Работа силы 9 класс физика кратко

Обновлено: 02.07.2024

Работа постоянной силы при прямоугольном движении тела – физическая величина, равная произведению модулей силы, перемещения и косинуса угла между ними.

Работа силы тяжести не зависит от формы траектории.

Консервативные силы – работа силы тяжести и силы упругости не зависит от формы траектории тела, а определяется только его начальным и конечным положениями.

Работа консервативных сил по замкнутой траектории равна нулю.

Потенциальная энергия – работа, совершаемая консервативными силами над взаимодействующими телами, равна изменению с обратным знаком величины.

Суммарная работа всех сил (как внешних, так и внутренних), действующих на систему тел, равна изменению кинетической энергии этой системы.

Работа силы — это мера действия силы, зависящая от ее модуля и направления, а также от перемещения точки приложения силы. Для постоянной силы и прямолинейного перемещения работа определяется равенством:

Работа силы

Работа силы

где F — сила, действующая на тело, — перемещение, α — угол между силой и перемещением.

Работа силы

Работа силы

Работа силы равна произведению модулей силы и перемещения и косинуса угла между ними, т. е. скалярному произведению векторов F и .

I. Равномерное прямолинейное движение

1. Скорость
2. Проекция скорости на координатную ось
3. Перемещение
4. Проекция перемещения на координатную ось

II. Равноускоренное прямолинейное движение

5. Средняя скорость при неравномерном прямолинейном движении
6. Ускорение
7. Скорость
8. Перемещение
9. Координата тела
10. Ускорение свободного падения

III. Равномерное движение по окружности

11. Угловая скорость
12. Частота обращения
13. Период обращения
14. Линейная скорость
15. Центростремительное ускорение

IV Законы Ньютона

16. Первый закон Ньютона
17. Второй закон Ньютона
18. Третий закон Ньютона

V Силы в природе

19. Закон Гука
20. Закон всемирного тяготения
21. Гравитационная постоянная
22. Сила тяжести
23. Ускорение свободного падения
24. Вес покоящихся и движущихся тел.

VI. Движение тела под действием силы тяжести

25. Движение тела под углом к горизонту.
26. Горизонтально брошенное тело.
27. Скорость искусственного спутника Земли.

VII. Силы трения

28. Трение покоя.
29. Трение скольжения.
30. Коэффициент трения.
31. Движение тела под действием силы трения.

VIII. Движение тела под действием нескольких сил

32. Условие равновесия тела (как материальной точки)
33. Движение тела по наклонной плоскости.
34. Движение связанных тел через неподвижный блок.

IX. Законы сохранения в механике

36. Импульс тела
37. Импульс силы
38. Закон сохранения импульса
39. Механическая работа силы
40. Теорема о кинетической энергии
41. Потенциальная энергия поднятого тела
42. Работа силы тяжести
43. Потенциальная энергия деформированного тела
44. Закон сохранения полной механической энергии

X. Движение жидкостей и газов по трубам

45. Закон Бернулли

Дополнительные материалы

Девять самых необходимых (самых востребованных) формул по физике в 9 классе.

Физика 9 класс. Все формулы и определения

Таблицы физических величин

основные физические величины



В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Работа силы"

Все мы с детства знаем, что такое физическая работа. Самые элементарные действия, такие как, пододвинуть стол или нести рюкзак — это та или иная работа. И на эту работу, как мы говорим, нужно затратить силы.


Работа силы — это величина, характеризующая воздействие силы, в зависимости как от самой силы, так и от перемещения тела, к которому была приложена сила.

Мы, наверняка скажем, что нести рюкзак целый километр вдвое тяжелее, чем нести этот же рюкзак всего полкилометра. Хотя для того, чтобы удержать рюкзак на спине требуется одна и та же сила, не зависимо от расстояния, которое вы преодолеете.

Таким образом, работа силы в механике равна произведению силы и перемещения тела, к которому была приложена сила:


Напомним, что и сила, и перемещение являются векторными величинами. Если направление силы, вызвавшей перемещение, не совпадает с направлением самого перемещения, то работа определяется как произведение модуля силы, модуля перемещения и косинуса угла между направлением силы и направлением перемещения.

Поскольку косинус любого угла не может быть больше единицы, и косинус 0 о равен единице, можно заключить, что максимальная работа выполняется тогда, когда сила приложения направлена так же, как и перемещение. Это хорошо подтверждается и бытовыми наблюдениями.

Если же, напротив, сила, приложенная к телу, перпендикулярна его перемещению, то работа этой силы равна нулю. Действительно: как бы мы сильно ни воздействовали на то или иное тело, это воздействие не может привести к его движению в направлении, перпендикулярном приложенной силе.

Поскольку косинус принимает отрицательные значения, если аргумент больше, чем 90 о , в этом случае, работа будет отрицательной. Ярким примером такой работы является работа силы трения, о которой мы в отдельности поговорим чуть позже. Ведь сила трения препятствует движение, а, значит, совершает отрицательную работу.


Заметим, что работа, сама по себе, не может быть куда-либо направлена, хотя и определяется с помощью векторных величин. Поэтому, работа является скалярной величиной.

Если на тело действуют несколько сил, то сумма работ всех сил равна работе равнодействующей силы.


Единицей измерения работы является джоуль:

1 Дж — это работа, совершаемая силой 1 Н на перемещении 1 м, при условии, что направление этой силы совпадает с направлением перемещения.

Можно привести множество примеров совершения механической работы. Например, если человек двигает шкаф, то он совершает работу. Чем бо́льшую силу он прикладывает, и чем больше перемещает шкаф, тем бо́льшую работу он совершает. Лошадь может тянуть телегу с постоянной скоростью, но чем дальше телега уедет, тем бо́льшую работу совершит лошадь.



Так вот, в механике, говоря о работе силы, имеют ввиду полезную работу.

Примеры решения задач.

Задача 1. Человек толкнул телегу, приложив силу под углом 45° к горизонту. Модуль этой силы равен 120 Н. Пренебрегая трением, определите работу силы, приложенной человеком, если тележка проехала 3 м в горизонтальном направлении?



Задача 2. При растяжении пружины на 70 см, работа силы упругости составляет . Найдите коэффициент жесткости этой пружины.


И тут у нас возникает сложность: ведь сила упругости, как мы помним, зависит от того, насколько сильно растянули пружину, поэтому, мы не можем найти силу упругости, просто разделив работу на перемещение. Тем не менее, зависимость силы упругости от растяжения является линейной, а, следовательно, график зависимости силы упругости от растяжения будет являться прямой линией. Если мы построим такой график, то убедимся, что площадь под ним будет равна работе силы упругости.

Читайте также: