Принцип работы гирокомпаса кратко

Обновлено: 05.07.2024

Принцип превращения гироскопа в гирокомпас

Для обеспечения мореплавания в открытом море необходимо иметь фиксированное направление, по отношению к которому можно было бы определить путь корабля. Обычно выбор такого направления связывается явлениями, происходящими в природе. На первый взгляд, таким опорными направлением могло бы стать направление на восход или заход Солнца. Однако люди давно заметили, что место восхода и захода Солнца изо дня в день меняется. Кроме того, оно изменяется и при перемене широты места. Но вместе с тем люди заметили, что направление, по которому наблюдается максимальная высота Солнца, остается неизменным в различных широтах независимо от времени года. Следовательно, существует направление, которое всегда постоянно по отношению к Земле.
Из рис. 1 видно, что независимо от φ этим направлением является линия вокруг которой вращается плоскость истинного горизонта со скоростью
. Имеется также и устройство, способное сохранять неизменным в инерциальном пространстве направление своей оси. Это свободный гироскоп. Но этот прибор по отношению к Земле имеет видимое движение, как в горизонтальной, так и в вертикальной плоскости. Для того чтобы гироскоп был способен удерживать направление неизменным по отношению к Земле, необходимо заставить его прецессировать в горизонтальной плоскости со скоростью вращения меридиана . Тогда, совершая движение по отношению к инерциальному пространству, гироскоп будет неподвижным относительно Земли. Чтобы гироскоп прецессировал, требуется приложить к нему внешний момент.
Существует несколько технических вариантов превращения свободного гироскопа в гирокомпас: понижение центра тяжести свободного гироскопа относительно точки подвеса (положительный маятник); применение системы сообщающихся сосудов, заполненных жидкостью (эффект отрицательного маятника), и использование индикатора горизонта (маятника) в схеме управления астатическим гироскопом через моментные датчики.
В любом из них связь гироскопа с Землей осуществляется через силу тяжести. Рассмотрим физическую сущность превращения гироскопа в гирокомпас за счет понижения центра масс.
На рис. 2 показан гироскоп, ось собственного вращения которого горизонтальна. Центр тяжести гироскопа G находится ниже точки подвеса О. В этом случае сила тяжести P=mg никакого момента не создает, так как отсутствует плечо действия силы P. Если же вектор H уйдет из плоскости горизонта, т. е. появится угол β, то сила тяжести создаст момент Ly, под действием которого гироскоп будет прецессировать вокруг вертикальной оси (в плоскости горизонта).
Теперь рассмотрим поведение такого гироскопа по отношению к Земле. На рис. 3 изображены: плоскость горизонта Q, плоскость меридиана М и плоскость S перпендикулярная к М и Q. На плоскость S будем проектировать вектор кинетического момента Н в процессе движения гироскопа.
Отклоним гироскоп от меридиана к востоку на угол α (на плоскости S точка 1). плоскостей Q и М с угловыми скоростями ω1 и ω2 будет наблюдаться видимое движение гироскопа со скоростями υ1 и υ2. Ось собственного вращения гироскопа пойдет по траектории к точке 2. В той точке вследствие появления угла β у гироскопа возникает прецессия в сторону меридиана со скоростью υ3=υ2. Гироскоп видимым образом поднимается над плоскостью горизонта. С увеличением угла β возрастает момент Ly, создаваемый силой тяжести Р. увеличивается скорость прецессионного движения υ3 гироскопа к меридиану. При этом скорость видимого движения υ1 уменьшается. В результате гироскоп по траектории 2, 3, 4 приходит в меридиан. Точка 4 характерна тем, что здесь отсутствует движение υ1, а движение υ3 имеет максимальную скорость, так как угол β=max. Гироскоп уйдет из меридиана к западу, постепенно приближаясь к плоскости горизонта (траектория 4, 5, 6, 7). Дальнейшее движение оси собственного вращения гироскопа будет происходить по траектории 7, 8, 1.
Таким образом, гироскоп с пониженным центром тяжести описывает траекторию в виде эллипса, вытянутого в плоскости горизонта. Большая полуось этого эллипсоида приподнята над плоскостью горизонта (в северной широте) на угол β. Так как в точках 1 и 6 момент Ly=mgαβ уравновешивает гироскопический момент от вертикальной составляющей вращения Земли Ry=Hωзsinφ, то mgαβ=Hωзsinφ.
Отсюда β=(Hωз sinφ)/B, Где B=mga – модуль маятникого момента.
Тогда скорость прецессии гироскопа под действием момента Ly будет ωп=Ly/H=Bβ/H=ωз sinφ.
Это означает, что угловая скорость прецессии равна скорости вращения меридиана. Если установить ось собственного вращения гироскопа в меридиане под углом β к горизонту, то гироскоп будет удерживать направление, совпадающее с линией В любом другом положении гироскоп будет описывать относительно меридиана эллипс, отклоняясь вправо и влево на одинаковый угол α. Гироскоп совершает незатухающие колебания. Положением динамического равновесия гироскопа являются координаты α=0; β=(H/B)ωзsinφ. Аналогично можно показать, что применение любого из указанных способов превращения свободного гироскопа в гирокомпас приводит к такому же результату.
Поскольку гироскоп описывает незатухающие колебания относительно меридиана, такое устройство можно назвать гирокомпасом. Для полного решения задачи получения морского гирокомпаса необходимо к гироскопу дополнительно приложить демпфирующий момент, который обеспечит затухание колебаний. Ось собственного вращения гироскопа в данном случае, совершив ряд колебаний установится в положении динамического равновесия.
Таким образом, общим принципом создания морского гирокомпаса является наложение на свободный гироскоп управляющих моментов под действием которых его ось собственного вращения займет по отношению к Земле вполне определенное направление, совпадающее с линией (на неподвижном судне), вокруг которой поворачивается плоскость истинного меридиана.

Координаты положения равновесия ЧЭ ГК с НУ в ГСК

Определим координаты вокруг которых происходят незатухающие колебания гиросферы при установке гирокомпаса на неподвижном основании. Эти координаты:

называются координатами положения равновесия ЧЭ (гиросферы). Анализ показывает, что в положении равновесия главная ось ЧЭ находится в плоскости истинного меридиана (αр=0) и, кроме того, в северной широте приподнята над плоскостью истинного горизонта на угол θр (в южной широте опущена на этот же угол под плоскостью истинного горизонта). Подъем главной оси x ЧЭ на угол θр вызывает прецессию гиросферы вокруг вертикальной оси n с угловой скоростью, равной вертикальной составляющей суточного вращения Земли . Постоянная угловая скорость прецессии ωп при неизменном модуле вектора Н возможна при постоянном по величине момента Ly, т. е. при условии θ=const≈3′. Последнее возможно только в том случае, если вектор Н (главная ось ЧЭ) ориентирована по линии, вокруг которой вращается в ИСК плоскость горизонта.
Для подвижного основания (V≠0) плоскость истинного горизонта кроме вращения вокруг полуденной линии с угловой скоростью в общем случае вращается вокруг оси ОЕ с угловой скоростью . В результате сложения этих двух угловых скоростей вращение плоскости истинного горизонта происходит с угловой скоростью вокруг линии, которая отклонена от плоскости истинного меридиана на величину δV – скоростной погрешности, где . Направление вектора ω1V называется компасным меридианом.

Принцип построения ГК с НУ и выработки гирокомпасного курса

Выводы:
-Современные ГК с НУ являются двухгироскопными. Двухгироскопный ЧЭ обеспечивает регулировку периода незатухающих колебаний путем разведения гиромоторов и гироскопическую стабилизацию ЧЭ вокруг главной оси;
-В положении равновесия главная ось ЧЭ ориентируется под постоянным углом возвышения θр над линией, вокруг которой происходит вращение плоскости истинного горизонта. Для неподвижного основания это полуденная линия NS, а при V≠0 вокруг суммарного вектора ω1V. В этом случае главная ось в азимуте отклонена от истинного меридиана на величину скоростной погрешности – δV.
-Момент силы тяжести Lym обеспечивает прецессию ЧЭ вокруг главной оси со скоростью вращения плоскости истинного меридиана.
-Под действием момента упругости растянутых пружин вокруг главной оси ЧЭ прецессирует вокруг главной оси со скоростью вращения плоскости истинного горизонта в инерциальном пространстве.

Гирокомпас — это навигационное устройство, указывающее строго на северный географический полюс и работающий по принципу гироскопа. То есть это устройство имеет некоторые общие черты с магнитным компасом, но устройство его, размеры и правила применения отличаются от таковых у компаса магнитного.

На фото — стандартный судовой гирокомпас:

Такие размеры типичны для гирокомпаса, что делает его неприменимым для туризма.

У гирокомпаса имеются как определенные достоинства перед магнитным компасом, за счет которых его применяют в том числе в областях, в которых требуется более высокая точность, так и недостатки, из-за которых, например, в туризме он не нашел применения. И о таких плюсах и минусах, и о принципе его действия мы далее и поговорим.

Принцип работы гирокомпаса

В основу работы гирокомпаса положен принцип работы гироскопа, что вполне понятно из названия этого средства навигации. Будучи раскрученным, гироскоп сохраняет свое положение благодаря кардановому подвесу, всегда указывая в одном направлении.

Однако сам по себе гироскоп не может служить гирокомпасом по двум основным причинам. Во-первых, будучи отклоненным от плоскости меридиана, гироскоп не возвращается к ней, а во-вторых, ось гироскопа совершает колебания около плоскости меридиана, что также мешает точности определения курса при навигации.

Для того, чтобы гироскоп стал гирокомпасом, нужно каким-либо образом сделать так, чтобы ось его вращения постоянно находилась в плоскости меридиана. Это становится возможным благодаря смещению центра тяжести гироскопа ниже уровня его подвеса. Такой гирокомпас со смещенным вниз центром тяжести называется маятниковым.

В современных гироскопах вместо карданового подвеса используют камеры с разными способами снижения сопротивления при вращении гироскопа. Например, в судовых гирокомпасах используется герметичная сферическая камера, заполненная водородом и имеющая в придонной части небольшое количество смазывающего масла. Чтобы исключить соприкосновение камеры с дном сосуда и крышкой, в самых современных вариантах гироскопа ее удерживают в подвешенном состоянии с помощью водной струи, что получается дешевле старых вариантов, использующих различные жидкие смеси и ртуть.

В гирокомпасе во время его работы может возникать прецессия (колебания), которая пытается выровнять ось гирокомпаса параллельно оси вращения Земли. Девиации (отклонения в показаниях) гирокомпаса возникают во время движения транспорта, на котором установлено это навигационное устройство. Они возникают также при смене широты и курса и требуют поправок.

Современные сложные модели гирокомпасов самостоятельно устраняют девиации с помощью специальных схем с микропроцессором, но на случай сбоя электроники прилагаются таблицы, позволяющие сделать поправки самостоятельно.

Устройство прибора

Строение гирокомпаса достаточно сложно, поэтому здесь рассмотрим лишь его основные компоненты. Например, армейский гирокомпас состоит из:

  • Гироскопической системы маятникового типа. Собственно, это и есть гироскоп со смещенным центром тяжести.
  • Угломерной части. Она предназначена для отсчетов, снятия показаний и измерения горизонтальных углов.
  • Штатива. Он служит ля установки компаса на местности.
  • Блока управления. Этот блок служит для переключения между режимами гирокомпаса.
  • Блока питания. Электропитание позволяет разогнать гироскоп и служит для функционального контроля во время работы.

Где используется гирокомпас?

Гирокомпасы получили широкое применение в морском и военном деле, а также в ракетной технике. Так, например, на сегодняшний день в Интернете можно найти и купить множество разных моделей гирокомпасов — от простых до сложных, от бюджетных до дорогих — для морских судов и других транспортных средств.

Многие слышали, что в современных средствах связи — телефонах, смартфонах и планшетах — также используются гироскопы. Здесь гироскопы применяют для упрощения эксплуатации устройства, а также для различных видеоигр.

Ответ прост. Дело в том, что в этих гаджетах наряду с другими датчиками используется не обычный гироскоп, а микросхема, которая улавливает любые изменения в положении устройства, а также скорость этих изменений. Тем не менее, из-за ограничений в подаче сигналов от датчика к схеме, обрабатывающей этот сигнал, со временем показания гироскопа могут значительно отклоняться от истинных. Для того же, чтобы подкорректировать работу гироскопа, устройство связи обычно укомплектовывают еще одной микросхемой — акселерометром.

Это значит, что в качестве компаса гироскоп из гаджета работать не способен. Если в телефоне и приложение, указывающее на север, то работа его никак не связана с гироскопом.

Достоинства и недостатки

Гирокомпасы имею ряд преимуществ перед магнитными компасами.

Во-первых, гирокомпасы всегда указывают на истинный географический полюс Земли, в то время как магнитные компаса в лучшем случае могут показать приблизительное направление на магнитные полюса, которые не совпадают с географическими, о чем мы подробно рассказывали здесь (Куда показывает стрелка компаса).

Во-вторых, гирокомпасы дают точные показания в зонах магнитных аномалий, а показания магнитных компасов могут сильно искажаться на этих территориях.

И, наконец, в-третьих, гирокомпасу не страшны магнитные девиации, что актуально при использовании такого средства навигации на транспорте (например, судне или самолете). В отличии от него, магнитный компас, не оснащенный системой магнитов, устраняющих погрешности магнитной девиации, на том же морском судне будет давать колоссальные ошибки. И даже при наличии устройства, корректирующего показания, система устранения магнитных девиаций через время сама будет нуждаться в корректировке.

В любом случае, точность показаний гирокомпаса очень высока.

Корректировка показаний гирокомпаса требуется в очень редких случаях

Тем не менее на случай поломки гирокомпаса на судне желательно наличие магнитного компаса.

Несмотря на свои достоинства, из-за больших размеров, массы, а также необходимости электропитания, гирокомпасы не могут быть применены в туризме, и по-прежнему спутником любого туриста, охотника и выживальщика остается магнитный компас.


Гироко́мпас (в морском профессиональном жаргоне — гирокомпа́с) — механический указатель направления истинного (географического) меридиана, предназначенный для определения курса объекта, а также азимута (пеленга) ориентируемого направления. Принцип действия гирокомпаса основан на использовании свойств гироскопа и суточного вращения Земли. Его идея была предложена французским учёным Фуко.

Гирокомпасы широко применяются в морской навигации и ракетной технике. Они имеют два важных преимущества перед магнитными компасами:

  • они показывают направление на истинный полюс, то есть на ту точку, через которую проходит ось вращения Земли, в то время как магнитный компас указывает направление на магнитный полюс;
  • они гораздо менее чувствительны к внешним магнитным полям, например, тем полям, которые создаются ферромагнитными деталями корпуса судна.

Содержание

Принцип действия гирокомпаса

Гирокомпас — это по существу гироскоп, то есть вращающееся колесо (ротор), установленное в кардановом подвесе, который обеспечивает оси ротора свободную ориентацию в пространстве.

Предположим, ротор начал вращаться вокруг своей оси, направление которой отлично от земной оси. В силу закона сохранения момента импульса, ротор будет сохранять свою ориентацию в пространстве. Поскольку Земля вращается, неподвижный относительно Земли наблюдатель видит, что ось гироскопа делает оборот за 24 часа. Такой вращающийся гироскоп сам по себе не является навигационным средством. Для возникновения прецессии ротор удерживают в плоскости горизонта, например, с помощью груза, удерживающего ось ротора в горизонтальном положении по отношению к земной поверхности. В этом случае сила тяжести будет создавать крутящий момент, и ось ротора будет поворачиваться на истинный север. Поскольку груз удерживает ось ротора в горизонтальном положении по отношению к земной поверхности, ось никогда не может совпадать с осью вращения Земли (кроме как на экваторе).

История создания гирокомпаса

Ошибки измерения гирокомпаса

Гирокомпас может выдавать ошибки измерения. Например, резкое изменение курса, скорости или широты могут вызывать девиацию, и она будет существовать до тех пор, пока гироскоп не отработает такое изменение. На большинстве современных судов имеются системы спутниковой навигации (типа GPS) и/или другие навигационные средства, которые передают во встроенный компьютер гирокомпаса поправки.


Подлодки
Корабли
Карта присутствия ВМФ
Рейтинг ВМФ России и США
Военная ипотека условия

КМЗ как многопрофильное предприятие

Как новое оборудование
увеличивает выручку
оборонного предприятия

Читайте также: