Принципы составления уравновешенных питательных растворов синергизм антагонизм аддитивность кратко

Обновлено: 02.07.2024

Минимальная концентрация электролита, вызывающая за данный промежуток времени определённый видимый эффект коагуляции, называется порогом коагуляции(γ) или критической концентрацией (скрит).

Коагуляцию вызывает ион противополжного знака знаку заряда коллоидной частицы: для положительных – анион, для отрицательных – катион, вводимого в систему электролита. Коагулирующее действие иона тем выше, чем выше его заряд (правило Шульце-Гарди).

1. Аддитивность – это суммирование коагулирующего действия ионов, вызывающих коагуляцию.Аддитивность наблюдается обычно при сходстве коагулирующей способности обоих электролитов. Например, смесь солей KCl и NaNO3 проявляет аддитивное действие по отношению к коллоидным системам как с отрицательно, так и с положительно заряженными гранулами. В первом случае коагуляцию вызывают катионы К + и Na + , во втором – анионы Cl ‾ и NO3 ‾ .

2. Антагонизм – это ослабление коагулирующего действия одного иэлектролита в присутствии другого.

В этом случае электролиты как бы противодействуют друг другу и для коагуляции их следует добавить больше, чем требуется по правилу аддитивности. Антагонизм наблюдается при большом различии в коагулирующем действии электролитов. Одной из причин антагонизма может служить химическое взаимодействие между ионами. Например, коагулирующее действие иона Pb + по отношению к отрицательно заряженным гранулам ослабляется в присутствии хлорида натрия, так как протекает реакция образования осадка PbCl2.

3.Синергизм – это усиление коагулирующего действия одного электролита в присутствии другого. Электролиты как бы способствуют друг другу – их для коагуляции требуется меньше, чем нужно по правилу аддитивности. Условия, при которых наблюдается синергизм, сформулировать трудно.

Синергизм действия возможен, когда между электролитами происходит химическое взаимодействие, приводящее к образованию нового многозарядного иона. Например, коагулирующее действие FeCl3 и KCNS по отношению к положительно заряженным гранулам (коагулирующие ионы Cl ‾ и CNS ‾ ) усиливается во много раз из-за образования в растворе иона [Fe(CNS)6] 3- , который проявляет более высокую коагулирующую способность.

Минимальная концентрация электролита, вызывающая за данный промежуток времени определённый видимый эффект коагуляции, называется порогом коагуляции(γ) или критической концентрацией (скрит).

Коагуляцию вызывает ион противополжного знака знаку заряда коллоидной частицы: для положительных – анион, для отрицательных – катион, вводимого в систему электролита. Коагулирующее действие иона тем выше, чем выше его заряд (правило Шульце-Гарди).

1. Аддитивность – это суммирование коагулирующего действия ионов, вызывающих коагуляцию.Аддитивность наблюдается обычно при сходстве коагулирующей способности обоих электролитов. Например, смесь солей KCl и NaNO3 проявляет аддитивное действие по отношению к коллоидным системам как с отрицательно, так и с положительно заряженными гранулами. В первом случае коагуляцию вызывают катионы К + и Na + , во втором – анионы Cl ‾ и NO3 ‾ .

2. Антагонизм – это ослабление коагулирующего действия одного иэлектролита в присутствии другого.

В этом случае электролиты как бы противодействуют друг другу и для коагуляции их следует добавить больше, чем требуется по правилу аддитивности. Антагонизм наблюдается при большом различии в коагулирующем действии электролитов. Одной из причин антагонизма может служить химическое взаимодействие между ионами. Например, коагулирующее действие иона Pb + по отношению к отрицательно заряженным гранулам ослабляется в присутствии хлорида натрия, так как протекает реакция образования осадка PbCl2.

3.Синергизм – это усиление коагулирующего действия одного электролита в присутствии другого. Электролиты как бы способствуют друг другу – их для коагуляции требуется меньше, чем нужно по правилу аддитивности. Условия, при которых наблюдается синергизм, сформулировать трудно.

Синергизм действия возможен, когда между электролитами происходит химическое взаимодействие, приводящее к образованию нового многозарядного иона. Например, коагулирующее действие FeCl3 и KCNS по отношению к положительно заряженным гранулам (коагулирующие ионы Cl ‾ и CNS ‾ ) усиливается во много раз из-за образования в растворе иона [Fe(CNS)6] 3- , который проявляет более высокую коагулирующую способность.

Антагонизм и синергизм макро- и микроэлементов

20.12.2017

Макро- и микроэлементы, составляющие основу питания и оказывающие влияние на жизнедеятельность не только растений, но и всех живых организмов, находятся в тесном взаимодействии друг с другом. Поэтому главным фактором, обеспечивающим нормальный рост, развитие и функционирование культур, является соблюдение правильного баланса химических составляющих в питательной среде и в самом растении.

Всем культурам, в зависимости от их жизненного цикла, генотипических особенностей их биохимического состава и окружающей среды, требуется определенное соотношение питательных веществ. Этот баланс имеет более важное значение, чем фактическая концентрация отдельных элементов в питательном растворе. Ни один химический элемент в природе не действует изолированно от других.

При этом правильное соотношение микроэлементов в питании с учетом их взаимодействия между собой является не менее значимым и сложным, чем баланс макроэлементов. Чтобы обеспечить растения сбалансированным составом элементов, необходимо учитывать не только их физиологическую роль в жизни культур по отдельности, но и оказываемое влияние на растительный организм в результате их совместного действия.


Почти все элементы, входящие в состав питательных веществ, находятся между собой в одной из двух форм взаимодействия: антагонистической либо синергической. Игнорирование этого фактора приводит к несбалансированным реакциям внутри самого растения, в результате чего оно получает стресс, который может оказаться губительным.

Антагонизм между элементами возникает в том случае, если их общее участие в химических реакциях приводит к ухудшению действия одного из них. Так, избыток одного элемента может снижать уровень поглощения корневой системой растения другого элемента. Вот некоторые примеры антагонизма макро- и микроэлементов:

· чрезмерное количество N (азота) уменьшает поглощение P (фосфора), К (калия), Fe (железа ) и некоторых других элементов: Ca (кальция), Mg (магния), Mn (марганца), Zn (цинкa), Cu (меди);


· чрезмерное количество Р (фосфора) уменьшает поглощение катионов таких микроэлементов как Fe (железо), Mn (марганец), Zn (цинк) и Cu (медь);


· чрезмерное количество К (калия) уменьшает поглощение Mg (магния) в большей степени и Ca (кальция) в меньшей степени;


· чрезмерное количество Ca (кальция) снижает поглощение Fe (железа);


· чрезмерное количество Fe (железа) снижает поглощение Zn (цинка);


· избыток Zn (цинка) ухудшает доступность Mn (марганца).

В отличие от антагонизма синергизм представляет собой комплексное действие элементов (двух или более), при котором достигается усиление положительного результата их влияния на растение. С помощью практических и лабораторных исследований установлены такие примеры синергизма элементов:

· достаточное количество N (азота) обеспечивает оптимальное поглощение K (калия), а также P (фосфора), Mg (магния), Fe (железа), Mn (марганца) и Zn (цинка) из почв;


· достаточный уровень Cu (меди) и B (бора) в почве улучшает поглощение N (азота);


· oптимальнoе количество Мо (молибдена) повышает усваиваемость культурами N (азота), а также увеличивает поглощение Р (фосфора);


· достаточное количество Ca (кальция) и Zn (цинка) улучшают усвоение P (фосфорa) и K (калия);


· оптимальный уровень S (серы) повышает поглощение Mn (марганца) и Zn (цинка);


· достаточное количество Mn (марганца) увеличивает поглощение Cu (меди).


Нередко помимо этих двух групп элементов (антагонистов и синергистов) выделяют также третью группу, куда входят элементы, блокирующие действие друг друга. Например, одновременное присутствие в питательном растворе Cu (меди) и Ca (кальция) приводит к поглощению растением лишь одного из этих компонентов.


Таблица

Явление, когда два или более элементов при совместном действии создают эффект улучшения физиологического состояния растения, называется синергизмом . В обратном случае, когда избыток одного из элементов уменьшает поглощение другого, наблюдается физиологический антагонизм . Эти взаимодействия зависят от типа почвы, физических свойств, рН, окружающей среды, температуры и доли участвующих питательных веществ.

Синергизм и антагонизм элементов связаны с электронным строением их атомов и ионов. Если наблюдается сходство в строении двух или более элементов, то они способны замещать друг друга в биохимических системах, что и вызывает антагонизм этих питательных веществ.

Агрономы всегда должны учитывать конкуренцию элементов, содержащих аналогичные по размеру, валентности и заряду ионы. Это очень важно при составлении сбалансированного комплекса удобрений, необходимых для прогрессирующего развития культур. Явления синергизма и антагонизма питательных веществ имеют особо критическое значение для растений, когда содержание этих элементов в почве приближено к дефициту.

Недостаток или избыток элементов питания в растениях может быть обусловлен не только их количеством, но и возможным проявлением антагонизма или синергизма при их поглощении из почвы и усвоении из удобрений. В итоге это отражается на питании культур, урожайности и качестве. Однако на практике при составлении стратегии внесения удобрений этот фактор часто игнорируют.

Когда соотношение элементов питания важнее их содержания?

Согласно статистике, на первом месте в ряду неблагоприятных факторов, вызывающих заболевания растений и человека, стоит нарушение питания. Для сельскохозяйственных культур сбалансированное минеральное питание макро- и микроэлементами определяет их развитие, устойчивость к неблагоприятным факторам среды, урожайность и качество растениеводческой продукции.

Между различными макро- и микроэлементами существуют сложные взаимоотношения. Элементы, похожие между собой по физико-химическим свойствам или размеру атомов, могут активно взаимодействовать или конкурировать в системах, которые ответственны за их всасывание, транспорт или метаболизм. Необходимо хорошо представлять такого рода взаимоотношения, чтобы избежать потерь одних элементов при внесении других.

Впервые о вопросах взаимодействия между элементами питания растений начали задумываться ещё в XIX веке. Тогда опытным путем было установлено, что растения лучше растут при определенном балансе между питательными элементами в растворе.

Физиологически уравновешенным считают такой почвенный раствор, в котором катионы и анионы находятся в оптимальном соотношении, что обеспечивает наиболее эффективное использование растением питательных веществ.

Растение поглощает больше тех элементов, в которых нуждается. При этом соотношение между элементами не менее важно, чем абсолютное содержание каждого из них. При использовании минеральных удобрений наиболее значимыми для питания культур являются следующие соотношения между ионами: N : S, NO 3 : K, NO 3 : Ca, NO 3 : Mo, SO 4 : Ca и P : Ca.

Таблица 1. Соотношение N:Р:К в растениях кукурузы при нормальных условиях питания и увлажнения, % [1]

Таблица 2. Оптимальное соотношение между элементами в отдельных культурах во время цветения* [4]

КультураN/ZnP/ZnCa/BFe/MnS/ZnZn/MnK/MnFe/CuFe/Cu+Zn
Пшеница7501406000,51003035041
Сахарная свекла (середина вегетации)12001103501,513030225133
Люцерна10001307501,5705055062
Кукуруза10001003002803040012,53,5
Соя9009050011004020082

*рассчитано по значениям содержания в ррт, 1 ррт = 1 мг\кг

Опасность дефицита в питании.

Следствием любого дефицита питания является снижение урожайности и ценности продукции. Неполноценное питание подрывает иммунитет растений, ослабляя их противостояние грибным и бактериальным инфекциям. Таким примером является сухая гниль корнеплодов свеклы. Это заболевание способно обесценить практически весь урожай, а его истинной и легко устраняемой причиной является нехватка бора в период вегетации растений. Дефицит элемента не всегда обусловлен его недостатком в почве или растении. Он может вызываться взаимодействием с другими элементами, приводя к нарушению физиологических функций у растений. Пример ‒ функциональный (кальциевый) хлороз, который проявляется в обесцвечивании листьев или угнетении точек роста (на посевах льна).

Видимые симптомы дефицита микроэлементов могут проявляться на известкованных почвах с высоким значением рН (более 6,0), в условиях низкой обеспеченности почвы их подвижными формами или при выращивании чувствительных к их недостатку культур и нарушении технологии возделывания.

Внешне признаки нарушения условий питания культур проявляются, когда в обмене их веществ произошли глубокие изменения, последствия которых полностью ликвидировать уже невозможно.

Элементы питания по их способности перемещаться в растениях делятся на:

‒ повторно используемые, или реутилизируемые (N, Р, К, Мg),

‒ слабореутилизируемые (Са, В, Сu, Мn, Fe, Zn).

Недостаток повторно используемых элементов питания четко проявляется на состоянии уже развитых, закончивших рост листьев, а слабореутилизируемых ‒ на самых молодых, растущих частях растений.

Виды взаимодействия между элементами.

Между различными ионами (элементами питания) в среде возможно проявление синергизма или антагонизма, а также отсутствие их взаимодействия.

Как правило, ионы с противоположными зарядами взаимно ускоряют свое поступление в растение. Пример – поглощение растениями азота (ионов NO - 3 ) стимулирует поступление в них кальция (Са 2+ ). Явление синергизма также свойственно меди с кобальтом, молибденом и магнием, цинку с бором, магнию с серой и молибденом, а также кальцию с кобальтом. При совместном действии (синергии) урожай выше, чем от применения каждого элемента в отдельности.

Антагонизмэто конкуренция между ионами одного заряда и торможение поступления в растение (Са 2+ и К + , Са 2+ и Мg 2+ , К + и NH + 4 , Са 2+ и Н + ), что отрицательно сказывается на урожае. Так, установлено, что цинк конкурирует с железом, магнием и медью, алюминий – с натрием, а кальций – с железом. Антагонизм присущ почвенным растворам на кислых и щелочных почвах. На почвах с нейтральной реакцией среды антагонизм ионов играет положительную роль, поскольку право выбора поглощения анионов и катионов остается за растением.

Одновременное присутствие в растворе нескольких видов катионов и анионов благодаря антагонизму создает благоприятные условия для развития растения. Вредный избыток какого-либо катиона или аниона всегда можно ослабить соответствующим ионом. Например, поступление иона NО 3 – можно ускорить прибавлением катиона Ca 2+ , а вредный избыток Ca 2+ ослабить Mg 2+ . Вредное действие Н + и Аl 3+ в кислой почве устраняется Са 2+ и Mg 2+ . В этом смысле известкование кислых почв решает многие проблемы питания культур.

Наиболее часто конкурентные взаимодействия свойственны катионам: H + , K + , NH 4+ , Ca 2+ , Mg 2+ . Анионами-антагонистами являются Cl - , NO 3 - , HCO 3 - , SO 4 2- , H 2 PO 4 .

Антагонизм анионов менее выражен и свою отрицательную роль может играть в неуравновешенных растворах, при резком преобладании того или иного иона. Это хорошо изучено на примере известкования почв, когда резкое повышение концентрации кальция может снизить поступление в растения К и Мg.

Отдельные микроэлементы также могут тормозить всасывание других. Однако это происходит лишь при длительном и избыточном поступлении более активного конкурента-антагониста. В случае сбалансированного питания конкуренция будет незначительной.

Взаимодействия между ионами имеют сложную природу. Отклонение концентрации одного элемента на 30-100% от его оптимального содержания в субстрате ведет к изменению поглощения растением других элементов питания. Так, повышение концентрации элемента сминимума до оптимального значения активизирует процессы обмена веществ в растении и как следствие – стимулирует поступление других элементов (синергизм). При дальнейшем повышении концентрации этого элемента в растворе соотношение элементов питания уже нарушается. Так синергические отношения могут перейти в антагонистические.

Явление антагонизма и синергизма в поглощении макро- и микроэлементов может определяться:

- реакцией среды (рН),

- уровнем содержания в среде и растении других элементов минерального питания, их соотношениями,

- видом растений, особенностью их корневой системы,

- температурой, освещенностью и влажностью.

Взаимодействие элементов может происходить в разных средах – в почве, в зоне корневой системы и внутри растения.

Взаимодействие элементов в почве.

В почве содержатся вещества, способные образовывать устойчивые соединения с компонентами удобрений. Так, при внесении фосфорных удобрений или избыточном содержании фосфатов в почве снижается доступность для растений цинка. Аммиачные и аммонийные азотные удобрения также могут образовывать малорастворимые комплексные соединения с цинком и медью. Основным влиянием азотных удобрений является изменение рН почвенного раствора в сторону подкисления, что отражается на увеличении доступности для культур марганца и на других почвенных реакциях. В известкованных почвах отмечается дефицит всех микроэлементов, кроме молибдена. Поэтому даже в отсутствие видимых симптомов недостатка микроэлементов навысокопродуктивных посевах обязательно вносят микроудобрения в некорневые подкормки.

При избытке магния в почве наблюдается его антагонистическое действие на поступление Са и К в растения. Поэтому при регулярном известковании кислых почв доломитовой мукой, которая содержит магний, проводят мониторинг содержания обменного Mg. В условиях Беларуси, где длительное время почвы известкуются доломитовой мукой, запасы магния в почвах выросли в несколько раз. В итоге при содержании обменного магния в почвах республики более 300 мг MgО/кг он отрицательно влияет на дальнейший рост урожайности культур. Оптимальным считается эквивалентное соотношение Са 2+ : Mg 2+ в почвах в пределах от 2 до 7. Соотношение катионов кальция к магнию на пашне Беларуси в настоящее время составляет от 4,1 до 3,2, а на луговых землях – от 5,4 до 3,4, находясь в допустимом диапазоне. Содержание подвижного калия (К 2 О) в почве принято считать избыточным, если оно превышает 4,5% от ёмкости катионного обмена на песчаных и супесчаных почвах и 5% ‒ на суглинистых (Богдевич И.М., 2011).

Взаимодействие между элементами питания отражается и на качестве растениеводческой продукции. Так, накопление калия в сухом веществе кормовых культур должно находиться в пределах оптимума – от 1,2 до 2,2% (К) и не превышать допустимую зоотехническую норму 3%, а эквивалентное соотношение катионов К/Са + Mg следует поддерживать на уровне 1,6-2,2 (Богдевич И.М., 2008, 2011).

Для развития большинства культур оптимальна близкая к нейтральной реакция среды – рН 6,0-6,5. Но надо знать, что для различных удобрений она широко варьирует: для аммонийного питания – рН 7,0, для нитратного – рН 5,5.

Прямое воздействие кислотности среды на питание растений сводится к изменению количества ионов Н + , НСО 3 – , ОН – на поверхности корневых волосков. В зависимости от рН нарушается поступление в растения либо катионов, либо анионов, изменяется растворимость соединений. Так, при подкислении почв улучшается питание растений фосфором и микроэлементами. Однако дальнейшее подкисление уже кислых почв (с рН 5,0-5,5) ухудшает доступность кальция, магния, аммиачного азота и калия. Повышенное содержание в кислом почвенном растворе Al 3+ и Mn 2+ может стать токсичным для отдельных культур. Действие повышенной кислотности усиливается при низкой освещенности и избыточном увлажнении.

В зависимости от температуры окружающей среды изменяется реакция раствора на удобрения. Оптимальная температура воздуха для потребления растениями фосфора и азота ‒23-25° С. При низких температурах (ниже 10°С) особенно плохо усваивается фосфор, а лучше всего – калий.

Элементы питания наиболее интенсивно поступают в растения при оптимальной влажности почвы около 60% от полной влагоемкости, обеспечивающей стабильное физиологическое состояние, хорошее развитие корней и быстрый транспорт ионов к поверхности корней.

Взаимодействие в ризосфере и поглощение корневой системой растений.

Микроорганизмы наиболее активно развиваются в зоне соприкосновения с корнем растений (в ризосфере). Ризосферные микроорганизмы используют для своего питания корневые выделения, не позволяя им накапливаться в токсичных для растения концентрациях. Однако микрофлора почвы может играть как положительную, так и отрицательную роль.

Полезные микроорганизмы способствуют переводу труднорастворимых элементов почвы и удобрений в биодоступные формы, фиксируют атмосферный азот, выделяют биологически активные вещества: витамины, стимуляторы роста и другие полезные вещества. При этом они могут вызывать и негативные для растений процессы: биологическую иммобилизацию, газообразные потери азота при денитрификации, а некоторые микробы выделяют токсичные соединения.

Полезные микроорганизмы предпочитают слабокислую или нейтральную реакцию почвенной среды. Поэтому важно применять удобрения и технологии, способствующие развитию полезных и подавлению вредных организмов.

Между ионами с похожими свойствами при их транспортировке через плазматическую мембрану корневого волоска наблюдается конкуренция. Катионы конкурируют с другими катионами, а анионы – с другими анионами. Физико-химическое сходство между ионами не позволяет эффективно различать их. Так, трудно различимы при поступлении в растения сульфат (SO 2- 4 ) и селенат (SeO 2- 4 ) ионы, сульфат (SO 2- 4 ) и молибдат (МоO 2- 4 ) ионы и др.

Чувствительность растений к концентрации раствора.

На питание растений влияет общая концентрация почвенного раствора. Верхний предел находится в интервале 2-3 г/л раствора всех питательных солей, вызывая пропорциональный рост интенсивности поглощения элементов питания. При избыточной концентрации растения вянут и погибают. Особенно вредна для культур повышенная концентрация микроэлементов. Наиболее чувствительны к повышенной концентрации лён, морковь, люпин и огурцы, а также все молодые растения.

Взаимодействие внутри растения и метаболизм.

Если в почве Zn и P ведут себя как антагонисты, то в растении они уже помогают друг другу (синергизм). При дефиците цинка в растении угнетается поступление фосфора. Синергизм между N и K определяется ролью калия в качестве активатора фермента нитратредуктазы, принимающего участие в метаболизме азота в растении.

Взаимодействие бора с калием объясняется схожестью их влияния на процессы цветения и образования плодов, деления клеток, водный обмен в растении и др. Оптимальный уровень бора повышает проницаемость клеточных мембран для калия.

Недостаток в растении серы приводит к ограниченному поглощению азота, а высокие дозы азота вызывают дефицит серы. В растениях оптимальное соотношение N:S ‒ 5:1-12:1.

Только оптимальное содержание в растении N обеспечивает нормальное поступление в них из почвы К, Р, Mg, Fe, Mn и Zn, а оптимальный уровень бора и меди улучшает поглощение растениями азота. Молибден повышает усвоение азота и фосфора.

Избыток фосфора в сильной мере угнетает поглощение растением катионов микроэлементов – Fe, Mn, Zn и Cu. Избыток калия угнетает поступление в растения Mg и в меньшей мере Са, Fe, Cu, Mn и Zn. Избыток кальция приводит к снижению поступления В, Mn, K и Cu.

Повышаем эффективность использования элементов питания.

В агрономической практике существуют приемы преодоления антагонизма и стимулирования синергизма элементов питания.

1. Вносить элементы питания разными способами: обработка семян, внесение в почву, некорневая подкормка. От совместного использования этих приемов в системе удобрения культур достигается наибольший эффект.

Не забывайте при этом, что листовая подкормка не является основным источником элемента при его дефиците в почве, а только как дополнение. Обработка семян микроэлементами, преимущественно в форме хелатов, также оберегает их от антагонизма с другими ионами почвенного раствора. Известно, что раствор карбамида в некорневую подкормку стимулирует проникновение железа в растения.

2. Корректировать сроки внесения разных элементов в период вегетации в соответствии с биологической потребностью культур. Так, синергизм между N и K можно использовать при их совместном внесении.

3. Учитывать особенности развития корневой системы, когда NР-удобрения можно вносить на значительную глубину.

4. Учитывать свойства разных форм вносимых удобрений (физиологически кислые или щелочные).

5. Хороший эффект даёт использование смешанных посевов культур (бобовых излаковых).

Литература.

2. Оптимизация и поддержание агрохимических свойств дерново-подзолистых почв, обеспечивающих стабильно высокую урожайность и качество продукции основных сельскохозяйственных культур: рекомендации / И.М. Богдевич [и др.]. – Минск: Ин-т почвоведения и агрохимии, 2011.

Синергизм и антагонизм

17981 Семеноводство и гибридизация

Синергизм и антагонизм

Для хорошего роста и развития растениям, да и не только растениям, но и всему живому, нужно сбалансированное питание. Чтобы обеспечить растениям сбалансированность элементами, необходимо иметь точные знания о физиологической роли каждого питательного элемента, благодаря чему можно понять, каким будет оптимальный срок его внесения. Важн ым есть и учет взаимодействия различных элементов в организме растения между собой, ведь именно это поможет улучшить условия развития растений. Между различными элементами питания может возникать одно из двух явлений:

· Синергизм – усиление одним элементом действия другого;

· Антагонизм – подавление одним из элементов другого.

То, какое явление будет преобладать, зависит от физико-химических свойств элементов, особенностей почвы и культур, но его несбалансированные реакции могут стать причиной химических стрессов у растений.

Антагонизм

Антагонизм – явление, которое предусматривает торможения поступления одного иона через добавление другого. Оно возникает в том случае, когда совместное действие двух элементов меньше суммы действующих элементов по одиночке. Иными словами, при антагонизме велик объем усвоения растением одного элемента питания, способного привести к дефициту в растительном организме другого питательного элемента. Действие антагонизма проявляется в том, что во время поглощения растением различных элементов, их катионы конкурируют между собой. Антагонизм может проходить двумя путями: так микроэлемент может блокировать поглощение микроэлемента, или микроэлемент ингибирует поглощение макроэлементов.

Наиболее остро антагонизм проявляется тогда, когда ионы являются одноименно заряженными, а также в тех случаях, когда в грунтовом растворе концентрация одних ионов является большей, чем концентрация других.

Ярким примером антагонистического влияния можно назвать реакцию у фосфатов. Таким образом, внесение и усвоения растением в больших количествах фосфора (Р) полностью блокирует усвоение ею кальция (Са) и магния (Мg).

Синергизм и его особенности

Кроме антагонизма, известно и явление синергизма – когда действие одних ионов значительно усиливает влияние других ионов. Наблюдается явление в том случае, когда совместное действие элементов питания выше, чем сумма влияния каждого из них в отдельности. Однако, кроме вышеупомянутого, положительного синергизма, существует и отрицательный – когда токсическое воздействие на растительный организм одной соли значительно усиливает токсичность другой.

Наблюдается синергизм как между катионами и анионами, которые имеют разный заряд, так и между заряженными одноименно. Однако последний вариант чаще всего возможен тогда, когда в почвенном растворе их содержание является достаточно небольшим.

Хорошим примером синергизма является одновременное внесение азота (N) с фосфором (Р), калием (К), кальцием (Са) или магнием (Мg), ведь эти элементы хорошо дополняют действие друг друга и способны улучшить усвоение растением каждого из них.

Кроме элементов антагонистов и синергистов выделяют элементы, которые способны блокировать друг друга. Это можно увидеть из таблицы: при одновременном внесении Zn и Ca, или Ca и Cu, растение будет усваивать только один элемент, например, Zn, или Ca или или Ca, или Cu.

Все особенности антагонистических и синергических явлений, которые возникают при сочетании различных элементов питания, необходимо учитывать во время разработки стратегии питания выращиваемых культур. Ведь неправильное сочетание компонентов питания может привести к негативным последствиям, которые в конечном итоге изменят урожайность культуры в худшую сторону.

Читайте также: