Наименьшее и наибольшее значение функции кратко

Обновлено: 02.07.2024

Если функция $y=f(x)$ определена и непрерывна на отрезке $[a ; b]$ , то она на этом отрезке достигает своих наибольшего и наименьшего значений. Если свое наибольшее значение $M$ функция $f(x)$ принимает в точке $x_ \in[a ; b]$, то $M=f\left(x_\right)$ будет локальным максимумом функции $f(x)$, так как в этом случае существует окрестность точки $x_$, такая, что $f(x) \leq f\left(x_\right)$ .

Однако свое наибольшее значение $M$ функция $f(x)$ может принимать и на концах отрезка $[a ; b]$ . Поэтому, чтобы найти наибольшее значение $M$ непрерывной на отрезке $[a ; b]$ функции $f(x)$, надо найти все максимумы функции на интервале $(a ; b)$ и значения $f(x)$ на концах отрезка $[a ; b]$, то есть $f(a)$ и $f(b)$, и выбрать среди них наибольшее. Вместо исследования на максимум можно ограничиться нахождением значений функции в критических точках.

Наименьшим значением $m$ непрерывной на отрезке $[a ; b]$ функции $f(x)$ будет наименьший минимум среди всех минимумов функции $f(x)$ на интервале $(a ; b)$ и значений $f(a)$ и $f(b)$.

Задание. Найти наибольшее и наименьшее значение функции $y(x)=4 x^-2 x^+4$ на отрезке $[0 ; 5]$ .

Решение. Находим производную функции:

Находим точки, в которых производная равна нулю:

$y^<\prime>(x)=0 \Rightarrow 12 x^-4 x=0 \Rightarrow x_=0, x_=\frac$

Из полученных значений нам надо оставить лишь те, которые принадлежат заданному промежутку $[0 ; 5]$ . Оба значения лежат в этом промежутке.

Находим значения функции в полученных стационарных точках из промежутка и на концах промежутка:

$y(0)=4 ; \quad y\left(\frac\right)=\frac \approx 3,92 ; y(5)=454$



Ответ.

На практике довольно часто приходится использовать производную для того, чтобы вычислить самое большое и самое маленькое значение функции. Мы выполняем это действие тогда, когда выясняем, как минимизировать издержки, увеличить прибыль, рассчитать оптимальную нагрузку на производство и др., то есть в тех случаях, когда нужно определить оптимальное значение какого-либо параметра. Чтобы решить такие задачи верно, надо хорошо понимать, что такое наибольшее и наименьшее значение функции.

Обычно мы определяем эти значения в рамках некоторого интервала x , который может в свою очередь соответствовать всей области определения функции или ее части. Это может быть как отрезок [ a ; b ] , так и открытый интервал ( a ; b ) , ( a ; b ] , [ a ; b ) , бесконечный интервал ( a ; b ) , ( a ; b ] , [ a ; b ) либо бесконечный промежуток - ∞ ; a , ( - ∞ ; a ] , [ a ; + ∞ ) , ( - ∞ ; + ∞ ) .

В этом материале мы расскажем, как вычисляется наибольшее и наименьшее значение явно заданной функции с одной переменной y=f(x) y = f ( x ) .

Основные определения

Начнем, как всегда, с формулировки основных определений.

Наибольшее значение функции y = f ( x ) на некотором промежутке x – это значение m a x y = f ( x 0 ) x ∈ X , которое при любом значении x x ∈ X , x ≠ x 0 делает справедливым неравенство f ( x ) ≤ f ( x 0 ) .

Наименьшее значение функции y = f ( x ) на некотором промежутке x – это значение m i n x ∈ X y = f ( x 0 ) , которое при любом значении x ∈ X , x ≠ x 0 делает справедливым неравенство f(X f ( x ) ≥ f ( x 0 ) .

Данные определения являются достаточно очевидными. Еще проще можно сказать так: наибольшее значение функции – это ее самое большое значение на известном интервале при абсциссе x 0 , а наименьшее – это самое маленькое принимаемое значение на том же интервале при x 0 .

Стационарными точками называются такие значения аргумента функции, при которых ее производная обращается в 0 .

Зачем нам нужно знать, что такое стационарные точки? Для ответа на этот вопрос надо вспомнить теорему Ферма. Из нее следует, что стационарная точка – это такая точка, в которой находится экстремум дифференцируемой функции (т.е. ее локальный минимум или максимум). Следовательно, функция будет принимать наименьшее или наибольшее значение на некотором промежутке именно в одной из стационарных точек.

Еще функция может принимать наибольшее или наименьшее значение в тех точках, в которых сама функция является определенной, а ее первой производной не существует.

Первый вопрос, который возникает при изучении этой темы: во всех ли случаях мы может определить наибольшее или наименьшее значение функции на заданном отрезке? Нет, мы не можем этого сделать тогда, когда границы заданного промежутка будут совпадать с границами области определения, или если мы имеем дело с бесконечным интервалом. Бывает и так, что функция в заданном отрезке или на бесконечности будет принимать бесконечно малые или бесконечно большие значения. В этих случаях определить наибольшее и/или наименьшее значение не представляется возможным.

Более понятными эти моменты станут после изображения на графиках:

Наибольшее и наименьшее значение функции на отрезке

Наибольшее и наименьшее значение функции на отрезке

Первый рисунок показывает нам функцию, которая принимает наибольшее и наименьшее значения ( m a x y и m i n y ) в стационарных точках, расположенных на отрезке [ - 6 ; 6 ] .

Разберем подробно случай, указанный на втором графике. Изменим значение отрезка на [ 1 ; 6 ] и получим, что наибольшее значение функции будет достигаться в точке с абсциссой в правой границе интервала, а наименьшее – в стационарной точке.

На третьем рисунке абсциссы точек представляют собой граничные точки отрезка [ - 3 ; 2 ] . Они соответствуют наибольшему и наименьшему значению заданной функции.

Наибольшее и наименьшее значение функции на открытом интервале

Теперь посмотрим на четвертый рисунок. В нем функция принимает m a x y (наибольшее значение) и m i n y (наименьшее значение) в стационарных точках на открытом интервале ( - 6 ; 6 ) .

Если мы возьмем интервал [ 1 ; 6 ) , то можно сказать, что наименьшее значение функции на нем будет достигнуто в стационарной точке. Наибольшее значение нам будет неизвестно. Функция могла бы принять наибольшее значение при x , равном 6 , если бы x = 6 принадлежала интервалу. Именно этот случай нарисован на графике 5 .

На графике 6 наименьшее значение данная функция приобретает в правой границе интервала ( - 3 ; 2 ] , а о наибольшем значении мы не можем сделать определенных выводов.

Наибольшее и наименьшее значение функции на бесконечности

На рисунке 7 мы видим, что функция будет иметь m a x y в стационарной точке, имеющей абсциссу, равную 1 . Наименьшего значения функция достигнет на границе интервала с правой стороны. На минус бесконечности значения функции будут асимптотически приближаться к y = 3 .

Если мы возьмем интервал x ∈ 2 ; + ∞ , то увидим, что заданная функция не будет принимать на нем ни наименьшего, ни наибольшего значения. Если x стремится к 2 , то значения функции будут стремиться к минус бесконечности, поскольку прямая x = 2 – это вертикальная асимптота. Если же абсцисса стремится к плюс бесконечности, то значения функции будут асимптотически приближаться к y = 3 . Именно этот случай изображен на рисунке 8 .

Как найти наибольшее и наименьшее значение непрерывной функции на заданном отрезке

В этом пункте мы приведем последовательность действий, которую нужно выполнить для нахождения наибольшего или наименьшего значения функции на некотором отрезке.

  1. Для начала найдем область определения функции. Проверим, входит ли в нее заданный в условии отрезок.
  2. Теперь вычислим точки, содержащиеся в данном отрезке, в которых не существует первой производной. Чаще всего их можно встретить у функций, аргумент которых записан под знаком модуля, или у степенных функций, показатель которых является дробно рациональным числом.
  3. Далее выясним, какие стационарные точки попадут в заданный отрезок. Для этого надо вычислить производную функции, потом приравнять ее к 0 и решить получившееся в итоге уравнение, после чего выбрать подходящие корни. Если у нас не получится ни одной стационарной точки или они не будут попадать в заданный отрезок, то мы переходим к следующему шагу.
  4. Определим, какие значения будет принимать функция в заданных стационарных точках (если они есть), или в тех точках, в которых не существует первой производной (если они есть), либо же вычисляем значения для x = a и x = b .
  5. 5. У нас получился ряд значений функции, из которых теперь нужно выбрать самое больше и самое маленькое. Это и будут наибольшее и наименьшее значения функции, которые нам нужно найти.

Посмотрим, как правильно применить этот алгоритм при решении задач.

Условие: задана функция y = x 3 + 4 x 2 . Определите ее наибольшее и наименьшее значение на отрезках [ 1 ; 4 ] и [ - 4 ; - 1 ] .

Решение:

Начнем с нахождения области определения данной функции. В этом случае ей будет множество всех действительных чисел, кроме 0 . Иными словами, D ( y ) : x ∈ ( - ∞ ; 0 ) ∪ 0 ; + ∞ . Оба отрезка, заданных в условии, будут находиться внутри области определения.

Теперь вычисляем производную функции согласно правилу дифференцирования дроби:

y ' = x 3 + 4 x 2 ' = x 3 + 4 ' · x 2 - x 3 + 4 · x 2 ' x 4 = = 3 x 2 · x 2 - ( x 3 - 4 ) · 2 x x 4 = x 3 - 8 x 3

Мы узнали, что производная функции будет существовать во всех точках отрезков [ 1 ; 4 ] и [ - 4 ; - 1 ] .

Теперь нам надо определить стационарные точки функции. Сделаем это с помощью уравнения x 3 - 8 x 3 = 0 . У него есть только один действительный корень, равный 2 . Он будет стационарной точкой функции и попадет в первый отрезок [ 1 ; 4 ] .

Вычислим значения функции на концах первого отрезка и в данной точке, т.е. для x = 1 , x = 2 и x = 4 :

y ( 1 ) = 1 3 + 4 1 2 = 5 y ( 2 ) = 2 3 + 4 2 2 = 3 y ( 4 ) = 4 3 + 4 4 2 = 4 1 4

Мы получили, что наибольшее значение функции m a x y x ∈ [ 1 ; 4 ] = y ( 2 ) = 3 будет достигнуто при x = 1 , а наименьшее m i n y x ∈ [ 1 ; 4 ] = y ( 2 ) = 3 – при x = 2 .

Второй отрезок не включает в себя ни одной стационарной точки, поэтому нам надо вычислить значения функции только на концах заданного отрезка:

y ( - 1 ) = ( - 1 ) 3 + 4 ( - 1 ) 2 = 3

Значит, m a x y x ∈ [ - 4 ; - 1 ] = y ( - 1 ) = 3 , m i n y x ∈ [ - 4 ; - 1 ] = y ( - 4 ) = - 3 3 4 .

Ответ: Для отрезка [ 1 ; 4 ] - m a x y x ∈ [ 1 ; 4 ] = y ( 2 ) = 3 , m i n y x ∈ [ 1 ; 4 ] = y ( 2 ) = 3 , для отрезка [ - 4 ; - 1 ] - m a x y x ∈ [ - 4 ; - 1 ] = y ( - 1 ) = 3 , m i n y x ∈ [ - 4 ; - 1 ] = y ( - 4 ) = - 3 3 4 .

Как найти наибольшее и наименьшее значение непрерывной функции на открытом или бесконечном интервале

Перед тем как изучить данный способ, советуем вам повторить, как правильно вычислять односторонний предел и предел на бесконечности, а также узнать основные методы их нахождения. Чтобы найти наибольшее и/или наименьшее значение функции на открытом или бесконечном интервале, выполняем последовательно следующие действия.

  1. Для начала нужно проверить, будет ли заданный интервал являться подмножеством области определения данной функции.
  2. Определим все точки, которые содержатся в нужном интервале и в которых не существует первой производной. Обычно они бывают у функций, где аргумент заключен в знаке модуля, и у степенных функций с дробно рациональным показателем. Если же эти точки отсутствуют, то можно переходить к следующему шагу.
  3. Теперь определим, какие стационарные точки попадут в заданный промежуток. Сначала приравняем производную к 0 , решим уравнение и подберем подходящие корни. Если у нас нет ни одной стационарной точки или они не попадают в заданный интервал, то сразу переходим к дальнейшим действиям. Их определяет вид интервала.
  • Если интервал имеет вид [ a ; b ) , то нам надо вычислить значение функции в точке x = a и односторонний предел lim x → b - 0 f ( x ) .
  • Если интервал имеет вид ( a ; b ] , то нам надо вычислить значение функции в точке x = b и односторонний предел lim x → a + 0 f ( x ) .
  • Если интервал имеет вид ( a ; b ) , то нам надо вычислить односторонние пределы lim x → b - 0 f ( x ) , lim x → a + 0 f ( x ) .
  • Если интервал имеет вид [ a ; + ∞ ) , то надо вычислить значение в точке x = a и предел на плюс бесконечности lim x → + ∞ f ( x ) .
  • Если интервал выглядит как ( - ∞ ; b ] , вычисляем значение в точке x = b и предел на минус бесконечности lim x → - ∞ f ( x ) .
  • Если - ∞ ; b , то считаем односторонний предел lim x → b - 0 f ( x ) и предел на минус бесконечности lim x → - ∞ f ( x )
  • Если же - ∞ ; + ∞ , то считаем пределы на минус и плюс бесконечности lim x → + ∞ f ( x ) , lim x → - ∞ f ( x ) .
  1. В конце нужно сделать вывод на основе полученных значений функции и пределов. Здесь возможно множество вариантов. Так, если односторонний предел равен минус бесконечности или плюс бесконечности, то сразу понятно, что о наименьшем и наибольшем значении функции сказать ничего нельзя. Ниже мы разберем один типичный пример. Подробные описания помогут вам понять, что к чему. При необходимости можно вернуться к рисункам 4 - 8 в первой части материала.

Условие: дана функция y = 3 e 1 x 2 + x - 6 - 4 . Вычислите ее наибольшее и наименьшее значение в интервалах - ∞ ; - 4 , - ∞ ; - 3 , ( - 3 ; 1 ] , ( - 3 ; 2 ) , [ 1 ; 2 ) , 2 ; + ∞ , [ 4 ; + ∞ ) .

Решение

Первым делом находим область определения функции. В знаменателе дроби стоит квадратный трехчлен, который не должен обращаться в 0 :

x 2 + x - 6 = 0 D = 1 2 - 4 · 1 · ( - 6 ) = 25 x 1 = - 1 - 5 2 = - 3 x 2 = - 1 + 5 2 = 2 ⇒ D ( y ) : x ∈ ( - ∞ ; - 3 ) ∪ ( - 3 ; 2 ) ∪ ( 2 ; + ∞ )

Мы получили область определения функции, к которой принадлежат все указанные в условии интервалы.

Теперь выполним дифференцирование функции и получим:

y ' = 3 e 1 x 2 + x - 6 - 4 ' = 3 · e 1 x 2 + x - 6 ' = 3 · e 1 x 2 + x - 6 · 1 x 2 + x - 6 ' = = 3 · e 1 x 2 + x - 6 · 1 ' · x 2 + x - 6 - 1 · x 2 + x - 6 ' ( x 2 + x - 6 ) 2 = - 3 · ( 2 x + 1 ) · e 1 x 2 + x - 6 x 2 + x - 6 2

Следовательно, производные функции существуют на всей области ее определения.

Перейдем к нахождению стационарных точек. Производная функции обращается в 0 при x = - 1 2 . Это стационарная точка, которая находится в интервалах ( - 3 ; 1 ] и ( - 3 ; 2 ) .

Вычислим значение функции при x = - 4 для промежутка ( - ∞ ; - 4 ] , а также предел на минус бесконечности:

y ( - 4 ) = 3 e 1 ( - 4 ) 2 + ( - 4 ) - 6 - 4 = 3 e 1 6 - 4 ≈ - 0 . 456 lim x → - ∞ 3 e 1 x 2 + x - 6 = 3 e 0 - 4 = - 1

Поскольку 3 e 1 6 - 4 > - 1 , значит, m a x y x ∈ ( - ∞ ; - 4 ] = y ( - 4 ) = 3 e 1 6 - 4 . Это не дает нам возможности однозначно определить наименьшее значение функции. Мы можем только сделать вывод, что внизу есть ограничение - 1 , поскольку именно к этому значению функция приближается асимптотически на минус бесконечности.

Особенностью второго интервала является то, что в нем нет ни одной стационарной точки и ни одной строгой границы. Следовательно, ни наибольшего, ни наименьшего значения функции мы вычислить не сможем. Определив предел на минус бесконечности и при стремлении аргумента к - 3 с левой стороны, мы получим только интервал значений:

lim x → - 3 - 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 - 0 3 e 1 ( x + 3 ) ( x - 3 ) - 4 = 3 e 1 ( - 3 - 0 + 3 ) ( - 3 - 0 - 2 ) - 4 = = 3 e 1 ( + 0 ) - 4 = 3 e + ∞ - 4 = + ∞ lim x → - ∞ 3 e 1 x 2 + x - 6 - 4 = 3 e 0 - 4 = - 1

Значит, значения функции будут расположены в интервале - 1 ; + ∞

Чтобы найти наибольшее значение функции в третьем промежутке, определим ее значение в стационарной точке x = - 1 2 , если x = 1 . Также нам надо будет знать односторонний предел для того случая, когда аргумент стремится к - 3 с правой стороны:

y - 1 2 = 3 e 1 - 1 2 2 + - 1 2 - 6 - 4 = 3 e 4 25 - 4 ≈ - 1 . 444 y ( 1 ) = 3 e 1 1 2 + 1 - 6 - 4 ≈ - 1 . 644 lim x → - 3 + 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 ( x + 3 ) ( x - 2 ) - 4 = 3 e 1 - 3 + 0 + 3 ( - 3 + 0 - 2 ) - 4 = = 3 e 1 ( - 0 ) - 4 = 3 e - ∞ - 4 = 3 · 0 - 4 = - 4

У нас получилось, что наибольшее значение функция примет в стационарной точке m a x y x ∈ ( 3 ; 1 ] = y - 1 2 = 3 e - 4 25 - 4 . Что касается наименьшего значения, то его мы не можем определить. Все, что нам известно, – это наличие ограничения снизу до - 4 .

Для интервала ( - 3 ; 2 ) возьмем результаты предыдущего вычисления и еще раз подсчитаем, чему равен односторонний предел при стремлении к 2 с левой стороны:

y - 1 2 = 3 e 1 - 1 2 2 + - 1 2 - 6 - 4 = 3 e - 4 25 - 4 ≈ - 1 . 444 lim x → - 3 + 0 3 e 1 x 2 + x - 6 - 4 = - 4 lim x → 2 - 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 ( x + 3 ) ( x - 2 ) - 4 = 3 e 1 ( 2 - 0 + 3 ) ( 2 - 0 - 2 ) - 4 = = 3 e 1 - 0 - 4 = 3 e - ∞ - 4 = 3 · 0 - 4 = - 4

Значит, m a x y x ∈ ( - 3 ; 2 ) = y - 1 2 = 3 e - 4 25 - 4 , а наименьшее значение определить невозможно, и значения функции ограничены снизу числом - 4 .

Исходя из того, что у нас получилось в двух предыдущих вычислениях, мы можем утверждать, что на интервале [ 1 ; 2 ) наибольшее значение функция примет при x = 1 , а найти наименьшее невозможно.

На промежутке ( 2 ; + ∞ ) функция не достигнет ни наибольшего, ни наименьшего значения, т.е. она будет принимать значения из промежутка - 1 ; + ∞ .

lim x → 2 + 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 ( x + 3 ) ( x - 2 ) - 4 = 3 e 1 ( 2 + 0 + 3 ) ( 2 + 0 - 2 ) - 4 = = 3 e 1 ( + 0 ) - 4 = 3 e + ∞ - 4 = + ∞ lim x → + ∞ 3 e 1 x 2 + x - 6 - 4 = 3 e 0 - 4 = - 1

Вычислив, чему будет равно значение функции при x = 4 , выясним, что m a x y x ∈ [ 4 ; + ∞ ) = y ( 4 ) = 3 e 1 14 - 4 , и заданная функция на плюс бесконечности будет асимптотически приближаться к прямой y = - 1 .

Сопоставим то, что у нас получилось в каждом вычислении, с графиком заданной функции. На рисунке асимптоты показаны пунктиром.

Это все, что мы хотели рассказать о нахождении наибольшего и наименьшего значения функции. Те последовательности действий, которые мы привели, помогут сделать необходимые вычисления максимально быстро и просто. Но помните, что зачастую бывает полезно сначала выяснить, на каких промежутках функция будет убывать, а на каких возрастать, после чего можно делать дальнейшие выводы. Так можно более точно определить наибольшее и наименьшее значение функции и обосновать полученные результаты.

Наибольшее и наименьшее значения функции на множестве
(основные определения)

Пусть X – некоторое множество, входящее в область определения D ( f ) функции y = f (x) .

Определение 1. Значение f (x0) функции y = f (x) в точкеназывают наибольшим значением функции f (x) на множестве X , если для любой точки выполнено неравенство

Наибольшее значение функции f (x) на множестве X часто обозначают

Определение 2. Значение f (x0) функции y = f (x) в точке называют наименьшим значением функции f (x) на множестве X , если для любой точки выполнено неравенство

Наименьшее значение функции f (x) на множестве X часто обозначают

Определение 3. Наибольшее значение функции на множестве X часто называют максимальным значением функции f (x) на множестве X или максимумом функции f (x) на множестве X . Наименьшее значение функции на множестве X часто называют минимальным значением функции f (x) на множестве X или минимумом функции f (x) на множестве X .

Пример 1. Минимальным значением функции y = x 2 на множестве является число 0 (рис. 1).

наибольшее значение функции на множестве наименьшее значение функции на множестве

Максимального значения функция y = x 2 на множестве не имеет.

Пример 2. Максимальным значением функции y = – x 2 на множестве является число 0 (рис. 2).

наибольшее значение функции на множестве наименьшее значение функции на множестве

Минимального значения функция y = – x 2 на множестве не имеет.

Пример 3. Функция y = x на множестве не имеет ни максимального, ни минимального значений (рис. 3).

наибольшее значение функции на множестве наименьшее значение функции на множестве

Пример 4. Функция y = arctg x на множестве не имеет ни максимального, ни минимального значений (рис. 4).

наибольшее значение функции на множестве наименьшее значение функции на множестве

Существование наибольшего и наименьшего значений функции на отрезке. Теорема Вейерштрасса

Как мы видели в примерах 1 - 4, даже такие хорошо известные функции, как

не имеют наибольших или наименьших значений на множестве. Однако, если бы в качестве множества X мы взяли произвольный отрезок, то ситуация стала бы принципиально иной, что вытекает из следующей теоремы.

Теорема Вейерштрасса. Если функция непрерывна на отрезке, то на этом отрезке существует точка, в которой функция принимает наибольшее значение, а также точка, в которой функция принимает наименьшее значение.

Доказательство теоремы Вейерштрасса выходит за рамки школьного курса математики и здесь не приводится.

Примеры решения задач

y = 2x 3 + 3x 2 – 36x + 30(1)

Из формулы (2) получаем, что критическими точками функции (1) являются точки x = – 3 , x = 2, причем только точка x = 2 принадлежит отрезку [–2, 4] . Вычисляя значения функции (1) в критической точке x = 2, а также на концах отрезка x = – 2 и x = 4 , получим:

y (2) = – 14 ,
y (– 2) = 98 ,
y (4) = 62 .

Ответ. Наибольшее значение функции (1) на отрезке [–2, 4] равно 98 , а наменьшее значение функции (1) на отрезке [–2, 4] равно – 14 .

на отрезке [–1, 27] .

Решая уравнение y' = 0 , получим

Заметим также, что производная (4) функции (3) не существует в точке x = 0 . Следовательно, у функции (3) есть три критические точки: x = 0, и , причем все эти точки лежат на отрезке [–1, 27] . Вычисляя значения функции (3) в критических точках x = 0, и , а также на концах отрезка x = – 1 и x = 27 , получим:

y (0) = 0 ,
y (– 1) = – 1 ,
y (27) = 99 .

Ответ. Наибольшее значение функции (3) на отрезке [–1, 27] равно 99 , а наменьшее значение функции (3) на отрезке [–1, 27] равно – 1 .

y = (x – 4) e | x | (5)

Решение. Для того, чтобы найти критические точки функции (5), перепишем правую часть формулы (5), используя определение модуля:

В точке x = 0 производная функции (5) не существует. Критическими точками являются точки

Все критические точки принадлежат отрезку [–1, 6] . Вычисляя значения функции (5) в критических точках x = 0, x = 3, x = 5, а также на концах отрезка x = – 1 и x = 6 , получим:

y (0) = – 4 ,
y (3) = – e 3 ,
y (5) = e 5 ,
y (– 1) = – 5e ,
y (6) = 2e 6 .

Ответ. Наибольшее значение функции (5) на отрезке [–1, 6] равно 2e 6 , а наменьшее значение функции (5) на отрезке [–1, 6] равно – e 3 .

y = (x – 27) e 28 – x (6)

на отрезке [23, 40] .

Алгоритм нахождения наибольшего и наименьшего значений функции y = f(x) на отрезке [a; b]:

  1. Найти область определения функции D(f).
  2. Найти производную f‘ (x).
  3. Найти стационарные и критические точки функции, принадлежащие интервалу (a; b).
  4. Найти f(a), f(b) и значения функции в стационарных точках, принадлежащих интервалу (а; b).
  5. Среди полученных значений выбрать наибольшее и наименьшее.

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.

Теоретический материал для самостоятельного изучения

Нахождение наибольшего и наименьшего значений функции на отрезке.

  1. Если функция непрерывна на отрезке, то она достигает на нем своего наибольшего и своего наименьшего значения.
  2. Наибольшего и наименьшего значений непрерывная функция может достигать как на концах отрезка, так и внутри него.
  3. Если наибольшее (наименьшее) значение функции достигается внутри отрезка, то только в стационарной или критической точке.

Алгоритм нахождения наибольшего и наименьшего значений функции y = f(x) на отрезке [a; b]:

  1. Найти производную f‘ (x) стационарные и критические точки функции, принадлежащие интервалу (a; b).
  2. Найти f(a), f(b) и значения функции в стационарных точках, принадлежащих интервалу (а; b)и среди полученных значений выбрать наибольшее и наименьшее

Примеры и разбор решения заданий тренировочного модуля

№1.Найти наибольшее и наименьшее значения функции f (x) = 2x 3 – 9x 2 + 12x – 2 на отрезке [0; 3]

Решение. Действуем в соответствии с алгоритмом.


2) f (x) = 6x 2 – 18x + 12

3) Стационарные точки: х = 1; х = 2.

№2.Найдите два положительных числа, сумма которых равна 16, а произведение наибольшее.


Пусть первое число равно х,


Тогда второе число -


Следовательно,

Произведение этих чисел равно х(16 – х).


x = 8 – единственная стационарная точка на интервале (0; 16), она является точкой максимума.

Следовательно, в этой точке функция F(x) = x(16 – x) принимает наибольшее значение.

Следовательно, два положительных числа, сумма которых равна 16, а произведение наибольшее, это 8 и 8.

В некоторых задачах нужно найти наибольшее и наименьшее значения функции. Если неизвестен алгоритм и основные правила, то простое задание превращается в изнурительный труд, который очень редко приносит положительные результаты. В интернете существует множество информации, но не вся она достоверна. Самое страшное — применение неверных методик нахождения.

В какой точке функция принимает наименьшее значение

Общая информация

Исследование функции — распространенная задача, которая показывает ее поведение и свойства. Одним из элементов считается нахождение максимума и минимума функции. Существуют специальные программы для нахождения этих значений (онлайн-калькулятор). Однако каждому следует понимать принцип нахождения, поскольку это может пригодиться в жизни.

Как найти наименьшее значение функции квадратного уравнения

  1. Нахождение области определения функции (ОДФ).
  2. Понятие дифференциала и основные методы его нахождения.
  3. Умение решать уравнения.
  4. Знание графиков простых функций.
  5. Основные типы функций, полуинтервал и интервал.

Все пять навыков приобрести несложно, кроме второго. В этом нужно подробно разобраться, поскольку очень важно уметь находить производные (дифференциалы) не только табличных элементарных функций, но и сложных. Важно знать основные свойства, которые применяются для нахождения производной.

Область определения

Обозначение интервалов

Результатом решения задач на нахождение ОДЗ является определенный интервал. Важно правильно его обозначать, поскольку это существенно влияет на решение. Нужно руководствоваться следующими правилами:

Наибольшее и наименьшее значение функции на промежутке

Очень важно правильно читать интервалы. Например, запись (1;4) читается следующим образом: переменная принимает значения, которые находятся в интервале от 1 не включительно до 4 не включительно. Это числа 2 и 3, поскольку 1 и 4 не входят в промежуток. Запись вида [5;10) читается таким образом: некоторое значение принадлежит интервалу от 5 включительно, до 10 не включительно.

Зависимость от типа

Функции различаются между собой. От этого и зависит нахождение их области определения. Они бывают простыми и сложными. Первые состоят из единичных элементов, а сложные включают в себя несколько типов. Их еще называют составными. Простые классифицируются на три вида:

Наименьшее значение производной по графику функции

  1. Алгебраические: рациональные и иррациональные.
  2. Тригонометрические: sin, cos, tg и ctg.
  3. Трансцендентные: степенные, показательные и логарифмические.

Рациональные бывают целыми и дробными. Они не включают в себя выражения, содержащие такие элементы: корень, степень, логарифм и тригонометрические функции. D(f) этих функций — все действительные числа (Z). Если она является дробной, то это означает, что в ее числителе и (или) знаменателе находится аргумент, значение которого не должно обращать ее в пустое множество.

Когда под корнем находится выражение, содержащее независимую переменную, то она называется иррациональной. В этом случае D(f) — множество Z, кроме тех, которые превращают выражение под корнем четной степени в отрицательное значение. Функция, представленная степенными выражениями, имеет D(f) = Z, но только тогда, когда значение аргумента не превращает функцию в пустое множество.

Метод нахождения

Для решения любой задачи нужно применять определенные правила. Они называются алгоритмом. Для каждого типа функций существует конкретный вариант решения. Для дробной он является следующим:

Как определить наибольшее и наименьшее значение функции

  1. Найти корни уравнения знаменателя, приравнивая его к 0.
  2. Определить интервал, значения из которого может принимать аргумент.

В случае, когда выражение является иррациональной функцией, корень которой является четным, следует решать не уравнение, а неравенство. Его значение не должно быть меньше 0. Для логарифмического типа выражение натурального логарифма (ln) должно быть всегда больше 0.

Для sin(x) и cos(x) областью определения является множество значений Z. Однако для tg(x) и ctg(x) следует помнить, что аргумент не должен принимать значение x = (Pi / 2) + Pi * k и x = Pi * k соответственно. Следует отметить, что коэффициент k принадлежит множеству чисел Z.

Для примера нужно разобрать задачу, в которой следует найти D(3x / [(x - 1) * (x + 1) * (10 - x)^(1/2)]). Решать ее необходимо по такому алгоритму:

  1. Знаменатель является сложным. Он состоит из двух выражений: (x - 1) * (x + 1) и (10 - x)^(1/2).
  2. Первое выражение (решить уравнение): (x - 1) * (x + 1) = 0. Оно имеет два корня: x1 = -1 и x2 = 1. Числовой промежуток: (-бесконечность;-1) U (1;+бесконечность).
  3. Второе (неравенство): (10 - x) a). Например, (a;+inf): х = lim [f(x)], где x->a и x->+inf.

Для нахождения минимального и максимального значения функции достаточно материала, изложенного выше. Специалисты рекомендуют разобраться с теорией, а затем переходить к практике.

Примеры решений

Дана квадратичная функция y = x^2 + 6x + 9. Необходимо найти наименьшее значение функции квадратного уравнения на отрезке [1;5]. Для этой цели нужно воспользоваться алгоритмом:

  1. D(y): все множество Z.
  2. Отрезок входит в D(y).
  3. Производная: y' = [x^2 + 6x + 9]' = 2x + 6 (существует во всех точках).
  4. Стационарные точки (y' = 0): 2x + 6 = 0. Отсюда, x = -3.
  5. Подставить в исходное выражение: y(-3) = (-3)^2 + 6 * (-3) + 9 = 9 - 18 + 9 = 0, y(1) = (1)^2 + 6 * (1) + 9 = 1 + 6 + 9 = 16 и y(5) = (5)^2 + 6 * (5) + 9 = 25 + 30 + 9 = 64.
  6. Максимум и минимум (с учетом стационарной точки и интервала): MIN(y) = 0 и MAX(y) = 64.

Одним из простейших типов задач является следующая: найдите наибольшее значение линейной функции z = 5x + 10 на отрезке [-3;3]. Для ее решения можно также воспользоваться алгоритмом:

Как найти наибольшее и наименьшее значение функции

  1. D(z) — все значения от бесконечно малого до бесконечно большого чисел.
  2. Промежуток, на котором нужно найти максимум и минимум, полностью входит в D(f).
  3. Дифференциал: z' = 5 (существует во всех точках, а стационарных точек нет вообще).
  4. Минимум и максимум: MIN(z(-3)) = 5 * (-3) + 10 = -5 и MAX(z(3)) = 5 * (3) + 10 = 25.

Последнюю задачу необязательно решать по алгоритму, поскольку она считается простейшей. Математики рекомендуют тренироваться в нахождении MIN и MAX функции, поскольку только практика позволяет быстро решать задачи.

Таким образом, для нахождения максимального и минимального значений заданной функции необходимо пользоваться специальным универсальным алгоритмом. Кроме того, нужно правильно находить дифференциалы, область определения, а также разбираться в интервалах.

Читайте также: