Переходные формы это в биологии кратко

Обновлено: 05.07.2024

Переходные (промежуточные) формы — организмы, которые сочетают в своем строении признаки двух больших систематических групп.

Переходные формы используют как одно из доказательств существования биологической эволюции.

История понятия

С увеличением сведений о таксономическое разнообразие сосудистых растений в начале ХХ в., Начались исследования по поиску их возможного предка. В 1917 г.. Роберт Кидстон и Уильям Генри Ленд обнаружили остатки очень примитивной растения возле поселка Rhynia в Шотландии. Это растение было названо Rhynia. Она сочетает в себе признаки зеленых водорослей и сосудистых растений.

Трактовка понятия

Переходные формы и таксономия

С развитием кладистики в 1990-х гг. Взаимосвязи обычно изображают в виде кладограмы, иллюстрирующую дихотомическое ветвление эволюционных линий. Поэтому в кладистици переходные формы рассматриваются как более ранние ветви дерева, где еще не развились не все черты, характерные для ранее известных потомков на этой ветке. Такие ранние представители группы обычно называют основным таксоном (англ. Basal taxa) или сестринским таксоном (англ. Sister taxa), в зависимости от того, принадлежит ли ископаемый организм к данной клади или нет.

Проблемы выявления и интерпретации

Отсутствие переходных форм между многими группами организмов является предметом критики со стороны креационистов. Однако далеко не каждая переходная форма существует в виде окаменелостей из-за принципиальной неполноты палеонтологической летописи. Неполнота вызвана особенностями процесса фосилизации, то есть перехода в окаменевший состояние. Для образования окаменелости необходимо, чтобы организм, который погиб, был погребен под большим слоем осадочных пород. Из-за очень медленную скорость осадконакопления на суше, сухопутные виды редко переходят в окаменевший состояние и сохраняются. Кроме того, редко удается выявить виды, которые живут в глубинах океана через редкие случаи поднятия на поверхность больших массивов дна. Таким образом, большинство известных ископаемых (а, соответственно, и переходных форм) — это либо виды, обитающие на мелководье, в морях и реках, или наземные виды, которые ведут полуводный образ жизни, или живут у береговой линии. К упомянутым выше проблемам следует добавить чрезвычайно малую (в масштабах планеты) количество палеонтологов, которые осуществляют раскопки.

Переходные формы, как правило, не живут на больших территориях и не существуют в течение большого времени, иначе они были бы персистентный. Этот факт также снижает вероятность фосилизации и последующего обнаружения переходных форм.

Поэтому вероятность обнаружения промежуточных форм чрезвычайно мала.

Примеры среди животных

Древнейшими представителями земноводных считают ихтиостеги. Их считают переходным звеном между кистеперых рыбами и земноводными. Несмотря на то, что в ихтиостеги была пятипалая концовка, адаптированная к жизни на суше, значительную часть жизни они проводили как рыбы, имели хвостовой плавник, боковую линию и некоторые другие признаки рыб.

Батрахозавры, существовавшие в каменноугольный и пермский периоды, рассматривают как переходную форму между земноводными и пресмыкающимися. Батрахозавры, хоть и проводили жизнь во взрослой стадии на суше (подобно пресмыкающихся), были тесно связаны с водоемами и сохранили ряд признаков, присущих земноводным, в частности, откладывания икры и развитие личинок в воде, наличие жабр и тому подобное.

Обнаружено большое количество пресмыкающихся, которые выработали способность летать, часть из них имела перья, поэтому их рассматривают как переходные формы между пресмыкающимися и птицами. Наиболее известен археоптерикс. Он был размером примерно с современную ворону. Формой тела, строением конечностей и наличием оперения подобный современных птиц, возможно, летал. Общим с пресмыкающимися была особое строение таза и ребер, наличие клюва с коническими зубами, по три свободные пальцы на крыльях, подвийноувигнути позвонки, длинный хвост с 20-21 позвонка, кости могло не пневматизовани, грудная кость без киля. Другие известные переходные формы между пресмыкающимися и птицами — протоавис, конфуциусорниса.

Большое количество ископаемых форм звероподобных пресмыкающихся (синапсиды, терапсид, пеликозавров, различных динозавровых и др.), Найденных во многих районах земного шара, существовали в юрский и меловой периоды, сочетающие признаки пресмыкающихся и млекопитающих, раскрывают возможные направления и способы становления различных групп четвероногих , в частности млекопитающих. Например, звероподобный пресмыкающееся из группы терапсид — лиценопс (Lycaenops) по развитию костей ротовой полости, дифференцированием зубов на клыки, резцы, по резцовые зубы и рядом других признаков строения тела напоминает хищных млекопитающих, хотя по другим признакам и образом жизни это были настоящие пресмыкающиеся.

Примеры среди растений

Первые наземные растения из класса риниопсид, семей риниевих и псилофитовых, живших в силуре — девоне, сочетали признаки зеленых водорослей и примитивных форм высших растений. Их тело было безлистным, цилиндрический осевой орган — телом в верхней части дихотомически разветвленным на верхушках с спорангиями. Функцию минерального питания риниопсид выполняли ризоиды.

Ископаемые формы семенных папоротников, которые процветали в конце девона, сочетают в себе признаки папоротников и голосеменных. Они образовывали не только споры (как папоротники), но и семена (как семенах растения). Проводящая ткань их стеблей по строению напоминает древесину голосеменных (саговников).

Другой предшественник семенных растений был идентифицирован из отложений среднего девона. Рункария (Runcaria heinzelinii) существовала около 20 млн лет назад. Это была небольшая растение с радиальной симметрией; имела спорангий, окруженный интегументом и плюской. Рункария демонстрирует путь эволюции растений от споровых к семенных.

Переходные формы в эволюции человека

В наше время найдено большое количество ископаемых останков, которые раскрывают эволюционный путь человека разумного от ее человекообразных предков. К формам, которые в большей или меньшей степени можно отнести к переходным, относятся: сахелантропа, ардипитека, австралопитеки (африканский, афарский и другие), человек умелый, человек работающий, человек прямоходящий, человек-предшественник, гейдельбергский человек и кроманьонцы.

Среди упомянутых форм значительное внимание заслуживают австралопитеки. Австралопитек афарский с точки зрения эволюции находится между современными двуногими людьми и их четвероногими древними предками. Большое количество рис скелета этого австралопитека четко отражают двуногость, причем до такой степени, что некоторые исследователи считают, что это свойство возникла задолго до появления австралопитека афарского. Среди общих черт анатомии, его таз гораздо больше похож на этих костей у человека, чем у обезьян. Края подвздошных костей короче и шире, крестцовая кость широкая и расположена непосредственно позади тазобедренного сустава. Существует явное свидетельство о существовании мест крепления для мышц-разгибателей колена, предусматривает вертикальное положение этого организма. В то время, как таз австралопитека не совсем как у человека (заметно шире, с ориентацией края подвздошных костей наружу), эти особенности указывают на принципиальную перестройку, связанную с хождением на двух ногах. Бедренная кость образует угол в направлении колена. Эта черта позволяет ноге размещаться ближе к средней линии тела и является явным свидетельством привычный характер передвижения на двух ногах. В наше время человек разумный, орангутаны и коаты имеют такие же черты. Ноги австралопитека имели большие пальцы, что делает практически невозможным захват стопой ветвей деревьев. Кроме особенностей локомоции, в австралопитека был также значительно больше мозг, чем у современных шимпанзе и зубы были значительно больше подобными зубов современного человека, чем к обезьянам.

Филогенетические ряды

Филогенетические ряды — ряды ископаемых форм, связанные между собой в процессе эволюции и отражают постепенные изменения их исторического развития.

Были исследованы русским ученым А. Ковалевским и английским Дж. Симпсоном. Они показали, что современные однопалого копытные происходят от древних мелких всеядных животных. Анализ ископаемых лошадей помог установить постепенность процесса эволюции в пределах этой группы животных, в частности, как изменяясь во времени, ископаемые формы приобретали все большего сходства с современными лошадьми. Сравнивая эоценового еогипуса с современным конем, трудно доказать их филогенетическую родство. Однако наличие ряда переходных форм, которые последовательно сменяли друг друга на больших пространствах Евразии и Северной Америки, позволила восстановить филогенетический ряд лошадей и установить направление их эволюционных изменений. Он состоит из ряда следующих форм (в упрощенном виде): PhenacodusEohippusMiohippusParahippusPliohippusEquus.

Гильгендорф (1866) описал палеонтологический ряд брюхоногих моллюсков из миоценовых отложений, накопившихся в течение двух миллионов лет в озерных отложениях Штейнгеймського бассейна (Вюртемберг, Германия). Было обнаружено в последовательных слоях 29 различных форм, принадлежащих к ряду планорбис (Planorbis). Древние моллюски имели раковину в виде спираи, а более поздние — в виде турбоспирали. Ряд имел два ответвление. Предполагается, что изменение формы черепашки была вызвана повышением температуры и увеличением содержания карбоната кальция в результате горячих вулканических источников.

Таким образом, филогенетические ряды представляют собой историческую последовательность переходных форм.

В настоящее время известны филогенетические ряды для аммонитов (Вааген, 1869), брюхоногих моллюсков рода живородок (Viviparus) (Неймайром, 1875), носорогов, слонов, верблюдов, парнокопытных и других животных.

Что такое переходные формы? Это виды, в строении которых возникают новые элементы, характерные для их эволюционных потомков, но еще сохраняются старые элементы, доставшиеся в наследство от эволюционных предков. А еще это источник мифов о Теории эволюции, стабильно работающий уже полтора столетия.


Древо жизни

В чем тут суть? Неожиданно все формы жизни устроены не абы как. Анатомические структуры – все эти органы и ткани – не разбросаны в хаотичном порядке, а подчиняются определенным закономерностям. Вот, к примеру, позвоночник. Он есть у рыб, птиц, рептилий, зверей и амфибий. Но ни одного жука с позвоночником вы не найдете. Как нет и птиц без позвоночника. А те, у кого есть позвоночник, делятся на рыб (с жабрами и без лап) и четвероногих (с легкими и лапами). А четвероногие, например, могут быть пернатыми, шерстистыми, чешуйчатыми или с голой слизистой кожей. Описание, конечно же, очень упрощенное, но принцип понятен.

Анатомические структуры выстраиваются в иерархическом порядке, от общего к частному, что позволяет разделить все организмы на соответствующие иерархические группы. Отсюда получаем биологическую систематику с известными всем типами, классами, отрядами, семействами, родами и видами.

Но почему живые организмы устроены именно так? Ключом к ответу на этот вопрос стала теория эволюции, предложенная Чарльзом Дарвином в 1859 году. Иерархия анатомических структур отражает ход эволюции, а их единство у разных организмов говорит об общем происхождении. К настоящему времени этот тезис многократно подтвержден фактами из сравнительной анатомии, эмбриологии, палеонтологии и генетики.

Из вышесказанного для нас важными будут шесть следствий.


Следствие первое: строение организмов можно предсказать

Могут ли у кошек быть копыта? Если кит плавает в воде, то почему у него нет жабр? Где искать цветок папоротника? Чтобы ответить на подобные вопросы, вовсе не нужно осматривать всех китов и кошек, и следить за всеми папоротниками в Купальскую ночь. Зная биологическую систематику можно заранее сказать, какие анатомические признаки должны присутствовать у той или иной группы организмов.

Такой инструмент очень удобен в палеонтологии. Имея всего один зуб можно классифицировать животное, иногда с точностью до рода. И на основании этого сделать вполне надежную реконструкцию. А уже потом, когда (и если) будет найден полный скелет, можно уточнять детали и делать нашу реконструкцию все более реалистичной.

Но можно обойтись и вовсе без останков. Например, если нас интересует общий предок всех кошачьих, мы можем составить абстрактный портрет, исходя из признаков, характерных для этого семейства. Получается, что окаменелостей нет, а мы уже знаем, кого искать.


Следствие второе: общих родственников можно найти

Древо жизни охватывает абсолютно все виды организмов. А значит мы все друг другу родственники. Можно взять два абсолютно любых вида, а затем спуститься вниз по веточкам нашего Древа, до точки пересечения. В этой точке будет находиться общий предок, а в его строении будет совмещены признаки, общие для обеих ветвей. Даже если идти придется очень далеко вниз.

Например, предок человека и банана по совместительству будет предком вообще всех растений и животных. Это одноклеточный организм, живший как минимум 3 млрд лет назад, то есть раньше самых древних следов растений в горных породах. И наш геном действительно хранит информацию, оставшуюся от этого далекого-далекого предка.


Следствие третье: переходные формы повсюду

От древних одноклеточных организмов до человека – очень долгий путь. Поколение за поколением, вид за видом наши предки менялись под действием эволюции. Древо жизни росло, давало множество новых побегов и в итоге получилось современное видовое разнообразие. Можно ли сказать, что на этом эволюция остановилась? Конечно, нет. Те современные виды, которые не вымрут, дадут свое эволюционное потомство. И человек тут не исключение.

А значит, каждый вид в любой момент времени является потенциально переходным между какими-то старыми и новыми видами. Мы все – переходное звено.

Но не стоит ждать, что наши потомки будут так уж сильно от нас отличаться. Эволюционные изменения накапливаются постепенно, дети все так же похожи на родителей, и заметить отличия можно изменив масштаб. На промежутке в 1 млн лет мы точно сможем различить два вида, но вот найти точку, в которой один вид стал другим – не получится.


Следствие четвертое: некоторые переходные формы интереснее других

Как и в истории, эволюционные события могут иметь разный масштаб. Например, процесс эволюции уток, поиск прото-утки и переходных форм между ними – это все очень интересно. Но на масштабные эволюционные события не тянет. Другое дело – происхождение птиц вообще.

Из современных животных ближайшая родня уток – это крокодилы. Спускаемся по веточкам нашего дерева, находим точку пересечения. Здесь, в этой точке, в триасовом периоде жил их общий предок. Внешне был похож на тощего голенастого крокодила. Имел четырехкамерное сердце, высокий метаболизм и откладывал яйца. Не то чтобы сильно похоже на птицу, но уже кое-что. Значит, в качестве переходной формы нам надо искать кого-то похожего, но с крыльями и перьями. В XIX веке про родство птиц с крокодилами не знали, искали просто пернатого птице-ящера. И нашли. Им оказался археоптерикс, вошедший во все учебники биологии как эталон переходной формы. Так вот он – родоначальник птиц? Вообще-то нет.



Следствие пятое: неуловимые предки

Вообще-то обнаружение переходной формы еще не обозначает обнаружение того самого вида-предка, который дал всю дальнейшую эволюционную ветвь. И чем шире область поиска, чем более древняя у нас переходная форма, тем меньше для этого шансов. Как так?

Переходная форма – это все равно, что фоторобот, набор анатомических структур, которые точно должны быть. Например: скелет рептилии (включая длинный хвост и зубы), легкие кости, перья, небольшой размер. Это сокращает поиск до одной из групп динозавров, живших в юрском периоде. А дальше начинаются проблемы.

Разумеется, изучая этих оперенных то-ли еще динозавров, то-ли уже птиц, мы будем накапливать информацию и отсеивать ненужные варианты. Археоптерикс окажется хоть и ранней птицей, но параллельной ветвью эволюции. Наш портрет птицы-первопредка будет становиться все точнее и точнее. Можно будет локализовать поиск до ранней юры Северного Китая, а таксономию до манирапторов. Но указать на конкретный вид-предок мы вряд ли сможем.


Следствие шестое: и все-таки их можно отыскать

Так ли уж важно знать, какой из десятка видов птицеподобных динозавров был точно первоптицей? Для специалистов важно, для широкого круга людей – пожалуй, не очень. Что уж говорить о предках жесткокрылых или голосеменных растений. А если задать вопрос о происхождении человека?

Про нас самих нам нужно знать как можно более точно. И в этом плане в сравнении с птицами нам крупно повезло. Все-таки мы изучаем молодые останки, большинству которых нет и 1 млн лет. Их достаточно много, сохранность хорошая, а если они моложе 100 тыс лет – есть возможность использовать палеогенетику. А значит, мы можем не просто указать на переходную форму от австралопитеков к нам, но и восстановить нашу эволюцию, шаг за шагом.

Сегодня вместо давно устаревшей линейной схемы, мы имеем разветвленное деревце, объединяющее наших родственников и предков. Это все равно что семейная фотография с несколькими поколениями. Мы с большой точностью можем назвать своих родителей и их родителей. А вот с остальными не всегда понятно, кто с кем в каком родстве состоит. Антропология развивается стремительно, создаются новые методы исследований и делаются замечательные открытия. Разумеется, восстановить всю цепочку поколений (как того иногда требуют креационисты) мы не сможем. Но серьезно увеличить детальность и сложность и без того непростой картины антропогенеза ученым вполне по силам.


Заключение

Переходные формы действительно существуют. И в большинстве своем они объединяют группу родственных видов, имеющих специфический набор анатомических особенностей. Часть этих особенностей новые и они получат развитие у потомков. Часть – старые, доставшиеся от предков и к потомкам они не перейдут. Особый интерес представляют переходные формы между крупными таксонами. Например, между рыбами и амфибиями. Или рептилиями и птицами, рептилиями и млекопитающими. На их примере можно видеть, как незначительные изменения приводят к серьезным результатам.

Благодаря развитию палеонтологии известно множество переходных форм. Эволюция позвоночных животных, например, изучена достаточно детально. И самая, пожалуй, изученная область – это эволюция человека. И все-таки, белых пятен хватит еще не на одно поколение палеонтологов. А учитывая неполноту геологической летописи, весь паззл мы не соберем никогда. Тем важнее вклад каждого, кто решил связать свою жизнь с палеонтологией. Возможно, и вы станете первооткрывателями недостающего звена.

В своих работах советский ученый Северцов А.Н. выделил понятия биологического прогресса и регресса.

  • Численность вида увеличивается
  • Ареал расширяется
  • Смертность особей уменьшается
  • Рождаемость увеличивается
  • Происходит процветание вида

    Ароморфоз (греч. airomorphosis — поднимаю форму)

Ароморфоз представляет собой прогрессивное эволюционное преобразование, повышающее уровень организации организмов. В результате ароморфоза становится возможным освоение новых, ранее недоступных для жизни, территорий. К примеру, теплокровность птиц позволила им заселить места с холодным климатом.

Пример ароморфоза - теплокровность у птиц

Идиоадаптация подразумевает незначительные, частные изменения в строении и функциях организма, которые помогают приспособиться к условиям среды обитания. Идиоадаптации существенно не повышают уровень организации.

Пример идиоадаптации - ротовые аппараты насекомых

Общей дегенерацией называют упрощение организации, которое заключается в утрате отдельных органов и систем органов. У многих этот пункт вызывает внутреннее противоречие: как общая дегенерация может относиться к биологическому прогрессу?

На самом деле, если орган или система органов не нужна организму в его условиях обитания - то зачем она? Эта система может исчезнуть и освободить место для других, более полезных в данных условиях, органов.

У многих паразитов отсутствуют различные органы, к примеру, у ленточных червей нет пищеварительной системы. А зачем она им, когда пища в кишке, где они обитают, уже переварена и расщеплена организмом хозяина?

Пример общей дегенерации - отсутствие пищеварительной системы у ленточных червей

Биологический регресс характеризуется признаками, противоположными биологическому прогрессу:

  • Численность вида уменьшается
  • Ареал сужается
  • Смертность особей возрастает
  • Рождаемость уменьшается
  • Происходит вымирание вида

Главная причина биологического регресса в том, что скорость эволюции вида отстает от скорости изменения внешней среды, эволюции других видов: это несоответствие снижает приспособленность организмов. Часто деятельность человека молниеносно меняет окружающую среду: далеко не все виды могут приспособиться к этому, происходит вымирание.

Биологический регресс

Сравнительно-анатомические доказательства эволюции

    Гомологичные органы (гомология, от греч. homo(s) — равный, одинаковый)

Такие органы развиваются из одних и тех же зародышевых листков, имеют общий план строения, но выполняют разные функции. Это связано с тем, что животные освоили разные среды обитания, из-за чего происходит дивергенция (лат. divergo - отклоняюсь) - расхождение признаков у первоначально близких животных в ходе эволюции.

Гомологичны между собой скелеты конечностей различных классов позвоночных: рука - ласт - крыло птицы, колючки кактуса - усики гороха - листья растений.

Гомологичные органы

Аналогичные органы развиваются из разных зародышевых листков, имеют различное строение, но выполняют схожие функции. Такое сходство возникает в результате приспособления к одним и тем же условиям среды, из-за чего происходит конвергенция (лат. convergo - сближаю) - схождение признаков у неблизкородственных видов в ходе эволюции.

Аналогичными органами являются крыло птицы - крыло бабочки, глаз человека - глаз кальмара, усики винограда - усики гороха, жабры рака - жабры рыбы.

Аналогичные органы

В строении нынешних животных можно найти признаки древних предковых форм, которые также свидетельствуют об эволюции. Сейчас мы обсудим рудименты и атавизмы.

Рудименты (лат. rudimentum — зачаток) - органы, которые в ходе эволюции утратили свое функциональное значение. Они сохраняются в течение всей жизни и в норме обнаруживаются у человека и животных.

У человека к рудиментарным органам относятся: зубы мудрости, копчик, ушные мышцы, аппендикс (червеобразный отросток), третье веко (эпикантус).

Рудименты

Атавизмы (лат. atavus — отдалённый предок) - случаи проявления у отдельных особей признаков дальних предков. Атавизмы сугубо индивидуальны и не являются нормой. Они также являются доказательством эволюции.

У человека атавизмами могут являться хвост, волосатое тело, добавочные молочные железы, незаращение межпредсердной перегородки.

Атавизмы

Переходные формы

Переходные формы свидетельствуют о филогенетической преемственности, соединяя в своем строении черты высших и низших классов. Они - наглядное, живое доказательство эволюции.

Такими формами являются, к примеру, утконос и ехидна из класса млекопитающих. При многих признаках млекопитающих, они откладывают яйца, тем самым подтверждают родство млекопитающих с пресмыкающимися.

Утконос

Эмбриологические доказательства

Эмбриология (греч. embryon - зародыш) - раздел биологии, изучающий строение эмбрионов. Только вдумайтесь: на этапе эмбриона, через который мы с вами успешно прошли, у нас можно было найти закладку жаберных дуг, которые существуют непродолжительное время, после чего исчезают.

А у рыб, например, жаберные дуги не исчезают - из них развиваются жабры.

Жаберные дуги зародыша

Немецкие ученые Ф. Мюллер и Э. Геккель во второй половине XIX века сформулировали биогенетический закон, гласящий, что онтогенез (индивидуальное развитие) каждой особи есть краткое и быстрое повторение филогенеза (исторического развития вида).

Биогенетический закон Мюллера-Геккеля объясняет повторение этапов (на стадии зародыша), которые были свойственны нашим далеким предкам. Таким образом, мы проходим их этапы, но, не останавливаясь на них, двигаемся дальше к более совершенным этапам.

У головастиков лягушек развивается плавник, есть жабры - это наглядное повторение признаков, которые характерны для их предков - рыб.

Биогенетический закон Геккеля-Мюллера

Карл Бэр сформулировал закон зародышевого сходства, который гласит, что на ранних стадиях развития зародыши позвоночных животных настолько похожи друг на друга, что практически неразличимы между собой. Это также указывает и подтверждает единство происхождения животного мира.

Закон зародышевого сходства Карла Бэра

Палеонтологические доказательства эволюции

Палеонтология (греч. palaios – древний) изучает ископаемые останки вымерших животных, их сходства и различия с ныне живущими видами. Сопоставляя друг с другом ископаемые останки разных геологических эпох, можно увидеть как происходила эволюция различных видов животных и растений.

В результате таких исследований иногда удается открыть переходные формы, а иногда - целые филогенетические ряды, то есть совокупность последовательно сменяющих друг друга форм одного вида. Так, к примеру, был открыт филогенетический ряд лошади.

Филогенетический ряд лошади

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Переходные формы — формы, соединяющие в себе признаки двух соседних таксономических групп или единиц. Название является эволюционным термином, подразумевающим эволюцию как данность. Также используется близкий термин — промежуточные формы.

Содержание

От одноклеточных к многоклеточным

От беспозвоночных к позвоночным


Очередная огромная загадка эволюционной теории — это переход от экзоскелета (оболочка ракушек или хитиновый панцирь насекомых) к эндоскелету (внутреннему скелету). Нет ни найденных переходных форм, ни внятных и адекватных гипотез на этот счёт.

Следует четко представлять себе, какие колоссальные преобразования должны были бы произойти в строении животного, чтобы полностью преобразовались все системы организма.

От рыбы к амфибии

От амфибии к рептилии

От рептилии к птице

Эволюционное развитие рептилий (например динозавров) до птиц невозможно представить по следующим причинам:

  • Птицы в отличии от рептилий, являются теплокровными существами, что подразумевает, как минимум, иное строение кровеносной системы.

Живая птица обладает достаточным уровнем метаболизма, чтобы поддерживать температуру тела на постоянном уровне за счёт самостоятельного производства энергии из потребляемой пищи. Современные птицы относятся к истинно-гомойотермным существам. Помимо достаточных энергетических возможностей они имеют также различные механизмы, предназначенные для удержания тепла (перья, подкожный слой жировой ткани) и для защиты от перегрева при высокой температуре окружающей среды (потоотделение). Организм рептилий не обладает возможностью сохранять тепло. Инерциально-гомойотермное существо в периоды повышения температуры медленно нагревается, а в периоды похолодания — медленно остывает, то есть за счёт большой теплоёмкости колебания температуры организма сглаживаются. Так называемая инерциальная гомойотермия была характерна, по современным представлениям, для некоторых видов динозавров. Недостатком инерциальной гомойотермии является то, что она возможна только при определённом типе климата — когда средняя температура окружающей среды соответствует желаемой температуре тела и нет длительных периодов сильных похолоданий или потеплений.

  • Дыхательная система рептилий и птиц весьма различна. Птичье легкое является очень сложным и структурным в отличие от любого другого организма. Органы дыхания пернатых считается неприводимо сложной системой, в которой каждая деталь должна функционировать должным образом для того, чтобы работать.
  • Перья птиц и чешуя рептилий совершенно различны в устройстве, методах крепления на теле живого организма и внешнем виде
  • Различное число пальцев в конечностях динозавров и птиц. Превращаясь в птицу, динозавры потеряли бы один вид пальца, а затем должны были восстановить другой

Никаких остатков переходных форм между рептилиями, земноводными и птицами найдено не было.

От рептилии к млекоптающим

От сумчатых к плацентарным

От обезьяны к человеку

Первобытные люди — по теории эволюции, предки современных людей, отличающиеся по строению тела (ближе к обезъянам), с низким или отсутствующим уровнем культуры и языка и т. п.

В Библии можно прочитать, что человек изначально был создан разумным. Первое поколение людей было способным к производству орудий труда для ремесла и сельского хозяйства, строительства, могло добывать огонь. Человек интересовался музыкой, а и как следствие обладал способностью создания музыкальных инструментов (см. 4 главу книги Бытие).

Эволюция лошади

Эволюция китообразных

Мозаичные формы

Живые ископаемые

Под живыми ископаемыми понимаются живые организмы, первоначально найденные только в виде окаменевших останков, а затем обнаруженные живыми и не изменившимися в течении предполагаемых эпох эволюции.

Однако современные фактические данные свидетельствуют о большом разнообразии живых организмов, которые могут быть отнесены к категории живых ископаемых. Одним из ярчайший примеров является несколько нынеживущих видов кистепёрой рыбы.

Читайте также: