Образование энергетических зон в твердом теле кратко

Обновлено: 30.06.2024

Электрические свойства твердого тела зависят от того, как электроны составляющих его атомов распределяются по орбитальным уровням при его кристаллизации.

Как мы знаем из модели атома Бора, электроны в атоме расположены на различных орбитальных уровнях, характеризующихся различной удаленностью от ядра и, соответственно, различной энергией связи электрона с ядром. При образовании кристаллической решетки твердого тела орбиты электронов несколько деформируются, и, соответственно, смещаются энергетические уровни удержания электронов на них. Это смещение можно представить себе двояко. С одной стороны, можно заметить, что в твердом теле электрон не может не подвергаться электрическому воздействию со стороны соседних атомов — он притягивается к их ядрам и отталкивается их электронами. С другой стороны, два электрона, в силу принципа запрета Паули, не могут находиться на одной орбите в одном и том же энергетическом состоянии, то есть два любых электрона в любом случае находятся на несколько отличающихся друг от друга энергетических уровнях.

В любом случае, можно понять, что при образовании твердого тела в смысле кристаллизации атомов в жесткую структуру каждый энергетический электронный уровень в атомах расщепляется на ряд близких подуровней, объединенных в энергетическую полосу или зону. Все электроны, находящиеся в данной энергетической полосе, обладают очень близкими энергиями. На близких к ядру орбитах электроны находятся в связанном состоянии: они неспособны оторваться от ядра, поскольку, хотя теоретически перескок электрона из одного атома в другой — на ту же по энергии орбиту — возможен, все нижние орбиты соседних атомов заняты, и реальная миграция электронов между ними невозможна.

Многозонную теорию строения твердого тела можно использовать для объяснения электропроводности вещества. Если валентная зона твердого тела заполнена, а до следующей незаполненной энергетической зоны далеко, вероятность того, что электрон на нее перейдет, близка к нулю. Значит, электроны прочно привязаны к атомам и практически не образуют проводящего слоя. Соответственно, и под воздействием электрической разности потенциалов с места они не двигаются, и мы имеем изолятор — вещество, не проводящее электрический ток.

Проводник, с другой стороны, как раз представляет собой вещество с частично заполненной зоной валентных электронов, внутри которой электроны имеют значительную свободу перемещения от атома к атому. Наконец, полупроводники — это кристаллические вещества с заполненной валентной зоной, и в этом они подобны изоляторам, однако разность энергий между валентным уровнем и следующим, проводящим энергетическим уровнем у них настолько незначительна, что электроны преодолевают ее при обычных температурах чисто в силу теплового движения.

Если рассматривать структуру атомов различных элементов, то можно выделить оболочки, которые полностью заполнены электронами (внутренние), и не полностью заполненные (внешние). Последние слабее связаны с ядром, и легче вступают во взаимодействие с другими атомами. Электроны на внешней оболочке называют валентными.


Чем ближе расположены атомы в веществах друг к другу, тем сильнее взаимодействие валентных электронов и влияние на валентные электроны ядер соседних атомов. В результате чего каждый отдельный разрешенный энергетический уровень расщепляется на ряд новых энергетических уровней, энергии которых близки друг к другу. Совокупность уровней, на каждом из которых могут находиться электроны, называют разрешенной зоной. Промежутки между разрешенными зонами носят название запрещенных зон.

В энергетическом спектре твердого тела можно выделить три вида зон:

1) разрешенные (полностью заполненные) зоны;

2) запрещенные зоны;

3) зоны проводимости.

Разрешенная зона характеризуется тем, что все уровни ее при температуре 0К заполнены электронами. Верхнюю заполненную часть разрешенной зоны называют валентной.

Запрещенная зона характеризуется тем, что в ее пределах нет энергетических уровней, на которых могли бы находиться электроны.

Зона проводимости характеризуется тем, что электроны, находящиеся в ней, обладают энергиями, позволяющими им освобождаться от связи с атомами и передвигаться внутри твердого тела (например, под действием электрических полей) (свободные электроны).

Рассмотрим формирование энергетических зон в веществе в зависимости от расстояния между атомами.


В сечении d1 энергетические диаграммы для двух уровней атомов имеют одинаковый вид. По мере уменьшения расстояния между атомами будет происходить расщепление энергетических уровней W1 и W2 на два уровня в соответствии с принципом Паули. (W1 на уровни 1 и 2, W2 – на уровни 3 и 4).

Если вместо 2-х атомов взять их огромное число, например , то каждый из 2-х энергетических уровней расщепиться на дискретных энергетических уровней, каждый из которых расположится в зонах между уровнями 1,2 и 3,4. Хотя эти образовавшиеся уровни и дискретны, но разница энергий между ними будет очень мала, поэтому в целом спектр этих энергий можно считать квазинепрерывным. Значения же энергий, принадлежащих запрещенным зонам, не могут реализовываться. Из рисунка видно, что в сечениях d1 и d2 между разрешенными зонами, имеются запрещенные зоны. (в d1-зона ∆W21, в d2 - зона ∆W23 ).

Очевидно, что ∆W21>∆W23.

В сечение же d3 не только не существует запрещенной зоны, более того разрешенные зоны перекрывают друг друга. Число уровней в такой слившейся зоне равно сумме количеств уровней, на которые расщепляются оба уровня атома.

В соответствии с рисунком, в зависимости от ширины запрещенной зоны можно построить энергетические диаграммы для трех типов веществ.

Диэлектрики Полупроводники Металлы


У металлов валентная зона и зона проводимости перекрываются, поэтому у них нет запрещенной зоны.

Различия между диэлектриками и полупроводниками чисто количественные – в ширине запрещенной зоны.

Классификация твердых тел по степени электропроводности.

Если рассматривать структуру атомов различных элементов, то можно выделить оболочки, которые полностью заполнены электронами (внутренние), и не полностью заполненные (внешние). Последние слабее связаны с ядром, и легче вступают во взаимодействие с другими атомами. Электроны на внешней оболочке называют валентными.


Чем ближе расположены атомы в веществах друг к другу, тем сильнее взаимодействие валентных электронов и влияние на валентные электроны ядер соседних атомов. В результате чего каждый отдельный разрешенный энергетический уровень расщепляется на ряд новых энергетических уровней, энергии которых близки друг к другу. Совокупность уровней, на каждом из которых могут находиться электроны, называют разрешенной зоной. Промежутки между разрешенными зонами носят название запрещенных зон.

В энергетическом спектре твердого тела можно выделить три вида зон:

1) разрешенные (полностью заполненные) зоны;




2) запрещенные зоны;

3) зоны проводимости.

Разрешенная зона характеризуется тем, что все уровни ее при температуре 0К заполнены электронами. Верхнюю заполненную часть разрешенной зоны называют валентной.

Запрещенная зона характеризуется тем, что в ее пределах нет энергетических уровней, на которых могли бы находиться электроны.

Зона проводимости характеризуется тем, что электроны, находящиеся в ней, обладают энергиями, позволяющими им освобождаться от связи с атомами и передвигаться внутри твердого тела (например, под действием электрических полей) (свободные электроны).

Рассмотрим формирование энергетических зон в веществе в зависимости от расстояния между атомами.


В сечении d1 энергетические диаграммы для двух уровней атомов имеют одинаковый вид. По мере уменьшения расстояния между атомами будет происходить расщепление энергетических уровней W1 и W2 на два уровня в соответствии с принципом Паули. (W1 на уровни 1 и 2, W2 – на уровни 3 и 4).

Если вместо 2-х атомов взять их огромное число, например , то каждый из 2-х энергетических уровней расщепиться на дискретных энергетических уровней, каждый из которых расположится в зонах между уровнями 1,2 и 3,4. Хотя эти образовавшиеся уровни и дискретны, но разница энергий между ними будет очень мала, поэтому в целом спектр этих энергий можно считать квазинепрерывным. Значения же энергий, принадлежащих запрещенным зонам, не могут реализовываться. Из рисунка видно, что в сечениях d1 и d2 между разрешенными зонами, имеются запрещенные зоны. (в d1-зона ∆W21, в d2 - зона ∆W23 ).

Очевидно, что ∆W21>∆W23.

В сечение же d3 не только не существует запрещенной зоны, более того разрешенные зоны перекрывают друг друга. Число уровней в такой слившейся зоне равно сумме количеств уровней, на которые расщепляются оба уровня атома.

В соответствии с рисунком, в зависимости от ширины запрещенной зоны можно построить энергетические диаграммы для трех типов веществ.

Диэлектрики Полупроводники Металлы


У металлов валентная зона и зона проводимости перекрываются, поэтому у них нет запрещенной зоны.

Различия между диэлектриками и полупроводниками чисто количественные – в ширине запрещенной зоны.

Основываясь лишь на модели электронного газа невозможно объяснить тот факт, что одни вещества представляют собой проводники, вторые полупроводники, а третьи изоляторы. Стоит принимать во внимание взаимодействие между атомами и электронами. Предположим, что кристаллическая решетка металла или полупроводника сформирована как результат сближения атомов. Связь с атомными ядрами валентных электронов атомов металлов проявляет себя гораздо слабее, чем связь с подобными электронами полупроводников. При условии сближения атомов электроны приходят во взаимодействие. В результате валентные электроны разрывают свою связь с атомами металла, что делает их свободными, обладающими возможностью перемещаться по всему металлу.

В полупроводниках, по причине существенно более сильной связи электронов с ядрами атомов, для того, чтобы разорвать связь валентного электрона нужно сообщить ему так называемую энергию ионизации.

Для разных полупроводников величина энергии ионизации может колебаться от 0 , 1 до 2 э В , в то же время средняя кинетическая энергия теплового движения атома близка к 0 , 04 э В . Количество атомов, энергия которых выше или эквивалентна энергии ионизации, относительно невелико. Соответственно, свободных электронов в полупроводниках не много. С увеличением температуры, число атомов с энергией ионизации повышается, а это значит, что растет и электрическая проводимость полупроводника.

За процессом ионизации всегда идет сопровождение в виде обратного процесса, а именно рекомбинация. В условиях состояния равновесия среднее число актов ионизации эквивалентно количеству актов рекомбинации.

Понятие о зонной теории

Квантовая теория электропроводности твердых тел основывается на так называемой зонной теории твердых тел, которая заключается в изучении энергетического спектра электронов.

Данный спектр подразделяется на разделенные запрещенными промежутками зоны. В случае, если в верхней зоне, где определяется присутствие электронов, они не заполняют каждое из квантовых состояний (в пределах зоны может быть проведено перераспределение энергии и импульса), то данное вещество представляет собой проводник. Подобная зона носит название зоны проводимости, вещество — проводника электрического тока, тип проводимости такого вещества является электронным.

Если в зоне проводимости находится большое количество электронов и свободных квантовых состояний, то значение электропроводности велико. Электроны в условиях зоны проводимости при прохождении электрического тока определяются как носители заряда. Процесс движения подобных электронов может быть описан с помощью законов квантовой механики. Если проводить сравнение с общим количеством электронов, то число таких электронов может считаться малым.

Энергетические уровни

Энергетические уровни валентного электрона в одном изолированном атоме могут быть представлены таким образом, как это проиллюстрировано на рисунке 1 . Снизу вверх по вертикали на рисунке 1 откладываются: величины полной энергии электрона, а также отмечаются минимальная энергия электронов проводимости E c с наибольшим значением энергии связанных электронов E v . Вероятные значения энергий электронов заполняют собой некоторую область или же так называемую зону энергии W ≥ E c . Такая зона представляет собой зону проводимости. Энергии электронов связи формируют другую зону с W ≤ E v . Приведенная зона носит название зоны валентных электронов или, другими словами, валентной зоны. Данные зоны разделены энергетическим промежутком с шириной, определяемой с помощью следующего выражения: E g = E c − E v .

Такой энергетический промежуток представляет собой зону запрещенных энергий. В условиях отсутствующих примесных атомов, а также дефектов решетки, стационарные движения электронов с энергией внутри запрещенной зоны не представляются возможными.

Энергетические уровни

Процесс разрыва химической связи, который провоцирует возникновение электрона проводимости и положительной дырки, носит название электронного перехода.

Валентная зона — зона проводимости (смотрите рисунок 1 цифра 1 ).

Обратный процесс определяется как рекомбинация электрона проводимости и положительной дырки (электронный переход 2 , рисунок 1 ). В условиях существования атомов примеси вероятно возникновение дискретных разрешенных уровней энергии как ,например, уровень E d , проиллюстрированный на рисунке 1 . Данные уровни могут существовать не во всем объеме кристалла, а лишь в местах нахождения атомов примеси (такие уровни определяются как локальные). Каждый из локальных уровней производит энергию электрона, в случае его нахождения на примесном атоме. Локальные электронные уровни дают возможность дополнительных электронных переходов. Как пример, ионизация донора с образованием электрона проводимости проиллюстрирована на рисунке 1 в виде электронного перехода 3 . Роль обратного ему процесса захвата электрона на атом донора играет электронный переход 4 из зоны проводимости на незаполненный уровень донора.

Образование энергетических зон

Из решения задачи о движении электрона в поле периодического потенциала можно сделать вывод, что имеет место система зон разрешённых энергий (рисунок 2 ). Каждая из зон ограничивается снизу некоторой энергией W m i n или, другими словами, дном зоны, а сверху так называемым потолком зоны W m a x . Данные зоны разделены полосами запрещенных энергий. Ширина разрешенных зон в условиях увеличения энергии возрастает. Возможно перекрытие друг друга широкими зонами, такое явление провоцирует образование единой сложной зоны. Предположим, что существует N изолированных атомов, которые никоим образом не взаимодействуют. В каждом из таких атомов энергия электронов может претерпевать изменения только в виде скачка, таким образом, она характеризуется совокупностью резких, дискретных уровней энергии. В данной системе невзаимодействующих атомов роль каждого атомного энергетического уровня играет N совпадающих уровней энергии. Сократим расстояние между атомами до формирования кристаллической решетки. Атомы начинают взаимодействовать друг с другом, а уровни энергии изменяются. Ранее совпадающие N уровней энергии начинают разниться. Подобная система несовпадающих уровней энергии носит название разрешенной зоны энергий.

Выходит, что энергетические зоны возникают в качестве результата расщепления дискретных уровней энергии электрона в атомах, вызванного действием атомов решетки. Количество энергетических уровней в каждой из зон крайне большое (порядка числа атомов в кристалле), энергетические уровни расположены довольно близко. Таким образом, в некоторых случаях можно принять, что внутри зон энергия электрона претерпевает непрерывные изменения (как это происходит в классической теории). Однако тот факт, что количество уровней конечно, имеет принципиальное значение. Совокупность энергетических уровней, на которые расщепляется кратный уровень, представляет собой так называемую энергетическую зону или, другими словами, зону кристалла. Зона,возникающая как результат расщепления N -кратного вырожденного основного уровня, носит название основной зоны, все остальные зоны определяются как зоны возбуждения.

Энергетические зоны не могут быть отождествлены с пространственными зонами, областями пространства, в которых находится электрон.

В рамках зонной теории принимается тот факт, что электрон движется в постоянном электрическом поле, которое формируется ионами и остальными электронами. Ионы обладают сравнительно большими массами и считаются неподвижными. Электроны учитываются суммарно. Они определяются в виде отрицательно заряженной жидкости, которая заполняет пустующее пространство между ионами. В подобной модели роль электронов заключается в компенсации заряда ионов. Электрическое поле модели периодично в пространстве, место периодов занимают пространственные периоды решетки. Задание сводится к задаче о движении одного электрона в постоянном периодическом поле. Решение данной задачи в квантовой механике приводит к зонной структуре энергетических уровней.

Дайте описание зонных структур металлов, диэлектриков и полупроводников.

Решение

Электрические свойства тел зависимы от ширины запрещенной энергетической зоны и различий в заполнении разрешенных зон. Существование в разрешенной зоне свободных энергетических уровней является необходимым условием возникновения проводимости. На данный уровень поле сторонних сил может перенести электрон. Зону, которая является пустой или же заполнена лишь частично определяется как зона проводимости. В свою очередь, зона, заполненная электронами полностью, носит название валентной. Металлы, диэлектрики и полупроводники отличаются в области степени заполнения валентной зоны электронами, а также шириной запретной зоны. У металлов зона проводимости является частично заполненной и обладает свободными верхними уровнями. При условии T = 0 валентные электроны попарно заполняют нижние уровни валентной зоны. Локализованным на верхних уровнях электронам для того, чтобы перевести их на более высокие уровни достаточно подвести энергию 10 - 23 - 10 - 22 э В . У диэлектриков первая, являющаяся незаполненной зона, отделена от целиком заполненной нижней зоны с помощью широкой запрещенной зоны. Чтобы перевести электрон в свободную зону необходимо сообщить энергию большую или же эквивалентную ширине запретной зоны. Ширина запрещенной зоны диэлектриков является равной нескольким электрон вольтам. Тепловое движение не имеет возможности перевести в свободную зону большое количество электронов. У кристаллических полупроводников ширина запрещенной зоны между полностью заполненной валентной зоной и первой незаполненной зоной довольно мала. Если ширина запретной зоны эквивалентна нескольким десятым э В , энергии теплового движения хватает для того, чтобы перевести электроны в свободную зону проводимости. При этом вероятен переход электрона внутри валентной зоны на освободившиеся уровни.

Перечислите основные предположения зонной теории.

Решение

В качестве основных предположений зонной теории можно привести следующие:

В рамках модели электронного газа невозможно ответить на вопрос о том, почему одни вещества являются проводниками, вторые полупроводниками, а третьи изоляторами. Следует учесть взаимодействие между атомами и атомами и электронами. Допустим, что кристаллическая решетка металла или полупроводника образована в результате сближения атомов. Валентные электроны атомов металлов существенно слабее связаны с атомными ядрами, чем подобные электроны полупроводников. При сближении атомов электроны приходят во взаимодействие. Как следствие, валентные электроны отрываются от атомов металла и становятся свободными, имеющими возможность перемещаться по всему металлу. В полупроводниках из-за более сильной связи электронов с ядрами атомов для того чтобы валентный электрон оторвать необходимо сообщить ему энергию, которую называют энергией ионизации. Для различных полупроводников энергия ионизации различна от 0,1 до 2 эВ, тогда как средняя кинетическая энергия теплового движения атома порядка 0,04 эВ. Количество атомов, энергия которых больше или равна энергии ионизации относительно не велико. Следовательно, немного свободных электронов в полупроводниках. С повышением температуры, число атомов с энергией ионизации растет, значит, повышается электрическая проводимость полупроводника.

Процесс ионизации сопровождается обратным процессом -- рекомбинацией. В состоянии равновесия среднее число актов ионизации равно, количеству актов рекомбинации.

Понятие о зонной теории

В основе квантовой теории электропроводности твердых тел лежит зонная теория, которая основывается на изучении энергетического спектра электронов. Этот спектр делится на зоны, которые разделены запрещенными промежутками. В том случае, если в верхней зоне, где присутствуют электроны, они заполняют не все квантовые состояния (в пределах зоны имеется возможность для перераспределения энергии и импульса), то данное вещество -- проводник. Такая зона называется зоной проводимости, вещество -- проводник электрического тока, тип его проводимости -- электронный. Если в зоне проводимости много электронов и свободных квантовых состояний, то электропроводность большая. Электроны в зоне проводимости являются носителями заряда при прохождении электрического тока. Движение таких электронов описывается законами квантовой механики. Количество таких электронов невелико по сравнению с общим числом электронов.

Энергетические уровни

Энергетические уровни валентного электрона в одном изолированном атоме можно представить, как изображено на рис.1. По вертикали снизу вверх на рис.1 отложены: значения полной энергии электрона и отмечены минимальная энергия электронов проводимости $E_c\ $и наибольшая энергия связанных электронов $E_v.$ Возможные значения энергий электронов заполняют некоторую область или зону энергии $W\ge E_c$. Эта зона называется зоной проводимости. Энергии электронов связи образуют другую зону с $W\le E_v$. Данная зона называется зоной валентных электронов (валентной зоной). Эти зоны разделены энергетическим промежутком шириной:

Этот энергетический промежуток называется зоной запрещенных энергий. Если нет примесных атомов, и дефектов решетки, то стационарные движения электронов с энергией внутри запрещенной зоны невозможны.

Понятие о зонной теории твердых тел

Разрыв химической связи, который ведет к возникновению электрона проводимости и положительной дырки -- это электронный переход валентная зона -- зона проводимости (см. рис.1 цифра 1). Обратный процесс -- рекомбинация электрона проводимости и положительной дырки - электронный переход 2 (рис.1). При существовании атомов примеси возможно образование дискретных разрешенных уровней энергии (например, на рис.1 это уровень $E_d$). Эти уровни могут существовать не во всем объеме кристалла, а только в тех местах, где находится атомы примеси (эти уровни называют локальными). Каждый локальный уровень дает энергию электрона, когда он находится на примесном атоме. Локальные энергетические уровни делают возможными дополнительные электронные переходы. Так, ионизация донора с образованием электрона проводимости отражена на рис.1 электронным переходом 3. Обратный ему процесс захвата электрона на атом донора -- электронный переход 4 из зоны проводимости на незаполненный уровень донора.

Формирование энергетических зон

Решение задачи о движении электрона в поле периодического потенциала показывает, что существует систем зон разрешённых энергий (рис.2). Каждая зона ограничивается снизу некоторой энергией $W_$ (дно зоны), а сверху имеет $W_$ -- потолок зоны. Эти зоны отделены полосами запрещенных энергий. Ширина разрешенных зон увеличивается при увеличении энергии. Широкие верхние зоны могут перекрывать друг друга, так образуется единая сложная зона.

Допустим, что имеется N изолированных атомов, которые не взаимодействуют. В каждом из них энергия электронов может меняться только скачком, следовательно, характеризуется совокупностью резких, дискретных уровней энергии. В такой системе невзаимодействующих атомов вместо каждого атомного энергетического уровня существует N совпадающих уровней энергии. Сблизим атомы, до образования кристаллической решетки. Атомы начинают взаимодействовать, уровни энергии изменяются. Ранее совпадавшие N уровней энергии становятся различными. Такая система несовпадающих уровней энергии -- разрешенная зона энергий. Получается, что энергетические зоны появляются как результат расщепления дискретных уровней энергии электрона в атомах под действием атомов решетки.

Количество энергетических уровней в каждой зоне очень большое (порядка числа атомов в кристалле), энергетические уровни расположены близко. Значит, в некоторых случаях можно принять, что внутри зон энергия электрона изменяется непрерывно (как в классической теории). Но то, что количество уровней конечно, имеет принципиальное значение.

Итак, совокупность энергетических уровней, на которые расщепляется кратный уровень, называют энергетической зоной (зоной кристалла). Зона, появляющаяся в результате расщепления N- кратного вырожденного основного уровня, называется основой зоной, все остальные зоны являются зонам возбуждения.

Энергетические зоны нельзя отождествлять с пространственными зонами, областями пространства, где находится электрон. В зонной теории полагается, что электрон движется в постоянном электрическом поле, которое создается ионами и остальными электронами. Ионы имеют относительно большие массы и считаются неподвижными. Электроны учитываются суммарно. Они представляются как отрицательно заряженная жидкость, которая заполняет пространство между ионами. Роль электронов в такой модели сводится к компенсации заряд ионов. Электрическое поле модели периодично в пространстве, периодами являются пространственные периоды решетки. Задача сводится к задаче о движении одного электрона в постоянном периодическом поле. Решение такой задачи в квантовой механике ведет к зонной структуре энергетических уровней.

Готовые работы на аналогичную тему

Задание: Опишите зонные структуры металлов, диэлектриков и полупроводников.

Электрические свойства тел связаны с шириной запрещенной энергетической зоны и различиями в заполнении разрешенных зон. Необходимое условие проводимости -- наличие в разрешенной зоне свободных энергетических уровней. На этот уровень поле сторонних сил может перевести электрон. Зону, которая заполнена частично или пустая называют зоной проводимости. Зона, заполненная электронами целиком, называется валентной. Металлы, диэлектрики и полупроводники различаются степенью заполнения валентной зоны электронами и шириной запретной зоны.

Для эффективного использования света в технике связи и других областях науки и техники надо добиться синхронного и синфазного (одинакового по фазе) излучения атомов, т. е. так называемого когерентного излучения. Если число возбужденных атомов равно числу невозбужденных, то никакого усиления света не получится, так как число фотонов, поглощенных невозбужденными атомами, будет равно числу фотонов, излученных возбужденными атомами. Следовательно, для усиления света и получения когерентного излучения необходимо, чтобы число возбужденных атомов было больше числа атомов, находящихся в основном, невозбужденном состоянии. Другими словами, должна быть так называемая инверсия населенности энергетических уровней. В отличие от состояния, когда атомы не возбуждены и электроны находятся на основных орбитах (на более низких уровнях), необходимо в большинстве атомов переместить электроны на более удаленные от ядра орбиты (на более высокие уровни), т. е. возбудить большинство атомов. Чтобы усиление света происходило в течение необходимого промежутка времени, надо все это время сохранять инвертированное состояние вещества, т. е. все время должно быть большое количество возбужденных атомов. Для этого надо к данному веществу, называемому активной средой или рабочим веществом, подводить энергию, вызывающую возбуждение атомов.

28. Твердое тело. Образование энергетических зон в твердом теле. Зона проводимости, валентная зона, запрещенная зона. Энергетическая схема твердого тела для металлов, полупроводников, диэлектриков.

Твёрдое тело — одно из агрегатных состояний вещества, характеризующееся сопротивлением деформации и изменению объёма.

Образование энергетических зон в твердом теле можно представить следующим образом. Вначале предположим, что кристалл равномерно растянут так, что межатомные расстоя­ния в нем очень велики. Тогда разрешенные уровни для электронов совпадут с атомными уровнями, которые для простоты будем предполагать невырожденными. В кристал­ле, состоящем из N атомов, каждый атомный уровень ста­новится N-кратно вырожденным. Если затем начать посте­пенно уменьшать межатомные расстояния в кристалле, то вследствие растущего взаимодействия атомов друг с другом каждый уровень расщепится на серию N различных по энер­гии уровней. Вместо каждого N-кратно вырожденного уровня получаем зону энергий, содержащую N плотно размещен­ных уровней В случае глубоколежащих атомных уровней возмущение оказывается слабым по сравнению с си­лами взаимодействия между электроном и ядром; соответ­ственно и расщепление этих уровней будет мало.

Зона проводимости — в зонной теории твёрдого тела первая из незаполненных электронами зон в полупроводниках и диэлектриках.

Валентная зона — энергетическая область разрешённых электронных состояний в твёрдом теле, заполненная валентными электронами.

Запрещённая зона — область значений энергии, которыми не может обладать электрон в идеальном (бездефектном) кристалле.


29. Квантовая модель свободных электронов в металлах. Распределение электронов по энергиям. Уровень Ферми.

Модель свободных электронов в металлах предполагает, что при образовании кристаллической решетки от атомов отщепляются некоторые слабее всего связанные с ними (валентные) электроны. Отщепленные электроны становятся общими для всех атомов и могут свободно перемещаться в кристалле. Именно эти электроны, в отличие от электронов, заполняющих внутренние электронные оболочки атомов, обеспечивают электропроводность металлов. Поэтому их называют электронами проводимости.

При 0 К энергия всех электронов меньше энергии Ферми. Ни один из электронов покинуть кристалл не может и никакой термоэлектронной эмиссии не наблюдается. С увеличением температуры возрастает число термически возбужденных электронов , способных выйти из металла, что обусловливает явление термоэлектронной эмиссии.

Уровень Ферми - уровень энергии, ниже которого все состояния при T = 0K заняты электронами.

Читайте также: