Приведите примеры проявления силы тяготения кратко

Обновлено: 28.06.2024

1. Что было названо всемирным тяготением?

Всемирным тяготением было названо взаимное притяжение всех тел во Вселенной.

2. Как иначе называются силы всемирного тяготения?

Силы всемирного тяготения иначе называются гравитационными (от латинского gravitas- "тяжесть").

3. Кто и в каком веке открыл закон всемирного тяготения?

Закон всемирного тяготения был открыт Исааком Ньютоном в XVII веке.

4. Как читается закон всемирного тяготения?

Два любых тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс, и обратно пропорционально квадрату расстояния между ними.

5. Запишите формулу, выражающую закон всемирного тяготения.

6. В каких случаях следует применять эту формулу для расчета гравитационных сил?

Формулу можно применить для расчета гравитационных сил, если тела можно принять за материальные точки: 1) если размеры тел много меньше, чем расстояния между ними; 2) если два тела имеют шарообразную форму и однородны; 3) если одно тело, шарообразной формы во много раз больше по массе и размеру второго.

7. Притягивается ли Земля к висящему на ветке яблоку?

В соответствии с законом всемирного тяготения яблоко притягивает Землю с такой же силой, что и Земля яблоко, только противоположно направленной.

1. Приведите примеры проявления силы тяготения.

Падение тел на землю под действием силы тяжести, притяжение небесных тел (Земли, Луны, солнца, планет, комет, метеоритов) друг к другу.

2. Космическая станция летит от Земли к Луне. Как меняется при этом модуль вектора силы её притяжения к Земле? к Луне? С одинаковыми или различными по модулю силами притягивается станция к Земле и Луне, когда она находится посередине между ними? Все три ответа обоснуйте. (Известно, что масса Земли примерно в 81 раз больше массы Луны).

3. Известно, что масса Солнца в 330 000 раз больше массы Земли. Верно ли, что Солнце притягивает Землю в 330 000 раз сильней, чем Земля притягивает Солнце? Ответ поясните.

Нет, тела притягивают друг друга с одинаковыми силами, т.к. сила притяжения пропорциональна произведению их масс.

4. Мяч, подброшенный мальчиком, в течение некоторого времени двигался вверх. При этом его скорость всё время уменьшалась, пока не стала равной нулю. Затем мяч стал падать вниз, с возрастающей скоростью. Объясните: а) действовала ли на мяч сила притяжения к Земле, во время его движения вверх; вниз; б) что послужило причиной уменьшения скорости мяча при его движении вверх; увеличения его скорости при движении вниз; в) почему при движении мяча вверх его скорость уменьшалась, а при движении вниз - увеличивалась.

а) да, сила притяжения действовала на всем пути; б) всемирная сила тяготения (притяжение Земли); в) при движении вверх скорость и ускорение тела разнонаправлены, а при движении вниз - сонаправлены.

5. Притягивается ли к Луне человек, стоящий на Земле? Если да, то к чему он притягивается сильнее: к Луне или к Земле? Притягивается ли Луна к этому человеку? Ответы обоснуйте.

Да, все тела притягиваются друг к другу, но сила притяжения человека к Луне, много меньше чем к Земле, т.к. Луна находится значительно дальше.

При изучении школьного курса физики важной темой раздела механики является Закон всемирного тяготения. В данной статье подробнее рассмотрим, что он собой представляет, и с помощью какой математической формулы описывается, а также приведем примеры силы тяготения в повседневной жизни человека и космических масштабах.

Кто открыл Закон всемирного тяготения

Прежде чем приводить примеры силы всемирного тяготения, расскажем кратко, кому приписывают ее открытие.

С давних времен люди наблюдали за звездами и планетами и знали, что они движутся по определенным траекториям. Кроме того, любой человек, не обладающий специальными знаниями, понимал, что как бы далеко и высоко он не бросал камень или другой предмет, тот всегда падал на землю. Но ни один из людей даже не догадывался, что процессами на Земле и небесными телами управляет один и тот же природный закон.

Вам будет интересно: Лорд - это. Значение и происхождение слова

Исаак Ньютон

В 1687 году сэр Исаак Ньютон опубликовал научный труд, в котором впервые изложил математическую формулировку Закона всемирного тяготения. Конечно же, Ньютон не самостоятельно пришел к этой формулировке, что признавал лично. Он использовал некоторые идеи своих современников (например, существование обратной пропорциональности от квадрата расстояния силы притяжения между телами), а также накопленный экспериментальный опыт о траекториях движения планет (три закона Кеплера). Гений Ньютона проявил себя в том, что проанализировав весь имеющийся опыт, ученый смог его оформить в виде стройной и практически пригодной теории.

Формула силы тяготения

Закон Всемирного тяготения

Кратко сформулировать Закон всемирного тяготения можно так: между всеми телами во Вселенной существует сила притяжения, которая обратно пропорциональна квадрату дистанции между их центрами масс и прямо пропорциональна произведению самих масс тел. Для двух тел с массами m1 и m2, которые друг от друга находятся на расстоянии r, изучаемый закон запишется в виде:

Здесь величина G - это постоянная гравитации.

Силу притяжения можно рассчитывать по этой формуле во всех случаях, если расстояния между телами достаточно велики по сравнению с их размерами. В противном случае, а также в условиях сильной гравитации вблизи массивных космических объектов (нейтронных звезд, черных дыр) следует использовать разработанную Эйнштейном теорию относительности. Последняя рассматривает гравитацию как результат искажения пространства-времени. В классическом же законе Ньютона гравитация - это результат взаимодействия тел с некоторым энергетическим полем, подобно электрическому или магнитному полям.

Проявление силы тяготения: примеры из повседневной жизни

Во-первых, в качестве таких примеров можно назвать любые падения тел с некоторой высоты. Например, листа или знаменитого яблока с дерева, падение камня, капель дождя, явления горных обвалов и оползней. Во всех этих случаях тела стремятся к центру нашей планеты.

Снежная лавина

Во-вторых, когда учитель просит учащихся: "Приведите примеры силы тяготения", то им также следует вспомнить о существовании у всех тел веса. Когда телефон лежит на столе или когда человек взвешивается на весах, в этих случаях тело давит на опору. Вес тела - это яркий пример проявления силы тяготения, который совместно с реакцией опоры образует пару уравновешивающих друг друга сил.

Если формулу из предыдущего пункта использовать для земных условий (подставить в нее массу планеты и ее радиус), то можно получить следующее выражение:

Именно его используют при решении задач с силой тяжести. Здесь g - это ускорение, сообщаемое всем телам независимо от их массы при свободном падении. Если бы не существовало сопротивления воздуха, то тяжелый камень и легкое перышко падали бы за одно и то же время с одинаковой высоты.

Тяготение во Вселенной

Солнечная система

Каждый знает, что Земля вместе с другими планетами вращается вокруг Солнца. В свою очередь, Солнце, находясь в одном из рукавов спиральной галактики Млечный путь, вращается вместе с сотнями миллионов звезд вокруг ее центра. Сами галактики также приближаются друг к другу в так называемых местных скоплениях. Если вернуться назад в масштабах, то следует вспомнить спутники, которые вращаются вокруг своих планет, астероиды, которые на эти планеты падают или пролетают рядом. Все перечисленные случаи можно вспомнить, если учитель просит школьников: "Приведите примеры силы тяготения".

Отметим, что в последние десятилетия вопрос главной силы в космическом масштабе поставлен под сомнение. В локальном космосе ею без сомнения является сила гравитации. Однако, рассматривая вопрос на уровне галактики, в игру вступает иная, пока еще неизвестная сила, связанная с темной материей. Последняя проявляет себя в виде антигравитации.

2. Космическая станция летит от Земли к Луне. Как меняется при этом модуль вектора силы её притяжения к Земле; к Луне? С одинаковыми или различными по модулю силами притягивается станция к Земле и Луне, когда она находится посередине между ними? Если силы различны, то какая больше и во сколько раз? Все ответы обоснуйте. (Известно, что масса Земли примерно в 81 раз больше массы Луны.)

3. Известно, что масса Солнца в 330000 раз больше массы Земли. Верно ли, что Солнце притягивает Землю в 330000 раз сильней, чем Земля притягивает Солнце? Ответ поясните.

4. Мяч, подброшенный мальчиком, в течение некоторого времени двигался вверх. При этом его скорость всё время уменьшалась, пока не стала равной нулю. Затем мяч стал падать вниз с возрастающей скоростью. Объясните: а) действовала ли на мяч сила притяжения к Земле во время его движения вверх; вниз; б) что послужило причиной уменьшения скорости мяча при его движении вверх; увеличения его скорости при движении вниз; в) почему при движении мяча вверх его скорость уменьшалась, а при движении вниз — увеличивалась.

5. Притягивается ли к Луне человек, стоящий на Земле? Если да, то к чему он притягивается сильнее — к Луне или к Земле? Притягивается ли Луна к этому человеку? Ответы обоснуйте.

При помощи закона всемирного тяготения можно вычислить массу планет и их спутников; объяснить такие явления, как приливы и отливы воды в океанах, и многое другое.

Силы всемирного тяготения – самые универсальные из всех сил природы. Они действуют между любыми телами, обладающими массой, а массу имеют все тела. Для сил тяготения не существует никаких преград. Они действуют сквозь любые тела.

все что существует на этом свете-человек, жи вотное растение, миниралы, даже невидимые нашему глазу микробы-подчиняются закону тяготения, так считают!

Сила тяготения, возникающая между двумя телами, зависит от их масс и от расстояния между ними. Масса — это мера количества вещества, содержащегося в теле. Это постоянная величина. Любые два тела, даже два яблока, притягиваются друг к другу, но так как их массы малы, то и сила тяготения незначительна. Сила тяготения между двумя небольшими телами так мала, что ее нельзя ощутить. Зато сила тяготения, возникающая между Землей и другими телами, весьма ощутима, поскольку масса Земли велика. сила притяжения на Луне астронавтаСила земного тяготения заставляет все предметы, в том числе падающий каштан, падать на Землю. Вес показывает, с какой силой действует тяготение на объект определен­ной массы. Вес предмета, который мы держим в руках — это и есть сила земного тяготения, влекущая этот предмет вниз. Чем дальше тело находится от центра Земли, тем меньше действующая на него сила тяготения. Из-за этого на вершине горы вес будет чуть меньше, чем у её подножия. А на Луне вы будете весить значительно меньше, поскольку сила тяготения на Луне в шесть раз меньше, чем на Земле.

Сила тяготения, возникающая между двумя телами, зависит от их масс и от расстояния между ними. Масса — это мера количества вещества, содержащегося в теле. Это постоянная величина. Любые два тела, даже два яблока, притягиваются друг к другу, но так как их массы малы, то и сила тяготения незначительна. Сила тяготения между двумя небольшими телами так мала, что ее нельзя ощутить. Зато сила тяготения, возникающая между Землей и другими телами, весьма ощутима, поскольку масса Земли велика. сила притяжения на Луне астронавтаСила земного тяготения заставляет все предметы, в том числе падающий каштан, падать на Землю. Вес показывает, с какой силой действует тяготение на объект определен­ной массы. Вес предмета, который мы держим в руках — это и есть сила земного тяготения, влекущая этот предмет вниз. Чем дальше тело находится от центра Земли, тем меньше действующая на него сила тяготения. Из-за этого на вершине горы вес будет чуть меньше, чем у её подножия. А на Луне вы будете весить значительно меньше, поскольку сила тяготения на Луне в шесть раз меньше, чем на Земле.


Гравитация похожа на любовь — тела притягиваются с равными по модулю силами, которые уменьшаются с увеличением расстояния. Правда, силы еще и увеличиваются за счет увеличения массы, но сделаем вид, что все равно похоже.

О чем эта статья:

Гравитационное взаимодействие

Земля — это большой магнит. Причем на самом деле магнит, с настоящим магнитным полем. Но сейчас речь пойдет о другом явлении — явлении притяжения тел к Земле, от прыгающего с дерева котика до летящего мимо астероида. Называется это явление гравитацией.

Возьмем два тела — одно с большой массой, другое с маленькой. Натянем гигантское полотно ткани и положим на него тело с большей массой. После чего положим туда тело с массой поменьше. Мы будем наблюдать примерно такую картину:

Маленькое тело начнет притягиваться к тому, что больше, — это и есть гравитация. По сути, Земля — это большой шарик, а все остальные предметы — маленький (даже если это вовсе не шарики).

Гравитационное взаимодействие универсально. Оно справедливо для всех видов материи. Гравитация проявляется только в притяжении — отталкивание тел гравитация не предусматривает.

Из всех фундаментальных взаимодействий гравитационное — самое слабое. Хотя гравитация действует между всеми элементарными частицами, она настолько слаба, что ее принято не учитывать. Все дело в том, что гравитационное взаимодействие зависит от массы объекта, а у частиц она крайне мала. Эту зависимость впервые сформулировал Исаак Ньютон.

Закон всемирного тяготения

В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

Формула силы тяготения согласно этому закону выглядит так:

Закон всемирного тяготения

F — сила тяготения [Н]

M — масса первого тела (часто планеты) [кг]

m — масса второго тела [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 · 10 −11 м 3 · кг −1 · с −2

Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше примерно в шесть раз.

Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.

Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.

Задачка раз

Две планеты с одинаковыми массами обращаются по круговым орбитам вокруг звезды. У первой из них радиус орбиты вдвое больше, чем у второй. Каково отношение сил притяжения первой и второй планеты к звезде?

Решение

По закону всемирного тяготения сила притяжения планеты к звезде обратно пропорциональна квадрату радиуса орбиты. Таким образом, в силу равенства масс отношение сил притяжения к звезде первой и второй планет обратно пропорционально отношению квадратов радиусов орбит:




По условию, у первой планеты радиус орбиты вдвое больше, чем у второй, то есть R1 = 2R2.




Ответ: отношение сил притяжения первой и второй планет к звезде равно 0,25.

Онлайн-уроки физики в Skysmart не менее увлекательны, чем наши статьи!

Задачка два

У поверхности Луны на космонавта действует сила тяготения 144 Н. Какая сила тяготения действует со стороны Луны на того же космонавта в космическом корабле, движущемся по круговой орбите вокруг Луны на расстоянии трех лунных радиусов от ее центра?

Решение

По закону всемирного тяготения сила притяжения космонавта со стороны Луны обратно пропорциональна квадрату расстояния между ним и центром Луны. У поверхности Луны это расстояние совпадает с радиусом спутника. На космическом корабле, по условию, оно в три раза больше. Таким образом, сила тяготения со стороны Луны, действующая на космонавта на космическом корабле, в 9 раз меньше, чем у поверхности Луны, то есть:

Ответ: на расстоянии трех лунных радиусов от центра сила притяжения космонавта будет равна 16 Н.

Ускорение свободного падения

Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.

Сила тяжести — сила, с которой Земля притягивает все тела.

Сила тяжести

F — сила тяжести [Н]

m — масса тела [кг]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2 , но подробнее об этом чуть позже. 😉

На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.

Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.




Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора.

Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.

На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.

Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к ней притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:

Приравниваем правые части:

Делим на массу тела левую и правую части:

Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.

Закон всемирного тяготения

g — ускорение свободного падения [м/с 2 ]

M — масса планеты [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 · 10 −11 м 3 · кг −1 · с −2

Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.

Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.

Но разве это не зависит еще и от массы предмета?

Нет, не зависит. На самом деле все тела падают одинаково вне зависимости от массы. Если мы возьмем перо и мяч, то перо, конечно, будет падать медленнее, но не из-за ускорения свободного падения. Просто из-за небольшой массы пера сопротивление воздуха оказывает на него большее воздействие, чем на мяч. А вот если бы мы поместили перо и мяч в вакуум, они бы упали одновременно.

Третий закон Ньютона

Третий закон Ньютона обобщает огромное количество опытов, которые показывают, что силы — результат взаимодействия тел.

Он звучит так: тела действуют друг на друга с силами, равными по модулю и противоположными по направлению.

Если попроще — сила действия равна силе противодействия.

Если вам вдруг придется объяснять физику во дворе, то можно сказать и так: на каждую силу найдется другая сила. 🙈

Третий закон Ньютона

F1 — сила, с которой первое тело действует на второе [Н]

F2 — сила, с которой второе тело действует на первое [Н]

Так вот, для силы тяготения третий закон Ньютона тоже справедлив. С какой силой Земля притягивает тело, с той же силой тело притягивает Землю.

Задачка для практики

Земля притягивает к себе подброшенный мяч с силой 5 Н. С какой силой этот мяч притягивает к себе Землю?

Решение

Согласно третьему закону Ньютона, сила, с которой Земля притягивает мяч, равна силе, с которой мяч притягивает Землю.

Ответ: мяч притягивает Землю с силой 5 Н.

Поначалу это кажется странным, потому что мы ассоциируем силу с перемещением: мол, если сила такая же, то на то же расстояние подвинется Земля. Формально это так, но у мяча масса намного меньше, чем у Земли. И Земля смещается на такое крошечное расстояние, притягиваясь к мячу, что мы его не видим, в отличие от падения мяча.

Если каждый брошенный мяч смещает Землю на какое-то расстояние, пусть даже крошечное, возникает вопрос — как она еще не слетела с орбиты из-за всех этих смещений. Но тут как в перетягивании каната: если его будут тянуть две равные по силе команды, канат никуда не сдвинется. Так же и с нашей планетой.

Читайте также: