Метод рунге кутта кратко и понятно

Обновлено: 30.06.2024

При математическом моделировании ряда технических устройств используются системы дифференциальных нелинейных уравнений. Такие модели используются не только в технике, они находят применение в экономике, химии, биологии, медицине, управлении.

Исследование функционирования таких устройств требуют решения указанных систем уравнений. Поскольку основная часть таких уравнений являются нелинейными и нестационарными, часто невозможно получить их аналитическое решение.

Возникает необходимость использовать численные методы, наиболее известным из которых является метод Рунге — Кутты [1]. Что касается Python, то в публикациях по численным методам, например [2,3], данных по применение Рунге — Кутты крайне мало, а по его модификации — методу Рунге-Кутта-Фельберга вообще нет.

В настоящее время, благодаря простому интерфейсу, наибольшее распространение в Python имеет функцию odeint из модуля scipy.integrate. Вторая функция ode из этого модуля реализует несколько методов, в том числе и упомянутый пятиранговый метод Рунге-Кутта-Фельберга, но, вследствие универсальности, имеет ограниченное быстродействие.

Целью настоящей публикации является сравнительный анализ перечисленных средств численного решения систем дифференциальных уравнений с модифицированным автором под Python методом Рунге-Кутта-Фельберга. В публикации так же приведены решения по краевым задачам для систем дифференциальных уравнений (СДУ).

Краткие теоретические и фактические данные по рассматриваемым методам и программным средствам для численного решения СДУ

Задача Коши

Для одного дифференциального уравнения n – го порядка, задача Коши состоит в нахождении функции, удовлетворяющей равенству:


и начальным условиям


Перед решением эта задача должна быть переписана в виде следующей СДУ


(1)

с начальными условиями


Модуль scipy.integrate

Модуль имеет две функции ode() и odeint(), предназначенные для решения систем обыкновенных дифференциальных уравнений (ОДУ) первого порядка с начальными условиями в одной точке (задача Коши). Функция ode() более универсальная, а функция odeint() (ODE integrator) имеет более простой интерфейс и хорошо решает большинство задач.

Функция odeint()

Функция odeint() имеет три обязательных аргумента и много опций. Она имеет следующий формат odeint(func, y0, t[,args=(), . ]) Аргумент func – это имя Python функции двух переменных, первой из которых является список y=[y1,y2. yn], а второй – имя независимой переменной.


Функция func должна возвращать список из n значений функций при заданном значении независимого аргумента t. Фактически функция func(y,t) реализует вычисление правых частей системы (1).


Второй аргумент y0 функции odeint() является массивом (или списком) начальных значений при t=t0.

Третий аргумент является массивом моментов времени, в которые вы хотите получить решение задачи. При этом первый элемент этого массива рассматривается как t0.

Функция odeint() возвращает массив размера len(t) x len(y0). Функция odeint() имеет много опций, управляющих ее работой. Опции rtol (относительная погрешность) и atol (абсолютная погрешность) определяют погрешность вычислений ei для каждого значения yi по формуле


Они могут быть векторами или скалярами. По умолчанию


Функция ode()

Вторая функция модуля scipy.integrate, которая предназначена для решения дифференциальных уравнений и систем, называется ode(). Она создает объект ОДУ (тип scipy.integrate._ode.ode). Имея ссылку на такой объект, для решения дифференциальных уравнений следует использовать его методы. Аналогично функции odeint(), функция ode(func) предполагает приведение задачи к системе дифференциальных уравнений вида (1) и использовании ее функции правых частей.

Отличие только в том, что функция правых частей func(t,y) первым аргументом принимает независимую переменную, а вторым – список значений искомых функций. Например, следующая последовательность инструкций создает объект ODE, представляющий задачу Коши.

Метод Рунге—Кутта

При построении численных алгоритмов будем считать, что решение этой дифференциальной задачи существует, оно единственно и обладает необходимыми свойствами гладкости.

При численном решении задачи Коши


(2)


(3)

по известному решению в точке t =0 необходимо найти из уравнения (3) решение при других t. При численном решении задачи (2),(3) будем использовать равномерную, для простоты, сетку по переменной t с шагом т > 0.

Приближенное решение задачи (2), (3) в точке обозначим . Метод сходится в точке если при . Метод имеет р-й порядок точности, если , р > 0 при . Простейшая разностная схема для приближенного решения задачи (2),(3) есть


(4)

При имеем явный метод и в этом случае разностная схема аппроксимирует уравнение (2) с первым порядком. Симметричная схема в (4) имеет второй порядок аппроксимации. Эта схема относится к классу неявных — для определения приближенного решения на новом слое необходимо решать нелинейную задачу.

Явные схемы второго и более высокого порядка аппроксимации удобно строить, ориентируясь на метод предиктор-корректор. На этапе предиктора (предсказания) используется явная схема


(5)

а на этапе корректора (уточнения) — схема


В одношаговых методах Рунге—Кутта идеи предиктора-корректора реализуются наиболее полно. Этот метод записывается в общем виде:


(6),


Формула (6) основана на s вычислениях функции f и называется s-стадийной. Если при имеем явный метод Рунге—Кутта. Если при j>1 и то определяется неявно из уравнения:


(7)


О таком методе Рунге—Кутта говорят как о диагонально-неявном. Параметры определяют вариант метода Рунге—Кутта. Используется следующее представление метода (таблица Бутчера)


Одним из наиболее распространенных является явный метод Рунге—Кутта четвертого порядка


(8)

Метод Рунге—Кутта— Фельберга


Привожу значение расчётных коэффициентов метода


(9)

С учётом(9) общее решение имеет вид:


(10)

Это решение обеспечивает пятый порядок точности, остаётся его адаптировать к Python.

Вычислительный эксперимент по определению абсолютной погрешности численного решения нелинейного дифференциального уравнения
с использованием обеих функций def odein(),def oden() модуля scipy.integrate и адаптированного к Python методов Рунге—Кутта и Рунге—Кутта— Фельберга





Адаптированные к Python методы Рунге—Кутта и Рунге—Кутта— Фельберга имеют меньшую абсолютную, чем решение с применением функции odeint, но большую, чем с использованием функции edu. Необходимо провести исследование быстродействия.

Численный эксперимент по сравнению быстродействия численного решения СДУ при использовании функции ode с атрибутом dopri5 (метод Рунге – Кутты 5 порядка) и с использованием адаптированного к Python метода Рунге—Кутта— Фельберга

Сравнительный анализ проведём на примере модельной задачи, приведенной в [2]. Чтобы не повторять источник, приведу постановку и решение модельной задачи из [2].

Решим задачу Коши, описывающую движение тела, брошенного с начальной скоростью v0 под углом α к горизонту в предположении, что сопротивление воздуха пропорционально квадрату скорости. В векторной форме уравнение движения имеет вид


где – радиус вектор движущегося тела, – вектор скорости тела, – коэффициент сопротивления, вектор силы веса тела массы m, g – ускорение свободного падения.



Особенность этой задачи состоит в том, что движение заканчивается в заранее неизвестный момент времени, когда тело падает на землю. Если обозначить , то в координатной форме мы имеем систему уравнений:

К системе следует добавить начальные условия: (h начальная высота), . Положим . Тогда соответствующая система ОДУ 1 – го порядка примет вид:



Для модельной задачи положим . Опуская довольно обширное описание программы, приведу только листинг из комментариев к которому, думаю, будет ясен принцип её работы. В программу добавлен отсчёт времени работы для сравнительного анализа.

Flight time = 1.2316 Distance = 5.9829 Height =1.8542
Flight time = 1.1016 Distance = 4.3830 Height =1.5088
Flight time = 1.0197 Distance = 3.5265 Height =1.2912
Flight time = 0.9068 Distance = 2.5842 Height =1.0240
Время на модельную задачу: 0.454787


Для реализации средствами Python численного решения СДУ без использования специальных модулей, мною была предложена и исследована следующая функция:

def increment(f, t, y, tau
k1=tau*f(t,y)
k2=tau*f(t+(1/4)*tau,y+(1/4)*k1)
k3 =tau *f(t+(3/8)*tau,y+(3/32)*k1+(9/32)*k2)
k4=tau*f(t+(12/13)*tau,y+(1932/2197)*k1-(7200/2197)*k2+(7296/2197)*k3)
k5=tau*f(t+tau,y+(439/216)*k1-8*k2+(3680/513)*k3 -(845/4104)*k4)
k6=tau*f(t+(1/2)*tau,y-(8/27)*k1+2*k2-(3544/2565)*k3 +(1859/4104)*k4-(11/40)*k5)
return (16/135)*k1+(6656/12825)*k3+(28561/56430)*k4-(9/50)*k5+(2/55)*k6

Функция increment(f, t, y, tau) обеспечивает пятый порядок численного метода решения. Остальные особенности программы можно посмотреть в следующем листинге:

Время на модельную задачу: 0.259927


Предложенная программная реализация модельной задачи без использования специальных модулей имеет почти в двое большее быстродействие, чем с функцией ode, однако нельзя забывать, что ode имеет более высокую точность численного решения и возможности выбора метода решения.

Решение краевой задачи с поточно разделёнными краевыми условиями

Приведем пример некоторой конкретной краевой задачи с поточно разделенными краевыми условиями:

(11)

Для решения задачи (11) используем следующий алгоритм:

1. Решаем первые три неоднородные уравнения системы (11) с начальными условиями

Введем обозначение для решения задачи Коши:

2. Решаем первые три однородные уравнения системы (11) с начальными условиями

Введем обозначение для решения задачи Коши:

3. Решаем первые три однородные уравнения системы (11) с начальными условиями


Введем обозначение для решения задачи Коши:



4. Общее решение краевой задачи (11) при помощи решений задач Коши записывается в виде линейной комбинации решений:

где p2, p3 — некоторые неизвестные параметры.


5. Для определения параметров p2, p3, используем краевые условия последних двух уравнений (11), то есть условия при x = b. Подставляя, получим систему линейных уравнений относительно неизвестных p2, p3:
(12)
Решая (12), получим соотношения для p2, p3.

По приведенному алгоритму с применением метода Рунге—Кутта—Фельберга получим следующую программу:

y0[0]= 0.0
y1[0]= 1.0
y2[0]= 0.7156448588231397
y3[0]= 1.324566562303714
y0[N-1]= 0.9900000000000007
y1[N-1]= 0.1747719838716767
y2[N-1]= 0.8
y3[N-1]= 0.5000000000000001
Время на модельную задачу: 0.070878


Вывод

Разработанная мною программа отличается от приведенной в [3] меньшей погрешностью, что подтверждает приведенный в начале статьи сравнительный анализ функции odeint с реализованным на Python метода Рунге—Кутта—Фельберга.

3. Н.М. Полякова, Е.В. Ширяева Python 3. Создание графического интерфейса пользователя (на примере решения методом пристрелки краевой задачи для линейных обыкновенных дифференциальных уравнений). Ростов-на-Дону 2017.

Не обошла стороной вычислительная математика и дифференциальные уравнения! Сегодня на уроке мы познакомимся с основами приближённых вычислений в этом разделе математического анализа, после чего перед вами приветливо распахнутся толстые-претолстые книги по теме. Ибо вычислительная математика стороной диффуры ещё как не обошла =)

Перечисленные в заголовке методы предназначены для приближённого нахождения решений дифференциальных уравнений, систем ДУ, и краткая постановка наиболее распространённой задачи такова:

Рассмотрим дифференциальное уравнение первого порядка , для которого требуется найти частное решение, соответствующее начальному условию . Что это значит? Это значит, нам нужно найти функцию (предполагается её существование), которая удовлетворяет данному дифф. уравнению, и график которой проходит через точку .

Идея методов Эйлера и Рунге-Кутты состоит в том, чтобы заменить фрагмент графика ломаной линией, и сейчас мы узнаем, как эта идея реализуется на практике. И не только узнаем, но и непосредственно реализуем =) Начнём с исторически первого и самого простого метода. …Вы хотите иметь дело со сложным дифференциальным уравнением? Вот и я тоже не хочу:)

Найти частное решение дифференциального уравнения , соответствующее начальному условию , методом Эйлера на отрезке с шагом . Построить таблицу и график приближённого решения.

Разбираемся. Во-первых, перед нами обычное линейное уравнение, которое можно решить стандартными способами, и поэтому очень трудно устоять перед соблазном сразу же найти точное решение:

– желающие могут выполнить проверку и убедиться, что данная функция удовлетворяет начальному условию и является корнем уравнения .

Что нужно сделать? Нужно найти и построить ломаную, которая приближает график функции на промежутке . Поскольку длина этого промежутка равна единице, а шаг составляет , то наша ломаная будет состоять из 10 отрезков:

Представим дифференциальное уравнение в виде :


и так далее – до победного конца.


Результаты вычислений удобно заносить в таблицу:

А сами вычисления автоматизировать в Экселе – потому что в математике важен не только победный, но ещё и быстрый конец:)


По результатам 2-го и 3-го столбцов изобразим на чертеже 11 точек и 10 отрезков, соединяющих смежные точки. Для сравнения я построю график точного частного решения :

Существенным недостатком простого метода Эйлера является слишком большая погрешность, при этом легко заметить, что погрешность имеет тенденцию накапливаться – чем дальше мы уходим от точки , тем преимущественно больше становится расхождение между приближением и истиной. Это объяснимо самим принципом, который Эйлер положил в основу своего метода: отрезки параллельны соответствующим касательным к графику функции в точках . Данный факт, кстати, тоже хорошо просматривается по чертежу.

Как можно улучшить приближение? Первая мысль – измельчить разбиение. Разделим отрезок , например, на 20 частей. Тогда шаг составит: , и совершенно понятно, что ломаная из 20 звеньев заметно точнее приблизит частное решение. С помощью того же Экселя не составит труда обработать 100-1000 и даже миллион (!) промежуточных отрезков, однако зададимся вопросом: а нельзя ли КАЧЕСТВЕННО улучшить метод?

Но перед тем как раскрыть этот вопрос, не могу не остановиться на неоднократно прозвучавшей сегодня фамилии. Читая биографию Леонарда Эйлера, просто поражаешься, как невероятно много может успеть сделать за свою жизнь человек! Сопоставимо вспомнился только К.Ф. Гаусс. …Вот и мы постараемся не потерять мотивацию к обучению и новым открытиям:))

Усовершенствованный метод Эйлера

Рассмотрим тот же самый пример: дифференциальное уравнение , частное решение, удовлетворяющее условию , промежуток и его разбиение на 10 частей
( – длина каждой части).

Алгоритм решения работает в том же русле, но формула, как нетрудно догадаться, усложняется:
, где

Умножаем результат на шаг разбиения:

Алгоритм заходит на второй круг, не поленюсь, распишу его подробно:

Рассчитываем и находим её 2-й аргумент:

и его произведение на шаг:

Далее рассматриваем пару и т.д.

Однако нет пределов совершенству. Одна голова хорошо, а две – лучше. И снова немецкие:

Классический метод Рунге-Кутты 4-го порядка

Готовы? Ну тогда начинаем:))


Первая строка запрограммирована, и я копирую формулы по образцу:

Не думал, что так быстро разделаюсь с методом Рунге-Кутты =)

В чертеже нет смысла, поскольку он уже не показателен. Давайте лучше проведём аналитическое сравнение точности трёх методов, ибо когда известно точное решение , то грех не сравнить. Значения функции в узловых точках элементарно рассчитываются в том же Экселе – один раз забиваем формулу и тиражируем её на остальные .


В нижеследующую таблицу я сведу значения (для каждого из трёх методов) и соответствующие абсолютные погрешности приближённых вычислений:

Как видите, метод Рунге-Кутты даёт уже 4-5 верных знака после запятой по сравнению с 2 верными знаками усовершенствованного метода Эйлера! И это не случайность:

– Усовершенствованный метод Эйлера гарантирует точность: (смотрим на 2 нуля после запятой в средней колонке погрешностей).

– И, наконец, классический метод Рунге-Кутты обеспечивает точность .

Изложенные оценки погрешностей строго обосновывается в теории.

Как можно ЕЩЁ улучшить точность приближения? Ответ прямо-таки философский: качеством и/или количеством =) В частности, существует и другие, более точные модификации метода Рунге-Кутты. Количественный путь, как уже отмечалось, состоит в уменьшении шага, т.е. в разбиении отрезка на бОльшее количество промежуточных отрезков. И с увеличением этого количества ломаная всё больше и больше будет походить на график точного решения и в пределе – совпадёт с ним.

Безусловным достоинством рассмотренных методов, является тот факт, что они применимы к уравнениям с очень сложной правой частью. И безусловный недостаток – далеко не каждый диффур можно представить в таком виде.

Но почти всё в этой жизни поправимо! – ведь мы рассмотрели лишь малую толику темы, и моя фраза о толстых-претолстых книгах была вовсе не шуткой. Существует великое множество приближённых методов нахождения решений ДУ и их систем, в которых применяются, в том числе, принципиально другие подходы. Так, например, частное решение можно приблизить степенным рядом. Однако это уже статья другого раздела.

Надеюсь, мне удалось разнообразить скучноватую вычислительную математику, и вам было интересно!

Спасибо за внимание!

Автор: Емелин Александр

(Переход на главную страницу)

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

Метод позволяет решать системы обыкновенных дифференциальных уравнений (ОДУ) первого порядка следующего вида:

которые имеют решение:

где t - независимая переменная (например, время); X, Y и т.д. - искомые функции (зависимые от t переменные). Функции f, g и т.д. - заданы. Также предполагаются заданными и начальные условия, т.е. значения искомых функций в начальный момент.

Одно диф. уравнение - частный случай системы с одним элементом. Поэтому, далее речь пойдет для определенности о системе уравнений.

Метод может быть полезен и для решения диф. уравнений высшего (второго и т.д.) порядка, т.к. они могут быть представлены системой диф. уравнений первого порядка.

Метод Рунге-Кутта заключается в рекурентном применении следующих формул:

Реализация Метода Рунге-Кутта на Delphi может выглядеть так (привожу полностью модуль):

Модуль полностью работоспособен. Возвращаемое функцией Runge_Kutt значение - код ошибки. Вы можете дополнить список ошибок по своему усмотрению. Рассчитанные функции системы помещаются в массив Res. Чтобы не загромождать код, в модуле опущены проверки (типа блоков try). Рекомендую их добавить по своему усмотрению.

Ниже приводится описание функции Runge_Kutt и типов, использующихся в модуле.

  • FunArray - вектор функций (правых частей уравнений системы);
  • First, Last - начальная и конечная точки расчетного интервала;
  • Steps - число шагов по расчетному интервалу;
  • InitArray - вектор начальных значений
  • var Res - матрица результатов включая независимую переменную.

В модуле описаны типы:

Функция возвращает коды ошибок:

  • 0 - нет ошибок;
  • 100 - число уравнений не равно числу начальных условий.

Решение содержится в переменной-матрице Res. Первый индекс матрицы относится к переменной (0 - независимая переменная, 1 - первая зависимая и т.д.), второй - к номеру расчетной точки (0 - начальная точка).

Рассмотрим один пример использования модуля. Создадим новое приложение и подключим к нему модуль. На форме приложения разместим кнопку Button1 и область текста Memo1. Поместим в приложение две функции и обработчик нажатия кнопки:

Нажатие кнопки приведет к расчету точек системы, которые будут выведены в текстовую область.

Модуль с примером и справкой можно скачать бесплатно по адресу RK.zip (ZIP, 15,3Kb) (русский вариант). Английский вариант (условно-бесплатный) можно скачать по адресу RK_Eng.zip (ZIP, 23.4Kb)

Ссылки

    (русский вариант). (английский, условно-бесплатный вариант)



Скачала по Вашей ссылке русский вариант, изменила для своей системы диф. уравнений, но при запуске выдаёт ошибку :
Project Ex.exe raised exception class EOverflow with message ' Floating point overflow '
Помогите, пожалуйста .

Вот изменённый мною модуль:

unit Unit1;
interface
uses
SysUtils, Forms, StdCtrls, Controls, Classes, Dialogs, Math;
type
TForm1 = class(TForm)
Memo1: TMemo;
rk_But: TButton;
procedure rk_ButClick(Sender: TObject);
private
< Private declarations >
public
< Public declarations >
end;
var
Form1: TForm1;
pn,k,ro,Pzv: Extended;

implementation
uses rk_method, Windows;


procedure Syst (var t: TFloat; var X: TFloatVector;
var RP: TFloatVector);
const
fdr1=0.503;
fdr2=0.503;
fdr3=0.196;
W1=179.8928;
W2=3773.8568;
W3=2504.1203;
b1=55.9203;
b2=98.6;
b3=98.6;
Ls1=3.78;
Ls2=9;
Ls3=15.3;
Svidj2=1352.438;
Svidj3=1352.438;
my=0.62;
vk=30;
m=1.2;
L1=30.969;
L2=42.131;
delta1=0;

begin
pn:=2.5*Power(10,4);
k:=6*Power(10,-7);
ro:=8.5*Power(10,-7);
Pzv:=3.919*Power(10,7);

RP[0] := (1/(k*W1))*(my*fdr1*sqrt(2/ro)*sqrt(Abs(pn-X[0]))-my*fdr2*sqrt(2/ro)*sqrt(Abs(X[0]-X[1]))-(delta1*delta1*delta1*b1)/(12*ro*vk*Ls1)*X[0]); // dp1/dt
RP[1] := (1/(k*W2))*(my*fdr2*sqrt(2/ro)*sqrt(Abs(X[0]-X[1]))-my*fdr3*sqrt(2/ro)*sqrt(Abs(X[1]-X[2]))-(X[4]*X[4]*X[4]*b2)/(12*ro*vk*Ls2)*X[1]); // dp2/dt
RP[2] := (1/(k*W3))*(my*fdr3*sqrt(2/ro)*sqrt(Abs(X[1]-X[2]))-(X[6]*X[6]*X[6]*b3)/(12*ro*vk*Ls3)*X[2]); // dp3/dt;
RP[3] := (((Svidj2*X[1]*(L1+L2))/L1)-Pzv)*(2/m); // dv2/dt
RP[4] := X[3]; // d delta2/dt
RP[5] := (((Svidj3*X[2]*(L1+L2))/L2)-Pzv)*(2/m); // dv3/dt
RP[6] := X[5]; // d delta3/dt
end;

procedure TForm1.rk_ButClick(Sender: TObject);
var
I, t1, t2: Cardinal;
tOut, InitConds: TFloatVector;
XOuts: TFloatMatrix;
Points: Cardinal;
First, Last: TFloat;
StepsFact: Cardinal;
Count: Word;
begin
Memo1.Clear;
First := 0.0;
Last := 10.0;
Count:= 7;
Points:=10+1; //11 points for output
StepsFact:=1000000; //all steps inside function = 10*StepsFact

try
SetLength(InitConds, Count);
InitConds[0]:=0.0; //x0(0)=0
InitConds[1]:=0.0; //x1(0)=0
InitConds[2]:=0.0; //x2(0)=0
InitConds[3]:=0.0; //x3(0)=0
InitConds[4]:=0.0; //x4(0)=0
InitConds[5]:=0.0; //x5(0)=0
InitConds[6]:=0.0; //x6(0)=0

SetLength(tOut, Points);
SetLength(XOuts, Count, Points);
except
ShowMessage('Out of memory. ');
exit;
end;

Метод Рунге-Кутты используют для расчета стандартных моделей достаточно часто, так как при небольшом объеме вычислений он обладает точностью метода Ο 4 (h) .

Для построения разностной схемы интегрирования воспользуемся разложением функции

Заменим вторую производную в этом разложении выражением

Для исходного уравнения (1) построим вычислительную схему:

которую преобразуем к виду:

Введем следующие обозначения:

Эти обозначения позволяют записать предыдущее выражение в форме:

Очевидно, что все введенные коэффициенты зависят от величины Δx и могут быть определены через коэффициент α , который в этом случае играет роль параметра:

Окончательно схема Рунге-Кутты принимает вид:

Та же схема в форме разностного аналога уравнения (1):

При α = 0 получаем как частный случай уже известную схему Эйлера:

При α = 1 проведение расчетов на очередном шаге интегрирования можно рассматривать как последовательность нижеследующих операций.

    Вычисляется выражение, представляющее собой полушаг интегрирования по схеме Эйлера, то есть определяется приближенное значение искомой функции в точке xk + h/2 :

Рис. 15.1. Иллюстрация расчета на шаге методом Рунге-Кутты
при значении параметра α = 1

Теперь рассмотрим схему при α = 0.5 (геометрическая интерпретация результата приведена на рис. 15.2 ).

    Выполняется полный шаг метода Эйлера с целью определения приближенного значения искомой функции на конце отрезка интегрирования:

Пример . Решить уравнение dy/dx = –y, y(0) = 1 методом Рунге-Кутты.

Поскольку правая часть дифференциального уравнения имеет вид: f(x, y) = –y , схема метода при α = 0.5 представляется следующим образом:

Построим последовательность значений искомой функции:

Pезультаты получаемого численного решения для значения аргумента x = 10 при различных шагах интегрирования приведены в табл. 15.1. Три верные значащие цифры получены для шага h = 0.01 .

Оценим погрешность аппроксимации уравнения (1) разностной схемой метода Рунге-Кутты. Подставляем точное решение в разностный аналог исходного дифференциального уравнения и вычисляем невязку:

Подставим разложения функций

в полученное выражение:

Учитывая уравнение (1), а также выражение для производной

окончательно получаем, что ψk = Ο(h 2 ) , то есть метод Рунге-Кутты, независимо от значения параметра α , имеет второй порядок аппроксимации.

Методы Рунге-Кутты третьего и четвертого порядков

Рассмотрим две различные схемы Рунге-Кутты, предназначенные для численного решения обыкновенных дифференциальных уравнений первого порядка и имеющие третий порядок аппроксимации:

И две схемы Рунге-Кутты, имеющие четвертый порядок аппроксимации:

Пример . Решить методом Рунге-Кутты четвертого порядка уравнение dy/dx = –y, y(0) = 1 .

В соответствии с приведенными выше соотношениями определяем коэффициенты:

Построим последовательность значений искомой функции:

Результаты получаемого численного решения для значения аргумента x = 10 при различных шагах интегрирования приведены в табл. 15.2. Три верные значащие цифры получены для шага h = 0.25 .

Сравнение таблиц 15.1 и 15.2 с решениями одной и той же задачи позволяет сделать вывод, что более высокая степень аппроксимации дифференциального уравнения разностным аналогом позволяет получать более точное решение при более крупном шаге и, следовательно, меньшем числе шагов, то есть приводит к снижению требуемых ресурсов ЭВМ.

На сегодняшний день для грубого расчета вычисления производятся методом Эйлера, для точного расчета — методом Рунге-Кутты.

Читайте также: