Основополагающие концепции современной картины мира кратко

Обновлено: 04.07.2024

Словосочетание “научная картина мира” подразумевает некую аналогию между совокупностью описывающих реальный мир научных абстракций и, этаким большущим, живописным полотном, на котором художник компактно разместил все предметы мира. Как и все прочие аналогии, эта довольно приблизительно отражает суть дела, но в целом удачно.

Нынешняя научная картина мира “ оживила” неподвижную доселе Вселенную, обнаружила в каждом её фрагменте эволюцию, развитие! Описание истории Вселенной со всем её содержимым потребовало уже не фотографии, а киноленты, каждый кадр которой соответствовал определённому этапу её развития. Это – главная принципиальная особенность современной естественно – научной картины мира – принцип глобального эволюционизма.

2. 3. 1. Глобальный эволюционизм

Появление принципа глобального эволюционизма означает, что в современном естествознании утвердилось убеждение в том, что материя, Вселенная в целом и во всех её элементах не могут существовать вне развития.

Не вдаваясь в детали ( они будут изложены в следующих главах), подчеркнём радикальное обновление наших представлений об устройстве мироздания: Вселенная нестационарна, она имела начало во времени, следовательно, она исторична, т.е. эволюционирует во времени. И эту 20 –миллиардолетнюю эволюцию в принципе можно реконструировать!

Таким образом, идея эволюции прорвалась в физику и космологию. Но не только в них. В последние десятилетия благосклонное отношение к эволюционным представлениям начала проявлять и химия.

В ХХ в. эволюционное учение интенсивно развивалось и в рамках его прародительницы – биологии. Современный эволюционизм в научных дисциплинах биологического профиля предстаёт как многоплановое учение, ведущее поиск закономерностей и механизмов эволюции сразу на многих уровнях организации живой материи: молекулярном, клеточном, организменном, популяционном и даже биогеоценотическом.

Идея эволюции праздновала успех и в других областях естествознания – в геологии, например, окончательно утвердилась концепция дрейфа континентов; а такие науки, как экология, биогеохимия, антропология, были изначально “эволюционными”.

Поэтому современное естествознание вправе провозгласить лозунг: “Всё существующее есть результат эволюции!”.

2. 3. 2. Синергетика – теория самоорганизации

Появление синергетики в современном естествознании, очевидно, инициировано, подготовкой глобального эволюционного синтеза всех естественно - научных дисциплин. Эту тенденцию в немалой степени сдерживала разительная асимметрия процессов деградации и развития в живой и неживой природе.

Закон сохранения и превращения энергии (первое начало термодинамики ) в принципе не запрещает такого перехода, лишь бы количество энергии сохранялось в прежнем объёме. Но, в реальности такого никогда не происходит. Вот эту – то односторонность, однонаправленность, перераспределения энергии в замкнутых системах и подчёркивает второе начало.

Для отражения этого процесса в термодинамику было введено новое понятие - энтропия. Под энтропией стали понимать меру беспорядка системы. Более точная формулировка второго начала термодинамики приняла такой вид: “При самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия всегда возрастает”.

Главный мировоззренческий сдвиг, произведённый синергетикой, можно выразить следующим образом:

А) процессы разрушения и созидания, деградации и эволюции во Вселенной по меньшей мере равноправны;

Б) процессы созидания (нарастания сложности и упорядоченности) имеют единый алгоритм независимо от природы систем, в которых они осуществляются.

Таким образом, синергетика претендует на открытие некоего универсального механизма, с помощью которого осуществляется самоорганизация, как в живой, так и в неживой природе. Под самоорганизацией при этом понимается спонтанный переход открытой неравновесной системы от менее к более сложным и упорядоченным формам организации. Отсюда следует, что объектом синергетики могут быть отнюдь не любые системы, а только те, которые удовлетворяют двум условиям:

· должны быть открытыми

· должны быть существенно неравновесными.

2. 3. 3. Общие контуры современной естественно – научной картины мира

Мир, в котором мы живём, состоит из разномасштабных открытых систем, развитие которых подчиняется некоторым общим закономерностям. При этом он имеет свою долгую историю, которая в общих чертах известна современной науке.

Вот как выглядит хронология наиболее важных событий этой истории:

20 млрд. лет назад - Большой взрыв

3 минуты спустя - Образование вещественной основы

Вселенной (фотоны., нейтрино и

антинейтрино с примесью ядер

Водорода, гелия и электронов).

Через несколько сотен - появление атомов (лёгких элементов)

19 –17 млрд. лет назад - образование разномасштабных

15 млрд. лет назад - появление звёзд первого поко-

ления, образование атомов

5 млрд. лет назад - рождение Солнца.

4,6 млрд. лет назад - образование Земли.

3,8 млрд. лет назад - зарождение жизни.

450 млн. лет назад - появление растений.

150 млн. лет назад - появление млекопитающих.

2 млн. лет назад - начало антропогенеза.

Подчеркнём, что современной науке известны не только “даты”, но во многом и сами механизмы эволюции Вселенной от Большого взрыва до наших дней. Это – фантастический результат. Причём наиболее крупные прорывы к тайнам истории Вселенной осуществлены во второй половине нашего века: предложена и обоснована концепция Большого взрыва, построена кварковая модель атома, установлены типы фундаментальных взаимодействий и построены первые теории их объединения и т.д.

Структурные уровни организации материи

3. 1. Макромир: концепции классического естествознания.

В истории изучения природы можно выделить два этапа: донаучный и научный.

Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествознания в ХVI –XVII вв. В этот период учения о природе носили чисто натурфилософский характер: наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.

Формирование научных взглядов на строение материи относится к XVI вв., когда Г. Галилеем была заложена основа первой в истории науки физической картины мира – механической. Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методологию нового способа описания природы – научно – теоретического. Суть его заключалась в том, что выделялись только некоторые физические характеристики, которые становились предметом научного исследования.

И.Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел,

и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система.

Итогом ньютоновской картины мира явился образ Вселенной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий. Отсюда и вера в то, что теоретически можно точно реконструировать любую прошлую ситуацию во Вселенной или предсказать будущее с абсолютной определённостью. И.Р. Пригожин назвал эту веру в безграничную предсказуемость “ основополагающим мифом классической науки”.

Другой областью физики, где механические модели оказались неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М.Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушили преставления ньютоновской физики о дискретном веществе как единственном виде материи и положили начало электромагнитной картине мира.

3. 2. Квантово – механическая концепция описания микромира

Изучая микрочастицы, учёные столкнулись с парадоксальной, с точки зрения классической науки, ситуацией: одни и те же объекты обнаруживали как волновые, так и корпускулярные свойства.

Первый шаг в этом направлении был сделан немецким физиком М. Планком. Как известно, в конце XIX в. в физике возникла трудность, которая получила название “ ультрафиолетовой катастрофы”. В соответствии с расчётами по формуле классической электродинамики интенсивность теплового излучения абсолютно чёрного тела должна была неограниченно возрастать, что явно противоречило опыту.

Первым физиком, который восторженно принял открытие элементарного кванта действия и творчески развил его, был Альберт Эйнштейн. В 1905 г. он перенёс гениальную идею квантового поглощения и отдачи энергии при тепловом излучении на излучение вообще и таким образом обосновал новое учение о свете.

Представление о свете как о дожде быстро движущихся квантов было чрезвычайно смелым, почти дерзким, в правильность которого вначале поверили немногие. Прежде всего, с расширением квантовой гипотезы до квантовой теории света был не согласен сам М. Планк, относивший свою квантовую формулу только к рассматриваемым им законам теплового излучения чёрного тела.

В 1924 г. произошло одно из величайших событий в истории физики: французский физик Луи де Бройль выдвинул идею о волновых свойствах материи. В своей работе “ Свет и материя ” он писал о необходимости использовать волновые и корпускулярные представления не только в соответствии с учением А. Эйнштейна в теории света, но также и теории материи. Л. Бройль утверждал, что волновые свойства, наряду с корпускулярными, присущи всем видам материи: электронам, протонам, атомам, молекулам и даже микроскопическим телам.

Признание корпускулярно – волнового дуализма в современной физике стало всеобщим. Любой материальный объект характеризуется наличием как корпускулярных, так и волновых свойств.

Тот факт, что один и тот же объект проявляется и как частица и как волна, разрушал традиционные представления. Форма частицы подразумевает сущность, заключённую в малом объёме или в конечной области пространства, тогда как волна распространяется по его огромным областям. В квантовой физике эти два описания реальности являются взаимоисключающими, но равно необходимыми для того, чтобы полностью описать рассматриваемые явления.

3. 2. 1. Атомистическая концепция строения материи

Атомистическая гипотеза строения материи, выдвинутая в античности Демокритом, была возрождена в XVIII в. химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико- химические свойства атома. В XIXв. Д. И. Менделеев построил систему химических элементов, основанную на их атомном весе.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Дж. Томсоном электрона – отрицательно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона положительно заряженной частицы. Масса электрона составила по расчётам 1\1836 массы положительно заряженной частицы.

Исходя из огромной, по сравнению с электроном, массы положительно заряженной частицы, английский физик У. Томсон (лорд Кельвин) предложил в 1902 г. первую модель атома – положительный заряд распределён в достаточно большой области, а электроны вкраплены в него, как “изюм в пудинг”. Эта идея была развита Дж. Томсоном. Модель атома Дж. Томсона, над которой он работал почти 15 лет, не устояла перед опытной проверкой.

Модель атома, предложенная Э. Резерфордом в 1911 г. напоминала солнечную систему: в центре находится атомное ядро, а вокруг него по своим орбитам движутся электроны.

Ядро имеет положительный заряд, а электроны – отрицательный… Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов – атом электрически нейтрален.

В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров. Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физики.

3. 2. 2. Элементарные частицы и кварковая модель атома

Термин “элементарная частица” первоначально означал простейшие, далее ни на что не разложимые частицы, лежащие в основе любых материальных образований. Позднее физики осознали всю условность термина “элементарный” применительно к микрообъектам. Сейчас уже не подлежит сомнению, что частицы имеют ту или иную структуру, но, тем не менее, исторически сложившееся название продолжает существовать.

Электрический заряд является другой важнейшей характеристикой элементарных частиц. Все известные частицы обладают положительным, отрицательным либо нулевым зарядом. Каждой частице, кроме фотона и двух мезонов, соответствуют античастицы с противоположным зарядом. В 1967 г. американский физик М. Телл – Манн высказал гипотезу о существовании кварков – частиц с дробным электрическим зарядом.

Согласно современным представлениям, все элементарные частицы делятся на два класса –фермионы (названные в честь Э. Ферми ) и бозоны ( названные в честь Ш.Бозе )

К фермионам относятся кварки и лептоны, к бозонам – кванты полей (фотоны, векторные бозоны, глюоны, гравитино и гравитоны ). Эти частицы считаются истинно элементарными, т.е. составные частицы, образованные из кварков и соответствующих квантов полей. Фермионы составляют вещество, бозоны переносят взаимодействие.

Сильное взаимодействие происходит на уровне атомных ядер и представляет собой взаимное притяжение и отталкивание их составных частей.

Электромагнитное взаимодействие примерно в тысячу раз слабее сильного, но значительно более дальнодействующее. Взаимодействие такого типа свойственно электрически заряженным частицам.

Слабое взаимодействие возможно между различными частицами. Оно простирается на расстояние порядка 10- 15 – 10- 22 см и связано главным образом с распадом частиц, например, с происходящими в атомном ядре превращениями нейтрона в протон, электрон, и антинейтрино.

Гравитационное взаимодействие – самое слабое, не учитываемое в теории элементарных частиц, поскольку на характерных для них расстояниях порядка 10- 13 см оно даёт чрезвычайно малые эффекты.

Достижения в области исследования элементарных частиц способствовали дальнейшему развитию концепции атомизма. В настоящее время считают, что среди множества элементарных частиц можно выделить 12 фундаментальных частиц и столько же античастиц. Шесть частиц – это кварки с экзотическими названиями “верхний”, “ нижний”, “очарованный”, “странный”, “истинный”, “прелестный”. Остальные шесть – лептоны: электрон, мюон, тау – частица и соответствующие им нейтрино (электронное, мюонное, тау – нейтрино).

3. 3. Мегамир: современные астрофизические и космологические концепции

Мегамир, или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел. Мегамир имеет системную организацию форме планет и планетных систем, возникающих вокруг звёзд; звёзд и звёздных систем - галактик.

Все существующие галактики входят в систему самого высокого порядка – Метагалактику. Размеры метагалактики очень велики: радиус космологического горизонта составляет 15 – 20 млрд световых лет.

3. 3. 1. Современные космологические модели Вселенной

В ньютоновской космологии возникали два парадокса, связанные с постулатом бесконечности Вселенной.

Первый парадокс получил название гравитационного. Суть его заключается в том, что если Вселенная бесконечна и в ней существует бесконечное количество небесных тел, то сила тяготения будет бесконечно большая, и Вселенная должна сколлапсировать, а не существовать вечно.

Второй парадокс называется фотометрическим: если существует бесконечное количество небесных тел, то должна быть бесконечная светимость неба, что не наблюдается.

Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Её свойства как целого обусловлены средней плотностью материи и другими конкретно – физическими факторами.

В том же 1917 г. голландский астроном Виллем де Ситерр предложил другую модель представляющую собой также решения уравнений тяготения. Это решение имело то свойство, что оно существовало бы даже в случае “пустой” Вселенной, свободной от материи.

В 1922 г. русский математик и геофизик А.А.Фридман отбросил постулат классической космологии о стационарности Вселенной и получил решение уравнений Эйнштейна, описывающее Вселенную с “расширяющимся” пространством.

В 1927 г. бельгийский аббат и ученый Ж. Леметр связал “расширение” пространства с данными астрономических наблюдений. Леметр ввел понятия начала Вселенной как сингулярности (т.е. сверхплотного состояния) и рождения Вселенной как Большого взрыва.

В 1929 г. американский астроном Э.П.Хаббл обнаружил существования странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию, - система галактик расширяется.

Раздел: Философия
Количество знаков с пробелами: 98133
Количество таблиц: 0
Количество изображений: 0

Люди всегда стремились сделать для себя понятным тот мир, в котором они живут. Это им необходимо, чтобы чувствовать себя безопасно и комфортно в собственной среде обитания, уметь предвидеть наступление различных событий с целью использования благоприятных из них и избежания неблагоприятных, либо сведения к минимуму их отрицательных последствий.

Содержание

1.Мировоззрение человека…………………………………………………1
2. Понятие картины мира……………………………………………………3
2.1Философская картина мира…………………………………….5
2.2Естественнонаучная картина мира…………………………..8
2.3Религиозная картина мира…………………………………. 10
3. Глобальный эволюционизм …………………………………………………………………15
4. Синергетика — теория самоорганизации………………………………17
5. Современные концепции основных картин мира…………………….20
6.Список использованной литературы……………………………………25

Работа состоит из 1 файл

Естественнонаучная картина мира.doc

Министерство образования и науки РФ

Академия гуманитарных наук и образования (Омское отделение)

КОНТРОЛЬНАЯ РАБОТА

По дисциплине: Естественнонаучная картина мира

За 1 курс, 1 семестр

Тема: Современные концепции основных картин мира

Форма контроля: экзамен

Студентка 1 курса

Специальности: педагогическое образование

Форма обучения: заочная

Шарова Светлана Владимировна

Должность, Фамилия И.О.

Полтавка 2011 год

1.Мировоззрение человека

Люди всегда стремились сделать для себя понятным тот мир, в котором они живут. Это им необходимо, чтобы чувствовать себя безопасно и комфортно в собственной среде обитания, уметь предвидеть наступление различных событий с целью использования благоприятных из них и избежания неблагоприятных, либо сведения к минимуму их отрицательных последствий. Познание мира объективно требовало осмысления места в нем человека, особого отношения людей ко всему происходящему в соответствии с их целями, потребностями и интересами, тем или иным пониманием смысла жизни. У человека, таким образом, существует потребность в создании целостной картины внешнего мира, делающей этот мир понятным и объяснимым. При этом в зрелых обществах она выстраивалась на основе философских, естественнонаучных и религиозных знаний и представлений об окружающем мире, фиксировалась в различного рода теориях. Та или иная картина мира составляет один из элементов мировоззрения, способствует выработке более или менее целостного понимания людьми мира и самих себя. Мировоззрение – это совокупность взглядов, оценок, норм, установок, принципов, определяющих самое общее видение и понимание мира, места в нем человека, выраженных в жизненной позиции, программках поведения и действиях людей. В мировоззрении в обобщенном виде представлены познавательная, ценностная и поведенческая подсистемы субъекта в их взаимосвязи. Выделим в структуре мировоззрения наиболее важные элементы.

-Особое место в мировоззрении занимают знания и именно обобщенные знания – повседневные или жизненно-практические, а также теоретические. В этом плане основу мировоззрения всегда составляет та или иная картина мира: или обыденно-практическая, или сформированная на основе теории.

-Знания никогда не заполняют собой всего поля мировоззрения. Поэтому кроме знаний о мире в мировоззрении осмысливается также уклад и содержание человеческой жизни, идеалы, выражаются определенные системы ценностей (о добре и зле, человеке и обществе, государствe и политике и др.), получают одобрение (осуждение) те или иные способы жизни, поведения и общения.

-Важным элементом мировоззрения выступают нормы и принципы жизни. Они позволяют человеку ценностно ориентироваться в материальной и духовной культуре общества, осознавать смысл жизни и выбиратъ жизненный путь.

-Мировоззрение личности и общественное мировоззрение содержат в себе не только уже переосмысленную совокупность знаний, тесно сопряженную с чувствами, волей, нормами, принципами и ценностями, с дифференциацией на хорошее и плохое, нужное или ненужное, ценное, менее ценное или вовсе не ценное, но и, что особенно важно, позицию субъекта.

2.Понятие картины мира

Словосочетание "научная картина мира" подразумевает некую аналогию между совокупностью описывающих реальный мир научных абстракций и огромным живописным полотном, на котором художник компактно разместил все предметы мира. Безусловно, данная аналогия, как и все прочие, довольно приблизительно отражает суть дела, но в целом она удачна. А удачные аналогии обладают удивительным свойством — их можно развернуть дальше, подробнее. При этом сходство с объектом аналогии сохранится! Попробуем проделать такую операцию с "картинами мира". Живописные полотна имеют один существенный недостаток — степень сходства с изображаемым объектом порой бывает далека от желаемой. В стремлении добиться максимально точного изображения человечество изобрело фотографию. Точность повысилась, но заметное неудобство стала причинять статичность, безжизненность. Человечество подумало и изобрело кинематограф — изображаемые объекты ожили, задвигались, возможности адекватного воспроизведения реальности увеличились. Любопытно, но последовательно сменявшие друг друга научные картины мира (античная, ньютоновская и современная) претерпели похожие превращения. Античный ученый мир рисовал свою "картину" с большой долей фантазии и выдумки, но сходство с изображаемым было минимальным. Ньютоновская картина мира стала суше, строже и во много раз точнее (этакая черно-белая фотография, местами, правда, неясная). Нынешняя научная картина мира "оживила" неподвижную доселе Вселенную, обнаружила в каждом ее фрагменте эволюцию. Описание истории Вселенной со всем ее содержимым потребовало уже не фотографии, а киноленты, каждый кадр которой соответствовал бы определенному этапу ее развития. В этом и заключается главная принципиальная особенность современной естественнонаучной картины мира — принцип глобального эволюционизма.

Различают философскую, естественнонаучную и религиозную картины мира. Рассмотрим их особенности.

2.1Философская картина мира – это обобщенная, выраженная философскими понятиями и суждениями, теоретическая модель бытия, соотнесенности с человеческой жизнью. Картина осознанной социальной активностью, и соответствующая определенному этапу исторического развития.

В качестве основных структурных элементов философской картины мира можно выделить следующие виды знаний: о природе, об обществе, о познании, о человеке.

Знаниям о природе уделяли внимание в своих работах многие философы прошлого (Демокрит, Лукреций, Дж. Бруно, Д. Дидро, П. Гольбах, Ф. Энгельс, А.И. Герцен, Н.Ф. Федоров, В.И. Вернадский и др.).

а) нерелигиозная философская картина мира, формирующаяся на основе обобщения данных естественных и общественных наук, осмысления светской жизни;

б) религиозно-философская картина мира как система догматически- теоретических взглядов на мир, в которой смешивается земное и сакральное, происходит удвоение мира, где вера считается выше истин разума.

Следует выделить ряд положений, которые указывают на единство данных картин мира.

- Данные картины мира претендуют на адекватное теоретическое отражение мира с помощью фундаментальных философских понятий, таких как бытие, материя, дух, сознание и других.

- Знания, составляющие основу данных картин мира, формируют основы мировоззрения соответствующего типа (нерелигиозно-философское и философско-религиозное).

-Знания, составляющие основу данных картин мира, во многом плюралистичны. Они многозначны по своему содержанию, могут быть развиты в самых разные направлениях.

Содержание нерелигиозной, собственно философской картины мира составляют следующие положения:

Во-первых, философская картина мира строится на базе знаний о природном, общественном мире и мире самого человека. Они дополняются теоретическими обобщениями конкретных наук. Универсальную теоретическую картину мира философия строит не вместо конкретных наук, а вместе с науками. Философское знание входит в состав научной сферы знания, по крайней мере, частью своего содержания и в этом отношении философия есть наука, вид научного знания.

Во-вторых, философское знание, как знание особого рода, всегда выполняло важную задачу формирования основы мировоззрения, так как исходный пункт любого мировоззрения состоит именно в таких переосмысленных и общих сущностных знаниях, связанных с коренными интересами людей и общества. С древнейших времен в лоне философского знания выкристаллизовывались категории как ведущие логические формы мышления и ценностные ориентации, образующие ядро и каркас мировоззрения: бытие, материя, пространство, время, движение, развитие, свобода и т.п. На их основе строились мировоззренческие теоретические системы, выражающие концептуальное понимание культуры, природы (космоса), общества и человека. Для философской картины мира характерно единство космоцентризма, антропоцентризма и социоцентризма.

В-четвертых, для философской картины мира характерно и то, что при всем многообразии различных философских направлений и школ, окружающий человека мир рассматривается как целостный мир сложных взаимосвязей и взаимозависимостей, противоречий, качественных изменений и развития, что в конечном итоге соответствует содержанию и духу научного познания.

Философское миропонимание выражает интеллектуальное стремление человечества не просто накопить массу знаний, а понять, осмыслить мир как единый и целостный в своей основе, в котором тесно переплетены объективное и субъективное, бытие и сознание, материальное и духовное.

2.2Естественнонаучная картина мира представляет собой совокупность знаний, существующих в формах понятий, принципов и законов, дающая целостное понимание материального мира как движущейся и развивающейся природы, объясняющая происхождение жизни и человека. Она включает в себя наиболее фундаментальные знания о природе, проверенные и подтвержденные экспериментальными данными.

Основные элементы общенаучной картины мира: научные знания о природе; научные знания об обществе; научные знания о человеке и его мышлении.

История развития естественных наук свидетельствует о том, что в своем познании природы человечество прошло три основных стадии и вступает в четвертую.

На первой стадии (до XV в.) формировались общие синкретические (нерасчлененные) представления об окружающем мире как о чем-то целом. Появилась специальная область знаний – натурфилософия (философия природы), вобравшая в себя первые знания физики, биологии, химии, математики, мореплавания, астрономии, медицины и т.д.

С XV–XVI веков началась вторая стадия. На первый план выступила аналитика – мысленное расчленение бытия и выделение частностей, их изучение. Оно привело к возникновению самостоятельных конкретных наук о природе: физики, химии, биологии, механики, а также целого ряда других естественных наук.

С конца XIX – начала XX веков естествознание вступило в четвертую, техногенную стадию. Использование многообразной техники для изучения природы, ее преобразования и использования в интересах человека стало главным, доминирующим.

Основные черты современной естественнонаучной картины мира:


Тульский государственный педагогический университет им Л.Н. Толстого
Кафедра философии
Губбыева З.О., Каширин А.Ю., Шлапакова Н.А.

Современная научная картина мира.

Научная картина мира это – множество теорий в совокупности описывающих известный человеку природный мир, целостная система представлений об общих принципах и законах устройства мироздания. Поскольку картина мира это системное образование, ее изменение нельзя свести ни к какому единичному, пусть и самому крупному и радикальному открытию. Как правило, речь идет о целой серии взаимосвязанных открытий, в главных фундаментальных науках. Эти открытия почти всегда сопровождаются радикальной перестройкой метода исследования, а так же значительными изменениями в самих нормах и идеалах научности.

Таких четко и однозначно фиксируемых радикальных смен научной картины мира, научных революций в истории развития науки можно выделить три, обычно их принято персонифицировать по именам трех ученых сыгравших наибольшую роль в происходивших изменениях.

  • Аристотелевская (VI-IV века до нашей эры) в результате этой научной революции возникла сама наука, произошло отделение науки от других форм познания и освоения мира, созданы определенные нормы и образцы научного знания. Наиболее полно эта революция отражена в трудах Аристотеля. Он создал формальную логику, т.е. учение о доказательстве, главный инструмент выведения и систематизации знания, разработал категориально понятийный аппарат. Он у твердил своеобразный канон организации научного исследования (история вопроса, постановка проблемы, аргументы за и против, обоснование решения), дифференцировал само знание, отделив науки о природе от математики и метафизики
  • Ньютоновская научная революция (XVI-XVIII века), Ее исходным пунктом считается переход от геоцентрической модели мира к гелиоцентрической, этот переход был обусловлен серией открытий, связанных с именами Н. Коперника, Г. Галилея, И. Кеплера, Р. Декарта, И. Ньютон, подвел итог их исследованиям и сформулировал базовые принципы новой научной картины мира в общем виде. Основные изменения:
  • Классическое естествознание заговорило языком математики, сумело выделить строго объективные количественные характеристики земных тел (форма величина, масса, движение) и выразить их в строгих математических закономерностях.
  • Наука Нового времени нашла мощную опору в методах экспериментального исследования, явлений в строго контролируемых условиях.
  • Естествознания этого времени отказалось от концепции гармоничного, завершенного, целесообразно организованного космоса, по их представления Вселенная бесконечна и объединена только действием идентичных законов.
  • Доминантой классического естествознания, становится механика, все соображения, основанные на понятиях ценности, совершенства, целеполагания, были исключены из сферы научного поиска.
  • В познавательной деятельности подразумевалась четкая оппозиция субъекта и объекта исследования. Итогом всех этих изменений явилась механистическая научная картина мира на базе экспериментально математического естествознания.
    1. общая и специальная теория относительности (новая теория пространства и времени привела к тому, что все системы отсчета стали равноправными, поэтому все наши представления имеют смысл только в определенной системе отсчета. Картина мира приобрела релятивный, относительный характер, видоизменились ключевые представления о пространстве, времени, причинности, непрерывности, отвергнуто однозначное противопоставление субъекта и объекта, восприятие оказалось зависимым от системы отсчета, в которую входят и субъект и объект, способа наблюдения и т.д.)
    2. квантовая механика (она выявила вероятностный характер законов микромира и неустранимый корпускулярно-волновой дуализм в самых основах материи). Стало ясно, что абсолютно полную и достоверную научную картину мира не удастся создать никогда, любая из них обладает лишь относительной истинностью.

    Позднее в рамках новой картины мира произошли революции в частных науках в в космологии (концепция не стационарной Вселенной), в биологии (развитие генетики), и т.д. Таким образом, на протяжении XX века естествознание очень сильно изменило свой облик, во всех своих разделах.

    Три глобальных революции предопределили три длительных периода развития науки, они являются ключевыми этапами в развитии естествознания. Это не означает, что лежащие между ними периоды эволюционного развития науки были периодами застоя. В это время тоже совершались важнейшие открытия, создаются новые теории и методы, именно в ходе эволюционного развития накапливается материал, делающий неизбежной революцию. Кроме того, между двумя периодами развития науки разделенными научной революцией, как правило, нет неустранимых противоречий, согласно сформулированному Н. Бором, принципу соответствия, новая научная теория не отвергает полностью предшествующую, а включает ее в себя в качестве частного случая, то есть устанавливает для нее ограниченную область применения. Уже сейчас, когда с момента возникновения новой парадигмы не прошло и ста лет многие ученые высказывают предположения о близости новых глобальных революционных изменений в научной картине мира.

    Принцип глобального эволюционизма. Вселенная в целом и во всех своих проявлениях не может существовать вне развития.

    Дарвин, предложил механизм его осуществления впервые приложив принцип эволюционизма к одной из областей действительности, заложив таким образом основы теоретической биологии. Г. Спенсер, попытался применить идей Дарвина в области социологии, он доказал принципиальную возможность применения эволюционной концепции, к иным областям мира не составляющими предмет биологии. Нов целом классическое естество знание оставалось на затронуто идеями эволюционизма, эволюционирующие системы рассматривались как случайное отклонение, результат, локальных возмущений. Первыми попытались распространить применение принципа эволюционизма за пределы, биологических и социальных наук физики. Они выдвинули гипотезу расширения Вселенной, данные астрономии вынуждали признать несостоятельность предположения о ее стационарности. Вселенная явно развивается, начиная с гипотетического Большего взрыва давшего энергию для ее развития. Эта концепция была предложена в 40-е и окончательно утвердилась в 70-е гг. Таким образом, эволюционные представления проникли в космологию, концепция Большего взрыва оказала влияние на представления о последовательности появления веществ во Вселенной. Первоначально на один из компонентов вещества не мог существовать, лишь спустя некоторое время после Взрыва образовалось некоторое количество ядерного материала, (ядер атомов, водорода и гелия), затем возникли целые атомы с полными электронными оболочками, но только легких элементов, многообразие составляющее т периодическую таблицу возникает только, в ходе синтеза, в недрах звезд первого поколения.

    В XX веке эволюционное учение интенсивно развивалось в рамках его прародительницы биологии. Современный эволюционизм в научных дисциплинах биологического профиля предстает как многоплановое учение, ведущее поиск закономерностей и механизмов эволюции сразу на многих уровнях организации живой материи (молекулярном, клеточном, организменном, популяционном и биогеоценотическом). В настоящее время основная работа ведется на молекулярно-генетическом уровне, благодаря чему создана синтетическая теория эволюции (синтез генетики и дарвинизма). Удалось развести процессы микро эволюции (на популяционном уровне) и макро эволюции (на надвидовых уровнях), установила в качестве элементарной единицы популяцию и т. д. Можно привести пример из других областей естество знания – в геологии, например, утвердилась концепция дрейфа континентов. Возник ряд дисциплин, которые возникли именно благодаря применению принципов развития и поэтому были эволюционны в самой своей основе: биогеохимия, антропология и т.д.

    Одним из результатов внедрения принципа универсального эволюционизма было возникновение синергетики. В классической науке господствовало убеждение, что материи свойственна тенденции к понижению степени ее упорядоченности, стремление к равновесию, что в энергетическом смысле означает хаотичность. Такой взгляд на природу был сформулирован в рамках равновесной термодинамики (то есть, науки о превращении различных видов энергии друг в друга). Первое начало термодинамики – закон превращения и сохранения энергии в принципе не запрещает перехода энергии от менее нагретых тел к более нагретым, единственное условие, что бы общее количество энергии не изменялось. В реальности мы непосредственно такого не наблюдаем, поэтому в термодинамику было введено новое понятие энтропии, то есть меры беспорядка системы. Второе начало термодинамики приняло следующий вид: при самопроизвольных процессах в системах имеющих постоянную энергию энтропия всегда возрастает. В системе с постоянной энергией, то есть изолированной от внешней среды упорядоченность всегда со временем становится меньше, максимальная энтропия означает, полное равновесие и полный хаос. Применительно к вселенной в целом, которую тоже можно рассматривать как замкнутую систему с постоянной энергией, из этого следует, что рано или поздно вся энергия превратится в тепловую. Тепловая энергия рассеется, равномерно распределится между всеми элементами системы. Однако уже в то время когда принцип не убывания энтропии во Вселенной считался абсолютно универсальным и непреложным, были известны системы противоречащие ему. Степень их упорядоченности, со временем не убывала, а возрастала. К ним относились, прежде всего, живые организмы и их сообщества. Когда принцип эволюционизма, был распространен на другие уровни организации материи, противоречие стало еще заметнее. Стало очевидно, что для сохранения целостной не противоречивой картины мира нужно признать, что в природе действует не только разрушительный, но и созидательный принцип. Что материя способна самоорганизовываться и самоусложняться. На волне этих проблем возникла синергетика – теория самоорганизации. В настоящее время она развивается по нескольким направлениям: синергетика (Г. Хакен), неравновесная термодинамика (И. Пригожин) и др.

    1. процессы разрушения и созидания во Вселенной по меньшей мере равноправны.
    2. процессы созидания нарастания сложности и упорядоченности) имеют единый алгоритм независимо от природы систем в которых они осуществляются.

    Таким образом, синергетика ставит перед собой задачу выявление некого универсального механизма, с помощью которого осуществляется самоорганизация как в живой, так в неживой природе. Под самоорганизацией в данном случае понимается спонтанный переход открытой неравновесной системы от менее сложного к более сложным и упорядоченным формам организации.

    Объектами синергетики являются системы, которые 1. открытые, то есть, способны обмениваться веществом с окружающей внешней средой; 2. неравновесные, то есть находящиеся в состоянии далеком от термодинамического равновесия. Развитие таких систем, приводящее к постепенному нарастанию сложности, протекает следующим образом первая фаза – период плавного эволюционного развития с хорошо предсказуемыми линейными изменениями, приводящими в итоге к некому неустойчивому критическому состоянию. Вторая фаза – выход из критического состояния одномоментно скачком и переход в новое устойчивое состояние с большей степенью сложности и упорядоченности. Особенно важно учесть, что переход в новое устойчивое состояние не является однозначным. Система достигшая, критического состояния находится как бы на развилке, оба варианта в момент выбора являются одинаково возможными. Но как только выбор сделан, и система достигла нового состояния равновесия, обратного пути нет, развитие систем такого рода всегда необратимо и непредсказуемо, точнее любые прогнозы ее развития могут носить лишь вероятностный характер.

      В обобщенном виде новизна синергетического подхода состоит в следующем:
    1. хаос не только разрушителен, но и созидателен, развитие осуществляется, через неустойчивость (хаотичность).
    2. линейный характер эволюции сложных систем, не правило, а частный случай, развитие большинства систем носит нелинейный характер, для сложных систем всегда существует несколько возможных путей развития.
    3. Развитие осуществляется через случайный выбор одной из нескольких возможностей дальнейшей эволюции, следовательно случайность необходимый элемент эволюции.

    Синергетика возникла на базе физических дисциплин – термодинамики, радиофизики и пр. Но в настоящее время ее идеи уже имеют междисциплинарный характер, они подводят базу под глобальный эволюционный синтез, осуществляющийся в науке.

    Читайте также: