Организация микросхем памяти кратко

Обновлено: 02.07.2024

Для характеристики микросхемы памяти как функционального узла электронной аппаратуры необходимо знать, прежде всего, режимы работы, сигналы управления, способы сопряжения с другими функциональными узлами в аппаратуре, систему электрических параметров и их значения.

Обобщенная структурная схема запоминающего устройства, характерная для ОЗУ и ПЗУ, представлена на рис. 12.4. Она включает следующие функциональные узлы: накопитель, дешифратор кода адреса (ДШ), устройство ввода-вывода (УВВ), устройство управления (УУ).

Накопитель представляет собой совокупность элементов памяти, объединенных в матрицу. В матрице ЭП размещены на пересечениях горизонтальных и вертикальных проводников, называемых соответственно строками и столбцами. Каждый ЭП может хранить один бит (0 или 1) информации. Для хранения n-разрядного слова требуются n элементов памяти. Совокупность элементов памяти, предназначенная для хранения одного слова, называется ячейкой памяти (ЯП).

Накопитель может иметь одноразрядную и многоразрядную (словарную) организацию.. Накопитель со словарной организацией позволяет за одно обращение к нему записать или считать n разрядов, составляющих слово. На рис. 1.2.1. представлена структура микросхемы памяти со словарной организацией. Микросхема с одноразрядной организацией имеет один информационный вход и один выход.

Организация ЗУ предусматривает возможность обращения к любой ЯП для записи или считывания информации. Для этой цели служит дешифратор (ДШ). Он преобразует код адреса Am-1. A0 в активный сигнал выборки ЯП. Число ЯП в накопителе равно 2m, где m — число разрядов в адресном коде. Если ЗУ допускает выборку любой ЯП в произвольном порядке, то его называют ЗУ с произвольной выборкой (ЗУПВ).

Рис. 12.4 Обобщенная структурная схема запоминающего устройства

Устройство ввода-вывода (УВВ) предназначено для усиления и нормализации информационных сигналов Dn-1. D0, подаваемых на входы ЗУ DI при записи и снимаемых с выходов DO при считывании.

Многие микросхемы имеют совмещенные входы-выходы. В таких микросхемах УВВ дополнительно выполняет и функцию разделения внутренних цепей приема и выдачи информации. К УВВ предъявляется также требование сопряжения входов и выходов с внешними линиями передачи.

Принцип действия изображенной на рис. 12.4. схемы применительно к ОЗУ заключается в следующем. Для записи слова DIn_1. Do в заданную ЯП его необходимо подать на информационные входы DIn-1. DI0. Одновременно на адресные входы Аm-1. Ао должен быть подан код адреса выбираемой ЯП, а на входы управления — сигналы WR/RD=1 и CS-1. После выполнения этих операций входная информация через УВВ пройдет в накопитель и запишется в выбранную ячейку памяти. Для обеспечения режима хранения достаточно подать сигнал CS=0. Режим считывания реализуется аналогично режиму записи, но при значении сигнала WR/RD = 0.

Типовая схема ПЗУ отличается от ОЗУ отсутствием входов для информационных сигналов.

Следует заметить, что сигналы на входах и выходах микросхем ОЗУ и ПЗУ могут быть представлены своими прямыми значениями, как, например, в вышеприведенном рассмотрении, так и инверсными.

В общем случае любая микросхема памяти имеет следующие информационные выводы (Рис. 12.5).


Рис. 12.5. Микросхемы памяти: ПЗУ (а), ОЗУ с двунаправленной шиной данных (б), ОЗУ с раздельными шинами входных и выходных данных (в)

· Адресные выводы (входные), образующие шину адреса памяти. Код на адресных линиях представляет собой двоичный номер ячейки памяти, к которой происходит обращение в данный момент. Количество адресных разрядов определяет количество ячеек памяти: при количестве адресных разрядов n количество ячеек памяти равно 2 n .




· Адресные выводы (входные), образующие шину адреса памяти. Код на адресных линиях представляет собой двоичный номер ячейки памяти, к которой происходит обращение в данный момент. Количество адресных разрядов определяет количество ячеек памяти: при количестве адресных разрядов n количество ячеек памяти равно 2 n .

· Выводы данных (выходные), образующие шину данных памяти. Код на линиях данных представляет собой содержимое той ячейки памяти, к которой производится обращение в данный момент. Количество разрядов данных определяет количество разрядов всех ячеек памяти (обычно оно бывает равным 1, 4, 8, 16). Как правило, выходы данных имеют тип выходного каскада ОК или 3С.

· В случае оперативной памяти, помимо выходной шины данных, может быть еще и отдельная входная шина данных, на которую подается код, записываемый в выбранную ячейку памяти. Другой возможный вариант — совмещение входной и выходной шин данных, то есть двунаправленная шина, направление передачи информации по которой определяется управляющими сигналами. Двунаправленная шина применяется обычно при количестве разрядов шины данных 4 или более.

· Управляющие выводы (входные), которые определяют режим работы микросхемы. В большинстве случаев у памяти имеется вход выбора микросхемы CS (их может быть несколько, объединенных по функции И). У оперативной памяти также обязательно есть вход записи WR, активный уровень сигнала на котором переводит микросхему в режим записи.

Для характеристики микросхемы памяти как функционального узла электронной аппаратуры необходимо знать, прежде всего, режимы работы, сигналы управления, способы сопряжения с другими функциональными узлами в аппаратуре, систему электрических параметров и их значения.

Обобщенная структурная схема запоминающего устройства, характерная для ОЗУ и ПЗУ, представлена на рис. 12.4. Она включает следующие функциональные узлы: накопитель, дешифратор кода адреса (ДШ), устройство ввода-вывода (УВВ), устройство управления (УУ).

Накопитель представляет собой совокупность элементов памяти, объединенных в матрицу. В матрице ЭП размещены на пересечениях горизонтальных и вертикальных проводников, называемых соответственно строками и столбцами. Каждый ЭП может хранить один бит (0 или 1) информации. Для хранения n-разрядного слова требуются n элементов памяти. Совокупность элементов памяти, предназначенная для хранения одного слова, называется ячейкой памяти (ЯП).

Накопитель может иметь одноразрядную и многоразрядную (словарную) организацию.. Накопитель со словарной организацией позволяет за одно обращение к нему записать или считать n разрядов, составляющих слово. На рис. 1.2.1. представлена структура микросхемы памяти со словарной организацией. Микросхема с одноразрядной организацией имеет один информационный вход и один выход.

Организация ЗУ предусматривает возможность обращения к любой ЯП для записи или считывания информации. Для этой цели служит дешифратор (ДШ). Он преобразует код адреса Am-1. A0 в активный сигнал выборки ЯП. Число ЯП в накопителе равно 2m, где m — число разрядов в адресном коде. Если ЗУ допускает выборку любой ЯП в произвольном порядке, то его называют ЗУ с произвольной выборкой (ЗУПВ).

Рис. 12.4 Обобщенная структурная схема запоминающего устройства

Устройство ввода-вывода (УВВ) предназначено для усиления и нормализации информационных сигналов Dn-1. D0, подаваемых на входы ЗУ DI при записи и снимаемых с выходов DO при считывании.

Многие микросхемы имеют совмещенные входы-выходы. В таких микросхемах УВВ дополнительно выполняет и функцию разделения внутренних цепей приема и выдачи информации. К УВВ предъявляется также требование сопряжения входов и выходов с внешними линиями передачи.

Принцип действия изображенной на рис. 12.4. схемы применительно к ОЗУ заключается в следующем. Для записи слова DIn_1. Do в заданную ЯП его необходимо подать на информационные входы DIn-1. DI0. Одновременно на адресные входы Аm-1. Ао должен быть подан код адреса выбираемой ЯП, а на входы управления — сигналы WR/RD=1 и CS-1. После выполнения этих операций входная информация через УВВ пройдет в накопитель и запишется в выбранную ячейку памяти. Для обеспечения режима хранения достаточно подать сигнал CS=0. Режим считывания реализуется аналогично режиму записи, но при значении сигнала WR/RD = 0.

Типовая схема ПЗУ отличается от ОЗУ отсутствием входов для информационных сигналов.

Следует заметить, что сигналы на входах и выходах микросхем ОЗУ и ПЗУ могут быть представлены своими прямыми значениями, как, например, в вышеприведенном рассмотрении, так и инверсными.

В общем случае любая микросхема памяти имеет следующие информационные выводы (Рис. 12.5).


Рис. 12.5. Микросхемы памяти: ПЗУ (а), ОЗУ с двунаправленной шиной данных (б), ОЗУ с раздельными шинами входных и выходных данных (в)

· Адресные выводы (входные), образующие шину адреса памяти. Код на адресных линиях представляет собой двоичный номер ячейки памяти, к которой происходит обращение в данный момент. Количество адресных разрядов определяет количество ячеек памяти: при количестве адресных разрядов n количество ячеек памяти равно 2 n .

· Адресные выводы (входные), образующие шину адреса памяти. Код на адресных линиях представляет собой двоичный номер ячейки памяти, к которой происходит обращение в данный момент. Количество адресных разрядов определяет количество ячеек памяти: при количестве адресных разрядов n количество ячеек памяти равно 2 n .

· Выводы данных (выходные), образующие шину данных памяти. Код на линиях данных представляет собой содержимое той ячейки памяти, к которой производится обращение в данный момент. Количество разрядов данных определяет количество разрядов всех ячеек памяти (обычно оно бывает равным 1, 4, 8, 16). Как правило, выходы данных имеют тип выходного каскада ОК или 3С.

· В случае оперативной памяти, помимо выходной шины данных, может быть еще и отдельная входная шина данных, на которую подается код, записываемый в выбранную ячейку памяти. Другой возможный вариант — совмещение входной и выходной шин данных, то есть двунаправленная шина, направление передачи информации по которой определяется управляющими сигналами. Двунаправленная шина применяется обычно при количестве разрядов шины данных 4 или более.

· Управляющие выводы (входные), которые определяют режим работы микросхемы. В большинстве случаев у памяти имеется вход выбора микросхемы CS (их может быть несколько, объединенных по функции И). У оперативной памяти также обязательно есть вход записи WR, активный уровень сигнала на котором переводит микросхему в режим записи.

SDRAM: Определение

Микросхемы SDRAM: Физическая организация и принцип работы

Схема обращения к ячейке памяти в самом общем случае может быть представлена следующим образом:

В современных микросхемах SDRAM схема обращения к ячейкам памяти выглядит аналогично. Далее, в связи с обсуждением задержек при доступе в память (таймингов памяти), мы рассмотрим ее более подробно.

Микросхемы SDRAM: Логическая организация

Модули SDRAM: Организация

Модули памяти: Микросхема SPD

Тайминги памяти

Схема доступа к данным микросхемы SDRAM

1. Активизация строки

2. Чтение/запись данных

3. Подзарядка строки

Соотношения между таймингами

В заключение этой части, посвященной задержкам при доступе к данным, рассмотрим основные соотношения между важнейшими параметрами таймингов на примере более простых операций чтения данных. Как мы рассмотрели выше, в самом простейшем и самом общем случае — для пакетного считывания заданного количества данных (2, 4 или 8 элементов) необходимо осуществить следующие операции:

1) активизировать строку в банке памяти с помощью команды ACTIVATE;

2) подать команду чтения данных READ;

3) считать данные, поступающие на внешнюю шину данных микросхемы;

В то же время, минимальному времени активности строки (от подачи команды ACTIVATE до подачи команды PRECHARGE, tRAS), по его определению, как раз отвечает промежуток времени между началом первой и началом четвертой операции. Отсюда вытекает первое важное соотношение между таймингами памяти:

где tRCD — время выполнения первой операции, tCL — второй, (tBL — (tCL — 1)) — третьей, наконец, вычитание единицы производится вследствие того, что период tRAS не включает в себя такт, на котором осуществляется подача команды PRECHARGE. Сокращая это выражение, получаем:

Что такое чип памяти и как программировать микросхемы

Микросхемы разного назначения применяются в составе электроники современной техники. Огромное многообразие такого рода компонентов дополняют микросхемы памяти. Этот вид радиодеталей (среди электронщиков и в народе) зачастую называют просто – чипы. Основное назначение чипов памяти – хранение определённой информации с возможностью внесения (записи), изменения (перезаписи) или полного удаления (стирания) программными средствами. Всеобщий интерес к чипам памяти понятен. Мастерам, знающим как программировать микросхемы памяти, открываются широкие просторы в области ремонта и настройки современных электронных устройств.

О чипах – микросхемах хранения информации

Микросхема памяти — это электронный компонент, внутренняя структура которого способна сохранять (запоминать) внесённые программы, какие-либо данные или одновременно то и другое. По сути, загруженные в чип сведения представляют собой серию команд, состоящих из набора вычислительных единиц микропроцессора.

Следует отметить: чипы памяти всегда являются неотъемлемым дополнением микропроцессоров – управляющих микросхем. В свою очередь микропроцессор является основой электроники любой современной техники.

Набор электронных компонентов

Набор электронных компонентов на плате современного электронного устройства. Где-то среди этой массы радиодеталей приютился компонент, способный запоминать информацию

Таким образом, микропроцессор управляет работой электронной техники, а чип памяти хранит сведения, необходимые микропроцессору. Программы или данные хранятся в чипе памяти как ряд чисел — нулей и единиц (биты). Один бит может быть представлен логическими нулем (0) либо единицей (1).

Программным термином для чипов, что используется чаще других, является байт. Это набор из восьми бит, который может принимать от 2 до 8 числовых вариаций, что в общей сложности даёт 256 различных значений.

Для представления байта используется шестнадцатеричная система счисления, где предусматривается использование 16 значений из двух групп:

  1. Цифровых (от 0 до 9).
  2. Символьных (от А до F).

Организация микросхем (чипов) памяти

Организация структуры памяти

Организация структуры запоминающего устройства. На первый взгляд сложный и непонятный алгоритм. Но при желании разобраться, понимание приходит быстро

Микросхемы памяти EPROM (серия 27… 27C …)

Чип памяти 27 серии

Одна из модификаций запоминающих устройств, особенность исполнения которой заключается в наличии специального окна. Благодаря этому окну, ультрафиолетом стирается информация

Программатор микросхем Batronix

Программатор микросхем Batronix — эффективный и продуктивный инструмент программирования запоминающих устройств. Поддерживает работу с широким набором чипов, включая 27 серию

Тип памяти серии 27… 27C… сохраняет записанные программатором данные до следующего программирования с функцией стирания или без таковой. Допускается многократное программирование без стирания, при условии изменения битов только от состояния единицы до состояния нуля или имеющих состояние нуль.

Если же требуется запрограммировать чип памяти с изменением бита от состояния нуля до состояния единицы, прежде необходимо применить функцию стирания. Такая функция предусмотрена в конструкциях микросхем.

Конфигурация исполнения серии 27…, 27C..

Микросхемы 27 серии выпускаются с окном из кварцевого стекла для засветки ультрафиолетом или без окна. Конфигурация чипа без окна не поддерживает функцию ультрафиолетового стирания. Такой тип микросхем (без окна) относят к чипам EPROM, которые программируются за один раз. Маркируются чипы как OTP (One Time Programmable) — одноразовое программирование.

Микросхема памяти одноразовой записи

Запоминающее программируемое устройство из группы однократно программируемых EPROM (One Time Programmable). В настоящее время редко применяемые

На устройствах с окном после стирания ультрафиолетом и последующего программирования, кварцевое окно закрывают наклейкой. Так защищают данные от возможного повреждения светом.

Солнечные лучи содержат ультрафиолет, а это значит – свет солнца способен стирать информацию, записанную в микросхеме. Правда, чтобы полностью стереть данные солнечным светом, потребуется несколько сотен часов прямого воздействия солнечных лучей.

Этот вид микросхем памяти отличается сниженной производительностью по отношению к семейству NMOS (N-channel Metal Oxide Semiconductor) — N-канальный метал-оксидный полупроводник.

Кроме того, серия 27C требует меньшего напряжения питания (12,5В). Между тем обе конфигурации исполнения совместимы. Поэтому, к примеру, микросхема 2764 вполне заменима на чип 27C64.

Микросхемы памяти EEPROM серии 28C…

Здесь первое отличие заметно в аббревиатуре типа памяти – EEPROM, что означает электрически стираемое программируемое постоянное запоминающее устройство (Electrically Erasable Programmable Read Only Memory).

Построение этой серии практически идентично 27 чипам. Однако 28 серия позволяет стирать отдельные байты или всё пространство памяти электрическим способом, без применения ультрафиолета.

Микросхемы памяти серии 28

Серия запоминающих устройств, поддерживающая электрический метод стирания информации. Этот вид входит уже в состав группы EEPROM — электрически стираемых постоянных запоминающих устройств

Поскольку отдельные байты можно стереть, не удаляя всю хранимую информацию, эти отдельные байты могут быть перезаписаны. Однако процесс записи EEPROM занимает больше времени, чем программирование EPROM. Разница до нескольких миллисекунд на байт.

Чтобы компенсировать этот недостаток, чипы подобные AT28C256, оснащаются функцией блочного программирования. При таком подходе к программированию, одновременно (блоком) загружаются 64, 128 или 256 байт. Блочный способ сокращает время программирования.

Чипы памяти FLASH EEPROM серии 28F …, 29C …, 29F …

Эти чипы можно стирать электрически — полностью или блоками, а некоторые (подобные AT28C …) могут программироваться блоками.

Между тем Flash-память не всегда применимо использовать в качестве замены обычного чипа. Причины, как правило, заключаются в разной конфигурации корпусного исполнения.

Простой пример, когда Flash-память доступна только в корпусах на 32 контакта или более. Поэтому, допустим, чип 28F256 на 32 вывода не совместим с чипом 27C256, имеющим 28 контактных выводов. При этом микросхемы имеют одинаковый объём памяти и другие параметры, подходящие для замены.

Чипы EEPROM с последовательным доступом (24C …, 25C …, 93C …)

Микросхемы памяти с последовательным интерфейсом отличаются тем, что вывод данных и наименование имен в них происходят частями (последовательно).

Последовательный процесс позволяет получить доступ только к одному биту за раз, и доступный адрес также передаётся по битам. Но последовательное программирование имеет явное преимущество в плане конфигурации корпусов.

Чипы последовательной памяти серии 24

Всего восемь контактных ножек достаточно запоминающему устройству серии 24C и подобным для полноценной работы на запись и хранение данных

Запоминающие устройства ОЗУ серии 52 …, 62 …, 48Z …, DS12 …, XS22 …

Их отличительные черты – скоростная запись без необходимости предварительного стирания. Здесь видится некоторое преимущество относительно других изделий. Но есть и недостаток – чипы ОЗУ отмеченной и других серий утрачивают все записанные и сохранённые данные при отключении питания.

Однако имеется альтернатива – память NVRAM (Non Volatile Random Access Memory) – энергонезависимая память серий 48, DS, XS и подобная, с произвольным доступом. Этот вид чипов выделяется среди основных преимуществ микросхем RAM высокой скоростью перезаписи и простым программированием. Потеря питания не оказывает влияние на сохранённую информацию.

Чип программируемый nvram

Устройства записи и хранения информации, которые не боятся отключения питания. Их структура предусматривает эффективную защиту данных

Как же способом достигается энергетическая независимость NVRAM? Оказывается, производителями используются две методики:

  1. Встраиваемый в корпус мини аккумулятор.
  2. Совмещение в одном корпусе NVRAM и EEPROM.

Для первого варианта: при отключении питания происходит автоматический переход на внутренний источник энергии. По словам производителей чипов с АКБ, энергии встроенного уникального аккумулятора вполне достаточно на 10 лет работы.

Для второго варианта: технология предусматривает копирование данных пространства памяти NVRAM на встроенное пространство EEPROM. Если утрачивается питание, копия информации остаётся нетронутой и после восстановления энергии, автоматически копируется на NVRAM.

Маркировка и взаимозаменяемость компонентов

Выведенная на корпусе маркировка чипа памяти традиционно содержит:

  • аббревиатуру производителя,
  • технологию производства,
  • размер (объём) памяти,
  • максимально разрешенную скорость доступа,
  • диапазон температур,
  • тип формы корпуса.

Также на корпусах нередко отмечаются сведения о производителе. Независимо от производителя, многие микросхемы памяти совместимы.

Маркировка чипов памяти

Маркировка — структура записи на корпусе программируемого устройства, раскрывающая основные сведения, по которым можно подобрать аналог на замену при необходимости

Для быстрой, точной интерпретации памяти, конечно же, необходима практика. Но при желании изучить все тонкости не так сложно, как это видится изначально. Если дело касается взаимной замены, в первую очередь должна поддерживаться технология (EPROM, EEPROM , FLASH и т.д.),

Пример расшифровки маркировки микросхемы памяти M27C1001-10F1:

  • память типа EPROM,
  • объём хранения данных 1 Мбит (1001),
  • максимальное время доступа 100 нс (10),
  • тип корпуса DIP (F),
  • температурный диапазон 0 — 70ºС (1).

Из практики программирования запоминающих устройств

При помощи информации: Batronix

КРАТКИЙ БРИФИНГ

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Микросхемы памяти (или просто память, или запоминающие устройства — ЗУ, английское "Memory") представляют собой следующий шаг на пути усложнения цифровых микросхем по сравнению с микросхемами, рассмотренными ранее. Память — это всегда очень сложная структура, включающая в себя множество элементов. Правда, внутренняя структура памяти — регулярная, большинство элементов одинаковые, связи между элементами сравнительно простые, поэтому функции, выполняемые микросхемами памяти, не слишком сложные.

Память , как и следует из ее названия, предназначена для запоминания, хранения каких-то массивов информации, проще говоря, наборов, таблиц, групп цифровых кодов. Каждый код хранится в отдельном элементе памяти, называемом ячейкой памяти. Основная функция любой памяти как раз и состоит в выдаче этих кодов на выходы микросхемы по внешнему запросу. А основной параметр памяти — это ее объем, то есть количество кодов, которые могут в ней храниться, и разрядность этих кодов.

Для обозначения количества ячеек памяти используются следующие специальные единицы измерения:

1К — это 1024, то есть 2 10 (читается "кило-"" или "ка-"), примерно равно одной тысяче;

1М — это 1048576, то есть 2 20 (читается "мега-"), примерно равно одному миллиону;

1Г — это 1073741824, то есть 2 30 (читается "гига-"), примерно равно одному миллиарду.

Принцип организации памяти записывается следующим образом: сначала пишется количество ячеек, а затем через знак умножения (косой крест) — разрядность кода, хранящегося в одной ячейке. Например, организация памяти 64Кх8 означает, что память имеет 64К (то есть 65536) ячеек и каждая ячейка — восьмиразрядная. А организация памяти 4М х 1 означает, что память имеет 4М (то есть 4194304) ячеек, причем каждая ячейка имеет всего один разряд. Общий объем памяти измеряется в байтах (килобайтах — Кбайт, мегабайтах — Мбайт, гигабайтах — Гбайт) или в битах (килобитах — Кбит, мегабитах — Мбит, гигабитах — Гбит).

В зависимости от способа занесения (записи) информации и от способа ее хранения, микросхемы памяти разделяются на следующие основные типы:

Постоянная память ( ПЗУпостоянное запоминающее устройство , ROM — Read Only Memory — память только для чтения), в которую информация заносится один раз на этапе изготовления микросхемы. Такая память называется еще масочным ПЗУ . Информация в памяти не пропадает при выключении ее питания, поэтому ее еще называют энергонезависимой памятью.

Программируемая постоянная память (ППЗУ — программируемое ПЗУ , PROMProgrammable ROM), в которую информация может заноситься пользователем с помощью специальных методов (ограниченное число раз). Информация в ППЗУ тоже не пропадает при выключении ее питания, то есть она также энергонезависимая.

Оперативная память (ОЗУ — оперативное запоминающее устройство , RAMRandom Access Memory — память с произвольным доступом), запись информации в которую наиболее проста и может производиться пользователем сколько угодно раз на протяжении всего срока службы микросхемы. Информация в памяти пропадает при выключении ее питания.

Существует множество промежуточных типов памяти, а также множество подтипов , но указанные — самые главные, принципиально отличающиеся друг от друга. Хотя, разница между ПЗУ и ППЗУ с точки зрения разработчика цифровых устройств, как правило, не так уж велика. Только в отдельных случаях, например, при использовании так называемой флэш-памяти (flash-memory), представляющей собой ППЗУ с многократным электрическим стиранием и перезаписью информации, эта разница действительно чрезвычайно важна. Можно считать, что флэш-память занимает промежуточное положение между ОЗУ и ПЗУ .

В общем случае любая микросхема памяти имеет следующие информационные выводы ( рисунок 1 ):

Рисунок 1 - Микросхемы памяти: ПЗУ (а), ОЗУ с двунаправленной шиной данных (б), ОЗУ с раздельными шинами входных и выходных данных (в)

Адресные выводы (входные), образующие шину адреса памяти. Код на адресных линиях представляет собой двоичный номер ячейки памяти, к которой происходит обращение в данный момент. Количество адресных разрядов определяет количество ячеек памяти: при количестве адресных разрядов n количество ячеек памяти равно 2 n .

Выводы данных (выходные), образующие шину данных памяти. Код на линиях данных представляет собой содержимое той ячейки памяти, к которой производится обращение в данный момент. Количество разрядов данных определяет количество разрядов всех ячеек памяти (обычно оно бывает равным 1, 4, 8, 16).

В случае оперативной памяти, помимо выходной шины данных , может быть еще и отдельная входная шина данных , на которую подается код, записываемый в выбранную ячейку памяти. Другой возможный вариант — совмещение входной и выходной шин данных, то есть двунаправленная шина, направление передачи информации по которой определяется управляющими сигналами. Двунаправленная шина применяется обычно при количестве разрядов шины данных 4 или более.

Управляющие выводы (входные), которые определяют режим работы микросхемы. В большинстве случаев у памяти имеется вход выбора микросхемы CS (их может быть несколько, объединенных по функции И). У оперативной памяти также обязательно есть вход записи WR, активный уровень сигнала на котором переводит микросхему в режим записи

Микросхемы оперативной памяти DDR SDRAM выпускались в корпусах TSOP и корпусах типа BGA (FBGA), производятся по нормам 0,13 и 0,09-микронного техпроцесса:

Напряжение питания микросхем: 2,6 В ± 0,1 В.

Потребляемая мощность: 527 мВт.

Интерфейс ввода-вывода: SSTL_2.

Характеристики памяти. Частота и тайминги

Память характеризуется прежде всего типом. Для настольных компьютеров (десктопов) сегодня используются типы памяти: DDR, DDR2, DDR3.

Основной характеристикой памяти является ее частота. Чем частота больше, тем память считается быстрее. Но эту частоту должны поддерживать процессор и материнская плата, иначе память будет работать на более низкой частоте

Модули памяти, как и ее типы имеют свою маркировку, которая начинается на PC, PC2 и PC3 соответственно.

Частота оперативной памяти не обязательно должна совпадать, материнская плата выставит для всех планок частоту по самому медленному модулю, но очень часто компьютер с планками разной частоты работает нестабильно. Например может вообще не включится.

Следующим параметром быстродействия памяти являются так называемые задержки (тайминги). Грубо говоря – это время, которое прошло от момента обращения к памяти до момента выдачи ей нужных данных. Соответственно, чем меньше тайминги – тем лучше. Существуют десятки различных задержек при чтении, записи, копировании и различных комбинаций этих и других операций. Но основных, по которым можно ориентироваться всего несколько.

Тайминги указываются (правда не всегда) на этикетке модулей памяти в виде 4 цифр с дефисами между ними. Первый и самый главный – латентность, остальные производные от нее.

Задержки зависят от качества изготовления чипов памяти. Соответственно – выше качество-ниже тайминги-выше цена. Однако стоит заметить, что тайминги значительно меньше влияют на производительность, чем частота памяти. Обычно модули, имеющие сверхнизкие тайминги, позиционируются как топовые, идут в комплекте с радиаторами (о которых поговорим позже), в красивой упаковке и стоят гораздо дороже.

Тайминги тоже не обязательно должны совпадать. Материнская плата автоматом выставит тайминги для всех планок по самому медленному модулю. Проблем быть не должно

Оперативная память может работать в разных режимах, так называемых: Single Mode (одноканальный) и Dual Mode (двухканальный).

В одноканальном режиме данные записываются сначала в один модуль памяти, а когда его объем будет исчерпан начинает записываться на следующий свободный модуль.

В двухканальном режиме запись данных распараллеливается и записывается одновременно на несколько модулей.

Использование двухканального режима значительно повышает скорость работы памяти. Реально скорость работы памяти в двухканальном режиме до 30% выше, чем в одноканальном. Но для того, что бы он работал необходимо соблюсти следующие условия:

- материнская плата должна поддерживать двухканальный режим работы с ОЗУ

- модулей памяти должно быть 2 или 4

- модули памяти должны быть либо все односторонние, либо все двухсторонние

При несоблюдении какого - либо из этих условий память будет работать только в одноканальном режиме.

Модули памяти изготавливает множество производителей. И, как всегда, они имеют разное качество. Следует обратить внимание на следующие бренды, имеющие оптимальное соотношение цена/качество: AMD, Crucial, Goodram , Hynix, Kingston, Micron, Patriot, Samsung, TakeMS, Transcend. К брендам для энтузиастов относятся: Corsair, G.Skill, Mushkin, Team. Эти фирмы производят большой ассортимент модулей с радиаторами и повышенными техническими характеристиками. Рекомендую избегать дешевых китайских брендов: A-Data, Apacer, Elixir, Elpida, NCP, PQI и других мало известных производителей.

Отдельного упоминания заслуживают модули памяти, которые производятся не в Китае. В настоящее время таких не много, например модули, которые маркируются как Hynix Original и Samsung Original производятся в Корее. Качество таких модулей считается выше, стоят они чуть дороже, но обычно имеют более длительную гарантию (до 36 месяцев).

Всем привет! Сегодняшняя статья полностью посвящена микросхемам памяти. В связи с огромными по распространению и по темпам развития разных цифровых устройств и гаджетов, этот тип микросхем получил огромную распространенность во всем мире. Практически в каждом цифровом электронном гаджете, будь то ноутбук, планшет, видеокамера, их всех связывает память. Не будем сильно углубляться во все эти термины и крутые словечки, просто поговорим про два основных типа памяти, это ОЗУ и ПЗУ.

Эти оба вида микросхем памяти используются в электронике всегда вместе, ПЗУ (постоянное запоминающее устройство) место для энергонезависимого хранения данных, по другому EEPROM. ОЗУ (оперативное запоминающее устройство) - почти тоже самое, только данные хранятся там до момента отключения питания, после повторного отключения питания - на микросхемах ОЗУ теряется вся информация, в то время как на микросхемах ПЗУ информация может храниться очень долго, и при отключении питания информация не удаляется.

Первый вид микросхем (EEPROM, ПЗУ)

Твердотельный накопитель данных, используется для постоянного хранения данных, с возможностью многократной перезаписи информации, многократного считывания и долговременного её хранения, как с питанием, так и без. В быту - ПЗУ используется во всевозможных накопителях, флеш-картах, в SSD жестких дисках, даже в наших любимых микроконтроллерах как область хранения "прошивки". Микроконтроллеры - это по сути ПЗУ и микропроцессор, исполняющий команды файла прошивки, всё это в одном корпусе, на одном кристалле. Если бы вместо ПЗУ использовали ОЗУ, вам бы после каждого выключения пришлось бы прошивать и загружать данные (а это одно и тоже), и если наоборот - ПЗУ вместо ОЗУ, пользования такой памятью будь её хоть 32 Гб хватило бы её вам минут на 5, не более, своего рода ОЗУ это буфер обмена, между устройством отдающим информацию и устройством принимающим её.

Второй вид микросхем памяти

(ОЗУ, он же RAM) - твердотельный накопитель данных, ОЗУ - оперативная память, куда загружаются временно файлы для работы ОС(всегда служебные процессы активны и занимают часть ОЗУ) и то с чем работает ОС, будь то игра, видео, Ваша любимая песня или ещё что-то, по такому принципу работает и DVD плеер, загружая информацию с оптического диска в ОЗУ и потом бесшумно её считывает процессор, не замечали как когда-то DVD плеер стоит бесшумно, а картинка со звуком спокойно себе воспроизводится? - такой подход используется для того что-бы не возникало ошибок при считывании, данные считываются, и сравнивается контрольная сумма. По такому принципу работает и HDD диск компьютера и другие устройства, которые считывают данные с оптических дисков и т. п.

Рассмотрим это подробнее, на примере планшета


  1. Контроллер питания, с его назначением всё понятно, питать всё это чудо.
  2. Процессор. Связывает всё воедино, выполняет все системные функции, управляется интерфейсом ПО, пользователь же управляет операционной системой, ОС уже процессором. В компьютерах и ноутбуках связующую роль между "железом" и ПО выполняет микросхема BIOS (базовая система ввода-вывода данных. (Мой ник не с проста выбирался! =))
  3. Микросхема постоянной памяти, ПЗУ разделенная на две части системно, в одной части находится служебная информация, и операционная система. А в другой её части находиться память доступна непосредственно пользователю.
  4. Микросхемы RAM, всё понятно, оперативная память, "хватает" файлы на "лету", требования от этой памяти - высокая скорость обмена данными и максимально быстрая их перезапись. Вот и по этому "оперативная" - должна работать оперативненько))).

Как видим, ничего нет на самом деле сложного, сложное только их изготовление, хотя последнее время на рынке памяти очень большая конкуренция. Несомненным гигантом в её производстве является три корпорации, южнокорейская корпорация SAMSUNG и Hynix(Hyundai Electronics), и Американская Kingston. Но так же их выпускают и другие корпорации, к примеру Intel, MEDIATEK, Quanta и многие другие, даже встречаются иногда "но нэйм" микросхемы, и кто их сделал - останется загадкой.

Накопитель - это по сути ячейка с огромным количеством транзисторов, в которых сохраняется значение "1" или "0", двоичная система если по простому, есть на транзисторе заряд - это "1", нет заряда - "0" в инверсии получится наоборот.

Далее разговор только о ПЗУ, флэш и прочем EEPROM

Если микросхема типа MMC/SD - то это самая обычная "флешка" SD интерфейса и она уже включает в себя контроллер и память, по сути просто флешка, которая имеет разный корпус. в интернете есть пример удачной замены микросхемы Hynix H26M52002CKR на обычную microSD карточку на мобильном телефоне Nokia 808.

Мне стало очень интересно всё это, и в тот же миг был спаян вот такой незамысловатый переходничек-кардридер.

переходничек-кардридер самодельный

Подключается к любому совместимому компьютеру.

Для компьютера переходничек-кардридер самодельный

Как же подсоединять всё это дело? Во-первых нужно узнать распиновку кардридера:

узнать распиновку кардридера

узнать распиновку кардридера 2

узнать распиновку кардридера 3

узнать распиновку кардридера 4

Распиновку интересующих карт памяти и картридеров можно посмотреть в интернете. А вот где посмотреть распиновку BGA и TSOP микросхем?


Всё там же, в интернете, точнее в даташите, скачанном под определенную микросхему, в даташите, кстати, есть все, начиная от напряжения питания, и до типа микросхем.

в даташите под определенную микросхему

Внимательно смотрите на тип вашей микросхемы - если MMC/SD и вообще SD совместный, то всё должно получиться, а вот если просто NAND память - то нужно городить контроллер, такой как на USB флешках и на SD/microSD(SDHC) уже стоит.

Кстати, готовый контроллер можно использовать всё из тех же USB флешек.

Удачи всем в интересных опытах, будьте внимательны и не сожгите что-нибудь! О результатах прошу писать Вас на конференцию. Автор материала - BIOS.

Форум по обсуждению материала МИКРОСХЕМЫ ПАМЯТИ


Обзор китайского устройства для электролиза воды - фото, видео, описание работы.


Приводится несколько рабочих схем электромагнитных Gauss Gun. Первая часть сборника.


Обзор ещё нескольких схем и готовых конструкций Gauss Gun с Алиэкспресс.


Что такое OLED, MiniLED и MicroLED телевизоры - краткий обзор и сравнение технологий.

Читайте также: