В сети FDDI у каждой станции есть предшествующий сосед (upstream neighbor) и последующий сосед (downstream neighbor), определяемые ее физическими связями и направлением передачи информации.

Рис. 2.2. Обработка кадров станциями кольца FDDI

Каждая станция в сети постоянно принимает передаваемые ей предшествующим соседом кадры и анализирует их адрес назначения. Если адрес назначения не совпадает с ее собственным, то она транслирует кадр своему последующему соседу. Этот случай приведен на рисунке (рисунок 2.2, в). Нужно отметить, что, если станция захватила токен и передает свои собственные кадры, то на протяжении этого периода времени она не транслирует приходящие кадры, а удаляет их из сети.

Если же адрес кадра совпадает с адресом станции, то она копирует кадр в свой внутренний буфер, проверяет его корректность (в основном по контрольной сумме), передает его поле данных для последующей обработки протоколу лежащего выше над FDDI уровня (например, IP), а затем передает исходный кадр по сети последующей станции (рисунок 2.2, г). В передаваемом в сеть кадре станция назначения отмечает три признака: распознавания адреса, копирования кадра и отсутствия или наличия в нем ошибок.

После этого кадр продолжает путешествовать по сети, транслируясь каждым узлом. Станция, являющаяся источником кадра для сети, ответственна за то, чтобы удалить кадр из сети, после того, как он, совершив полный оборот, вновь дойдет до нее (рисунок 2.2, д). При этом исходная станция проверяет признаки кадра, дошел ли он до станции назначения и не был ли при этом поврежден. Процесс восстановления информационных кадров не входит в обязанности протокола FDDI, этим должны заниматься протоколы более высоких уровней.

На рисунке 2.3 приведена структура протоколов технологии FDDI в сравнении с семиуровневой моделью OSI. FDDI определяет протокол физического уровня и протокол подуровня доступа к среде (MAC) канального уровня. Как и многие другие технологии локальных сетей, технология FDDI использует протокол 802.2 подуровня управления каналом данных (LLC), определенный в стандартах IEEE 802.2 и ISO 8802.2. FDDI использует первый тип процедур LLC, при котором узлы работают в дейтаграммном режиме - без установления соединений и без восстановления потерянных или поврежденных кадров.

Рис. 2.3. Структура протоколов технологии FDDI

Физический уровень разделен на два подуровня: независимый от среды подуровень PHY (Physical), и зависящий от среды подуровень PMD (Physical Media Dependent). Работу всех уровней контролирует протокол управления станцией SMT (Station Management).

  • Требования к мощности оптических сигналов и к многомодовому оптоволоконному кабелю 62.5/125 мкм;
  • Требования к оптическим обходным переключателям (optical bypass switches) и оптическим приемопередатчикам;
  • Параметры оптических разъемов MIC (Media Interface Connector), их маркировка;
  • Длина волны в 1300 нанометров, на которой работают приемопередатчики;
  • Представление сигналов в оптических волокнах в соответствии с методом NRZI.

Спецификация TP-PMD определяет возможность передачи данных между станциями по витой паре в соответствии с методом MLT-3. Спецификации уровней PMD и TP-PMD уже были рассмотрены в разделах, посвященных технологии Fast Ethernet.

  • кодирование информации в соответствии со схемой 4B/5B;
  • правила тактирования сигналов;
  • требования к стабильности тактовой частоты 125 МГц;
  • правила преобразования информации из параллельной формы в последовательную.
  • Протокол передачи токена;
  • Правила захвата и ретрансляции токена;
  • Формирование кадра;
  • Правила генерации и распознавания адресов;
  • Правила вычисления и проверки 32-разрядной контрольной суммы.
  • Алгоритмы обнаружения ошибок и восстановления после сбоев;
  • Правила мониторинга работы кольца и станций;
  • Управление кольцом;
  • Процедуры инициализации кольца.

Отказоустойчивость сетей FDDI обеспечивается за счет управления уровнем SMT другими уровнями: с помощью уровня PHY устраняются отказы сети по физическим причинам, например, из-за обрыва кабеля, а с помощью уровня MAC - логические отказы сети, например, потеря нужного внутреннего пути передачи токена и кадров данных между портами концентратора.

Сеть FDDI (от английского Fiber Distributed Data Interface, оптоволоконный распределенный интерфейс данных) – стандарт локальных сетей, развивающий идею Token Ring. Стандарт FDDI был предложен Американским национальным институтом стандартов ANSI (спецификация ANSI X3T9.5). Затем был принят стандарт ISO 9314, соответствующий спецификациям ANSI.

В отличие от других стандартных локальных сетей, стандарт FDDI изначально ориентировался на высокую скорость передачи (100 Мбит/с) и на применение оптоволоконного кабеля.

Выбор оптоволокна в качестве среды передачи определил такие преимущества новой сети, как высокая помехозащищенность, максимальная секретность передачи информации и прекрасная гальваническая развязка абонентов. Высокая скорость передачи, которая в случае оптоволоконного кабеля достигается гораздо проще, позволяет решать многие задачи, недоступные менее скоростным сетям, например, передачу изображений в реальном масштабе времени. Кроме того, оптоволоконный кабель легко решает проблему передачи данных на расстояние нескольких километров без ретрансляции, что позволяет строить большие по размерам сети, охватывающие даже целые города и имеющие при этом все преимущества локальных сетей (в частности, низкий уровень ошибок).

За основу стандарта FDDI был взят метод маркерного доступа, предусмотренный международным стандартом IEEE 802.5 (Token-Ring). Несущественные отличия от этого стандарта определяются необходимостью обеспечить высокую скорость передачи информации на большие расстояния. Топология сети FDDI – это кольцо, наиболее подходящая топология для оптоволоконного кабеля. В сети применяется два разнонаправленных оптоволоконных кабеля, один из которых обычно находится в резерве, однако такое решение позволяет использовать и полнодуплексную передачу информации (одновременно в двух направлениях) с удвоенной эффективной скоростью в 200 Мбит/с (при этом каждый из двух каналов работает на скорости 100 Мбит/с).

Применяется и звездно-кольцевая топология с концентраторами, включенными в кольцо (как в Token-Ring).

  • Максимальное количество абонентов сети – 1000.
  • Максимальная протяженность кольца сети – 20 километров.
  • Максимальное расстояние между абонентами сети – 2 километра.
  • Среда передачи – многомодовый оптоволоконный кабель (возможно применение витой пары).
  • Метод доступа – маркерный.
  • Скорость передачи информации – 100 Мбит/с (200 Мбит/с для дуплексного режима передачи).

Ограничение на общую длину сети в 20 км связано не с затуханием сигналов в кабеле, а с необходимостью ограничения времени полного прохождения сигнала по кольцу для обеспечения предельно допустимого времени доступа. А вот максимальное расстояние между абонентами (2 км при многомодовом кабеле) определяется как раз затуханием сигналов в кабеле (оно не должно превышать 11 дБ). Предусмотрена также возможность применения одномодового кабеля, и в этом случае расстояние между абонентами может достигать 45 километров, а полная длина кольца – 200 километров.

Имеется также реализация FDDI на электрическом кабеле (CDDI – Copper Distributed Data Interface или TPDDI – Twisted Pair Distributed Data Interface). При этом используется кабель категории 5 с разъемами RJ-45. Максимальное расстояние между абонентами в этом случае должно быть не более 100 метров. Стоимость оборудования сети на электрическом кабеле в несколько раз меньше. Но эта версия сети уже не имеет столь очевидных преимуществ перед конкурентами, как изначальная оптоволоконная FDDI. Электрические версии FDDI стандартизованы гораздо хуже оптоволоконных, поэтому совместимость оборудования разных производителей не гарантируется.

Стандарт FDDI для достижения высокой гибкости сети предусматривает включение в кольцо абонентов двух типов:

  • Абоненты (станции) класса А (абоненты двойного подключения, DAS – Dual-Attachment Stations) подключаются к обоим (внутреннему и внешнему) кольцам сети. При этом реализуется возможность обмена со скоростью до 200 Мбит/с или резервирования кабеля сети (при повреждении основного кабеля используется резервный). Аппаратура этого класса применяется в самых критичных с точки зрения быстродействия частях сети.
  • Абоненты (станции) класса В (абоненты одинарного подключения, SAS – Single-Attachment Stations) подключаются только к одному (внешнему) кольцу сети. Они более простые и дешевые, по сравнению с адаптерами класса А, но не имеют их возможностей. В сеть они могут включаться только через концентратор или обходной коммутатор, отключающий их в случае аварии.

Кроме собственно абонентов (компьютеров, терминалов и т.д.) в сети используются связные концентраторы (Wiring Concentrators), включение которых позволяет собрать в одно место все точки подключения с целью контроля работы сети, диагностики неисправностей и упрощения реконфигурации. При применении кабелей разных типов (например, оптоволоконного кабеля и витой пары)

концентратор выполняет также функцию преобразования электрических сигналов в оптические и наоборот. Концентраторы также бывают двойного подключения (DAC – Dual-Attachment Concentrator) и одинарного подключения (SAC – Single-Attachment Concentrator).


Стандарт FDDI предусматривает также возможность реконфигурации сети с целью сохранения ее работоспособности в случае повреждения кабеля. Поврежденный участок кабеля исключается из кольца, но целостность сети при этом не нарушается вследствие перехода на одно кольцо вместо двух (то есть абоненты DAS начинают работать, как абоненты SAS). Это равносильно процедуре сворачивания кольца в сети Token-Ring.

В отличие от метода доступа, предлагаемого стандартом IEEE 802.5, в FDDI применяется так называемая множественная передача маркера. Если в случае сети Token-Ring новый (свободный) маркер передается абонентом только после возвращения к нему его пакета, то в FDDI новый маркер передается абонентом сразу же после окончания передачи им пакета. Последовательность действий здесь следующая:

  1. Абонент, желающий передавать, ждет маркера, который идет за каждым пакетом.
  2. Когда маркер пришел, абонент удаляет его из сети и передает свой пакет. Таким образом, в сети может быть одновременно несколько пакетов, но только один маркер.
  3. Сразу после передачи своего пакета абонент посылает новый маркер.
  4. Абонент-получатель, которому адресован пакет, копирует его из сети и, сделав пометку в поле статуса пакета, отправляет его дальше по кольцу.
  5. Получив обратно по кольцу свой пакет, абонент уничтожает его. В поле статуса пакета он имеет информацию о том, были ли ошибки, и получил ли пакет приемник.

В сети FDDI не используется система приоритетов и резервирования, как в Token-Ring. Но предусмотрен механизм адаптивного планирования нагрузки, что позволяет абонентам гибко реагировать на загрузку сети и автоматически поддерживать ее на оптимальном уровне.

В заключение следует отметить, что несмотря на очевидные преимущества FDDI данная сеть не получила широкого распространения, что связано главным образом с высокой стоимостью ее аппаратуры (порядка нескольких сот и даже тысяч долларов). Основная область применения FDDI сейчас – это базовые, опорные (Backbone) сети, объединяющие несколько сетей. Применяется FDDI также для соединения мощных рабочих станций или серверов, требующих высокоскоростного обмена.

В настоящее время сети Fast Ethernet и Gigabit Ethernet почти полностью вытеснили FDDI, несмотря на все преимущества данной технологии.

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили пе­ред собой следующие цели:

□ повысить битовую скорость передачи данных до 100 Мбит/с;

□ повысить отказоустойчивость сети за счет стандартных процедур восстанов­ления ее после отказов различного рода — повреждения кабеля, некоррект­ной работы узла, концентратора, возникновения высокого уровня помех на линии и т. п.;

□ максимально эффективно использовать потенциальную пропускную способ­ность сети как для асинхронного, так и для синхронного (чувствительного к задержкам) трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и ре­зервный пути передачи данных между узлами сет Наличие двух колец — это основное средство повышения отказоустойчивости в сети FDDL

Узлы, которые хотят воспользоваться этим повышенным потенциалом надежно­сти, должны быть подключены к обоим кольцам. В технологии FDDI для пере­дачи световых сигналов по оптическим волокнам реализовано кодирование 4В/5В в сочетании с кодированием NRZI. Эта схема приводит к передаче по ли­нии связи сигналов с тактовой частотой 125 МГц.

В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного кольца, этот режим назван сквозным, или транзит­ным. Вторичное кольцо в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может пере­давать данные (например, обрыв кабеля или отказ узла), первичное кольцо объ­единяется со вторичным (рис. 14.3), вновь образуя единое кольцо. Этот режим работы сети называется режимом свертывания колец. Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении (на диаграммах это направление изображается против часо­вой стрелки), а по вторичному — в обратном (изображается по часовой стрелке). Поэтому при образовании общего кольца из двух колец передатчики станций по- прежнему остаются подключенными к приемникам соседних станций, что позво­ляет правильно передавать и принимать информацию соседними станциями.

В стандартах FDDI много внимания отводится различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимое реконфигурацию. Технология FDDI дополняет механизмы обнаружения отка­зов технологии Token Ring механизмами реконфигурирования пути передачи данных в сети, основанными на наличии резервных связей, которые предостав­ляет второе кольцо.

Обрыв кольца
Первичное кольцо Рис. 14.3. Реконфигурация колец FDDI при отказе

Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов* при множественных отказах сеть распадается на/несколько не свя­занных сетей, . ; - .

Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных. Метод доступа к этой среде очень близок к методу доступа сетей Token Ring. Станции FDDI применяют алгоритм раннего освобождения токена, как и сети Token Ring 16 Мбит/с.

Отличия в методах доступа заключаются в следующем:

□ Время удержания токена в сети FDDI не является постоянной величиной, как в сети Token Ring. Это время зависит от загрузки кольца — при неболь­шой загрузке оно растет, а при перегрузках может снижаться до нуля. Однако эти изменения касаются только асинхронного трафика, который не критичен к небольшим задержкам передачи кадров. Для синхронного трафика время удержания токена по-прежнему остается фиксированной величиной.

□ Механизм приоритетов кадров, принятый в Token Ring, в технологии FDDI отсутствует. Разработчики технологии решили, что деление трафика на 8 уров­ней приоритетов избыточно, достаточно разделить трафик на два класса — асинхронный и синхронный, последний из которых обслуживается всегда, даже при перегрузках кольца.

В остальном пересылка кадров между станциями кольца на уровне MAC полно­стью соответствует технологии Token Ring.

Рисунок 14.4 иллюстрирует соответствие стека протоколов технологии FDDI се­миуровневой модели OSI. FDDI определяет протокол физического уровня и протокол подуровня доступа к среде (MAC) канального уровня. Как и во многих других технологиях локальных сетей, в технологии FDDI используется прото­кол подуровня управления логическим каналом LLC.





Сеансовый

Транспортный

LLC 802.2

Рис. 14.4. Стек протоколов технологии FDDI

Специфической особенностью технологии FDDI является уровень администри­рования станции (Station ManagemenT, SMT). Именно уровень SMT выполняет все функции по администрированию и мониторингу всех остальных уровней стека протоколов FDDI. В управлении кольцом принимает участие каждый узел сети FDDI. Поэтому все узлы обмениваются специальными SMT-кадрами для управ­ления сетью.

Отказоустойчивость сетей FDDI обеспечивается протоколами и других уровней: с помощью физического уровня устраняются отказы сети по физическим причи­нам, например из-за обрыва кабеля, а с помощью уровня MAC — логические от­казы сети, например потеря нужного внутреннего пути передачи токена и кадров данных между портами концентратора.

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили пе­ред собой следующие цели:

□ повысить битовую скорость передачи данных до 100 Мбит/с;

□ повысить отказоустойчивость сети за счет стандартных процедур восстанов­ления ее после отказов различного рода — повреждения кабеля, некоррект­ной работы узла, концентратора, возникновения высокого уровня помех на линии и т. п.;

□ максимально эффективно использовать потенциальную пропускную способ­ность сети как для асинхронного, так и для синхронного (чувствительного к задержкам) трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и ре­зервный пути передачи данных между узлами сет Наличие двух колец — это основное средство повышения отказоустойчивости в сети FDDL

Узлы, которые хотят воспользоваться этим повышенным потенциалом надежно­сти, должны быть подключены к обоим кольцам. В технологии FDDI для пере­дачи световых сигналов по оптическим волокнам реализовано кодирование 4В/5В в сочетании с кодированием NRZI. Эта схема приводит к передаче по ли­нии связи сигналов с тактовой частотой 125 МГц.

В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного кольца, этот режим назван сквозным, или транзит­ным. Вторичное кольцо в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может пере­давать данные (например, обрыв кабеля или отказ узла), первичное кольцо объ­единяется со вторичным (рис. 14.3), вновь образуя единое кольцо. Этот режим работы сети называется режимом свертывания колец. Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении (на диаграммах это направление изображается против часо­вой стрелки), а по вторичному — в обратном (изображается по часовой стрелке). Поэтому при образовании общего кольца из двух колец передатчики станций по- прежнему остаются подключенными к приемникам соседних станций, что позво­ляет правильно передавать и принимать информацию соседними станциями.

В стандартах FDDI много внимания отводится различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимое реконфигурацию. Технология FDDI дополняет механизмы обнаружения отка­зов технологии Token Ring механизмами реконфигурирования пути передачи данных в сети, основанными на наличии резервных связей, которые предостав­ляет второе кольцо.

Обрыв кольца
Первичное кольцо Рис. 14.3. Реконфигурация колец FDDI при отказе

Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов* при множественных отказах сеть распадается на/несколько не свя­занных сетей, . ; - .

Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных. Метод доступа к этой среде очень близок к методу доступа сетей Token Ring. Станции FDDI применяют алгоритм раннего освобождения токена, как и сети Token Ring 16 Мбит/с.

Отличия в методах доступа заключаются в следующем:

□ Время удержания токена в сети FDDI не является постоянной величиной, как в сети Token Ring. Это время зависит от загрузки кольца — при неболь­шой загрузке оно растет, а при перегрузках может снижаться до нуля. Однако эти изменения касаются только асинхронного трафика, который не критичен к небольшим задержкам передачи кадров. Для синхронного трафика время удержания токена по-прежнему остается фиксированной величиной.

□ Механизм приоритетов кадров, принятый в Token Ring, в технологии FDDI отсутствует. Разработчики технологии решили, что деление трафика на 8 уров­ней приоритетов избыточно, достаточно разделить трафик на два класса — асинхронный и синхронный, последний из которых обслуживается всегда, даже при перегрузках кольца.

В остальном пересылка кадров между станциями кольца на уровне MAC полно­стью соответствует технологии Token Ring.

Рисунок 14.4 иллюстрирует соответствие стека протоколов технологии FDDI се­миуровневой модели OSI. FDDI определяет протокол физического уровня и протокол подуровня доступа к среде (MAC) канального уровня. Как и во многих других технологиях локальных сетей, в технологии FDDI используется прото­кол подуровня управления логическим каналом LLC.


Сеансовый

Транспортный

LLC 802.2

Рис. 14.4. Стек протоколов технологии FDDI

Специфической особенностью технологии FDDI является уровень администри­рования станции (Station ManagemenT, SMT). Именно уровень SMT выполняет все функции по администрированию и мониторингу всех остальных уровней стека протоколов FDDI. В управлении кольцом принимает участие каждый узел сети FDDI. Поэтому все узлы обмениваются специальными SMT-кадрами для управ­ления сетью.

Отказоустойчивость сетей FDDI обеспечивается протоколами и других уровней: с помощью физического уровня устраняются отказы сети по физическим причи­нам, например из-за обрыва кабеля, а с помощью уровня MAC — логические от­казы сети, например потеря нужного внутреннего пути передачи токена и кадров данных между портами концентратора.

FDDI (англ. Fiber Distributed Data Interface — Волоконно-оптический распределенный интерфейс передачи данных) — стандарт передачи данных в локальной сети, протянутой на расстоянии до 200 километров. Стандарт основан на протоколе Token Ring. Кроме большой территории, сеть FDDI способна поддерживать несколько тысяч пользователей [Источник 1] .

Содержание

История

Стандарт был разработан в середине 80-х годов Национальным Американским Институтом Стандартов (ANSI). В этот период быстродействующие АРМ проектировщика уже начинали требовать максимального напряжения возможностей существующих локальных сетей (LAN) (в основном Ethernet и Token Ring).Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

  • Повысить битовую скорость передачи данных до 100 Мб/с.
  • Повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т.п.
  • Максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного трафиков.

После завершения работы над FDDI, ANSI представила его на рассмотрение в ISO.ISO разработала международный вариант FDDI, который полностью совместим с вариантом стандарта, разработанным ANSI [Источник 2] .

Описание стандарта

Основы технологий

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Использование двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят им воспользоваться, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля первичного (Primary) кольца, поэтому этот режим назван режимом Thru - "сквозным" или "транзитным". Вторичное кольцо (Secondary) в этом режиме не используется [Источник 2] .

Технические условия FDDI

Стандарт FDDI определяется 4-мя техническими условиями:

  • Media Access Control (MAC) (Управление доступом к носителю)

определяет способ доступа к носителю, включая формат пакета, обработку маркера, адресацию, алгоритм CRC (проверка избыточности цикла) и механизмы устранения ошибок.

  • Physical Layer Protocol (PHY) (Протокол физического уровня)

определяет процедуры кодирования/декодирования информации, требования к синхронизации, формированию кадров и другие функции.

определяет конфигурацию станций FDDI, конфигурацию кольцевой сети и особенности управления кольцевой сетью, включая вставку и исключение станций, инициализацию, изоляцию и устранение неисправностей, составление графика и набор статистики [Источник 2] . Дата обновления: 12.09.2018

Физические соединения

Стандарт FDDI устанавливает применение двойных кольцевых сетей. Трафик по этим кольцам движется в противоположных направлениях. В физическом выражении кольцо состоит минимум из двух двухточечных соединений между смежными станциями. Одно из двух колец FDDI называется первичным кольцом, другое-вторичным кольцом. Первичное кольцо используется для передачи данных, в то время как вторичное кольцо обычно является дублирующим.

"Станции Класса В" или "станции, подключаемые к одному кольцу" (SAS) подсоединены к одной кольцевой сети; "станции класса А" или "станции, подключаемые к двум кольцам" (DAS) подсоединены к обеим кольцевым сетям. SAS подключены к первичному кольцу через "концентратор", который обеспечивает связи для множества SAS. Koнцентратор отвечает за то, чтобы отказ или отключение питания в любой из SAS не прерывали кольцо. Это особенно необходимо, когда к кольцу подключен РС или аналогичные устройства, у которых питание часто включается и выключается.

На рисунке представлена типичная конфигурация FDDI, включающая как DAS, так и SAS.

Каждая DAS FDDI имеет два порта, обозначенных А и В. Эти порты подключают станцию к двойному кольцу FDDI. Следовательно, как это показано на рисунке, каждый порт обеспечивает соединение как с первичным, так и со вторичным кольцом.

Типы трафика

FDDI поддерживает распределение полосы пропускания сети в масштабе реального времени, что является идеальным для ряда различных типов прикладных задач. FDDI обеспечивает эту поддержку путем обозначения двух типов трафика: синхронного и асинхронного.

Синхронный трафик может потреблять часть общей полосы пропускания сети FDDI, равную 100 Mb/сек; остальную часть может потреблять асинхронный трафик. Синхронная полоса пропускания выделяется тем станциям, которым необходима постоянная возможность передачи.

Распределение асинхронной полосы пропускания производится с использованием восьмиуровневой схемы приоритетов. Каждой станции присваивается определенный уровень приоритета пользования асинхронной полосой пропускания. FDDI также разрешает длительные диалоги, когда станции могут временно использовать всю асинхронную полосу пропускания.

Механизм приоритетов FDDI может фактически блокировать станции, которые не могут пользоваться синхронной полосой пропускания и имеют слишком низкий приоритет пользования асинхронной полосой пропускания [Источник 2] .

Форматы блока данных

Форматы блока данных FDDI представленные на рисунке аналогичны форматам Token Ring.

  • preamble - заголовок подготавливает каждую станцию для приема прибывающего блока данных.
  • start delimiter - ограничитель начала указывает на начало блока данных. Он содержит сигнальные структуры, которые отличают его от остальной части блока данных.
  • frame control - поле управления блоком данных указывает на размер адресных полей, на вид данных, содержащихся в блоке (синхронная или асинхронная информация), и на другую управляющую информацию.
  • destination address - также, как у Ethernet и Token Ring, размер адресов равен 6 байтам. Поле адреса назначения может содержать односоставный (единственный), многосоставный (групповой) или широковещательный (все станции) адрес, в то время как адрес источника идентифицирует только одну станцию, отправившую блок данных.
  • data - информационное поле содержит либо информацию, предназначенную для протокола высшего уровня, либо управляющую информацию.
  • frame check sequence - также, как у Token Ring и Ethernet, поле проверочной последовательности блока данных (FCS) заполняется величиной "проверки избыточности цикла" (CRC), зависящей от содержания блока данных, которую вычисляет станция- источник. Станция пункта назначения пересчитывает эту величину, чтобы определить наличие возможного повреждения блока данных при транзите. Если повреждение имеется, то блок данных отбрасывается.
  • end delimiter - ограничитель конца содержит неинформационные символы, которые означают конец блока данных.
  • frame status - поле состояния блока данных позволяет станции источника определять, не появилась ли ошибка, и был ли блок данных признан и скопирован принимающей станцией [Источник 2] .

Отказоустойчивость сетей FDDI

Стандарт ANSI X3T9.5 регламентирует 4 основных отказустойчивых свойства сетей FDDI:

  1. Кольцевая кабельная система со станциями класса А отказоустойчива к однократному обрыву кабеля в любом месте кольца. На рис. 3 показан пример обрыва как первичного, так и вторичного волокон в кольцевом кабеле. Станции, находящиеся по обе стороны обрыва, переконфигурируют путь циркуляции маркера и данных, подключая для этого вторичное волоконно-оптическое кольцо.
  2. Выключение питания, отказ одной из станций класса В или обрыв кабеля от концентратора до этой станции будет обнаружен концентратором, и произойдет отключение станции от кольца.
  3. Две станции класса В подключены сразу к двум концентраторам. Этот специальный вид подключения называется Dual Homing и может быть использован для отказоустойчивого (к неисправностям в концетраторе или в кабельной системе) подключения станций класса В за счет дублирования подключения к основному кольцу. В нормальном режиме обмен данными происходит только через один концентратор. Если по какой-либо причине связь теряется, то обмен будет осуществляться через второй концентратор.
  4. Выключение питания или отказ одной из станций класса А не приведет к отказу остальных станций, подключенных к кольцу, т. к. световой сигнал будет рпосто пассивно передаваться к следующей станции через оптический переключатель (Optical Bypass Switch). Стандарт допускает иметь до трех последовательно расположенных выключенных станций [Источник 3] .

Основные технические характеристики

  • Максимальное количество абонентов сети – 1000.
  • Максимальная протяженность кольца сети – 20 километров.
  • Максимальное расстояние между абонентами сети – 2 километра.
  • Среда передачи – многомодовый оптоволоконный кабель (возможно применение электрической витой пары).
  • Метод доступа – маркерный.
  • Скорость передачи информации – 100 Мбит/с (200 Мбит/с для дуплексного режима передачи).

Как видим, FDDI имеет большие преимущества по сравнению со всеми рассмотренными ранее сетями. Даже сеть Fast Ethernet, имеющая такую же пропускную способность 100 Мбит/с, не может сравниться с FDDI по допустимым размерам сети и допустимому количеству абонентов. К тому же маркерный метод доступа FDDI обеспечивает в отличие от CSMA/CD гарантированное время доступа и отсутствие конфликтов при любом уровне нагрузки. Отметим, что ограничение на общую длину сети в 20 км связано не с затуханием сигналов в кабеле, а с необходимостью ограничения времени полного прохождения сигнала по кольцу для обеспечения предельно допустимого времени доступа. А вот максимальное расстояние между абонентами (2 км при многомодовом кабеле) определяется как раз затуханием сигналов в кабеле (оно не должно превышать 11 дБ). Предусмотрена также возможность применения одномодового кабеля, и в этом случае расстояние между абонентами может достигать 45 километров, а полная длина кольца - 100 километров. Имеется и реализация FDDI на электрическом кабеле (CDDI — Copper Distributed Data Interface или TPDDI - Twisted Pair Distributed Data Interface). При этом используется кабель категории 5 с разъемами RJ-45. Максимальное расстояние между абонентами в этом случае должно быть не более 100 м. Стоимость оборудования сети на электрическом кабеле в несколько раз меньше. Но эта версия сети уже не имеет столь очевидных преимуществ перед своими конкурентами, как изначальная FDDI [Источник 4] .

Формат блока данных

Формат фрейма FDDI:

PA SD FC DA SA PDU FCS ED/FS
16 бит 8 бит 8 бит 48 бит 48 бит up to 4478x8 бит 32 бит 16 бит

Форматы блока данных FDDI (Представлены в таблице) аналогичны форматам Token Ring.

Preamble (PA) — Заголовок подготавливает каждую станцию для приема прибывающего блока данных.

Start Delimitter (SD) — Ограничитель начала указывает на начало блока данных. Он содержит сигнальные структуры, которые отличают его от остальной части блока данных.

Frame control (FC) — Поле управления блоком данных указывает на размер адресных полей, на вид данных, содержащихся в блоке (синхронная или асинхронная информация), и на другую управляющую информацию.

Destination address (DA), Source address (SA) — Также, как у Ethernet и Token Ring, размер адресов равен 6 байтам. Поле адреса назначения может содержать односоставный (единственный), многосоставный (групповой) или широковещательный (все станции) адрес, в то время как адрес источника идентифицирует только одну станцию, отправившую блок данных.

Protocol data unit (PDU) — Информационное поле содержит либо информацию, предназначенную для протокола высшего уровня, либо управляющую информацию.

End delimiter (ED) — Ограничитель конца содержит неинформационные символы, которые означают конец блока данных.

Frame status (FS) — Поле состояния блока данных позволяет станции источника определять, не появилась ли ошибка, и был ли блок данных признан и скопирован принимающей станцией [Источник 1] .

Стандарты

Примеры использования

Приложения клиент-сервер

FDDI применяется для подключения оборудования, требующего широкой полосы пропускания от ЛВС. Непосредственно к сети FDDI могут быть подключены некоторые рабочие станции, требующие высоких скоростей обмена данными.Рабочие станции пользователей подключаются через многопортовые мосты FDDI-Ethernet. Мост осуществляет фильтрацию и передачу пакетов не только между FDDI и Ethernet, но и между различными Ethernet-сетями. Пакет данных будет передан только в тот порт, где находится узел назначения, сохраняя полосу пропускания других ЛВС. Со стороны сетей Ethernet их взаимодействие эквивалентно связи через магистраль (backbone), только в этом случае она физически существует не в виде распределенной кабельной системы, а целиком сосредочена в многопортовом мосту. В зависимости от каждого конкретного случая (расстояния между серверами, условия эксплуатации) требования к надежности, стоимость и т. д.) серверы могут подключаться к FDDI либо как станции класса А, либо как станции класса В.

FDDI в качестве backbone магистрали

FDDI применяется для связи ЛВС протокола Ethernet, расположенных в нескольких зданиях. Как правило, в каждом из зданий достаточно разместить по одному многопортовому мосту. В зависимости от концентрации рабочих станций, каждый из Ethernet портов может обслуживать один или несколько этажей здания [Источник 3] .

Читайте также: