Ядерный ракетный двигатель доклад по физике

Обновлено: 28.06.2024

Ядерный ракетный двигатель — ракетный двигатель, принцип действия которого основан на ядерной реакции или радиоактивном распаде, при этом выделяется энергия, нагревающая рабочее тело, которым могут служить продукты реакций либо какое-то другое вещество, например водород.

Давайте разберем варианты и принципы из действия…

Существует несколько разновидностей ракетных двигателей, использующих вышеописанный принцип действия: ядерный, радиоизотопный, термоядерный. Используя ядерные ракетные двигатели, можно получить значения удельного импульса значительно выше тех, которые могут дать химические ракетные двигатели. Высокое значение удельного импульса объясняется большой скоростью истечения рабочего тела — порядка 8—50 км/с. Сила тяги ядерного двигателя сравнима с показателями химических двигателей, что позволит в будущем заменить все химические двигатели на ядерные.

Основным препятствием на пути полной замены является радиоактивное загрязнение окружающей среды, которое наносят ядерные ракетные двигатели.

Их разделяют на два типа — твердо-и газофазные. В первом типе двигателей делящееся вещество размещается в сборках-стержнях с развитой поверхностью. Это позволяет эффективно нагревать газообразное рабочее тело, обычно в качестве рабочего тела выступает водород. Скорость истечения ограничена максимальной температурой рабочего тела, которая, в свою очередь, напрямую зависит от максимально допустимой температуры элементов конструкции, а она не превышает 3000 К. В газофазных ядерных ракетных двигателях делящееся вещество находится в газообразном состоянии. Его удержание в рабочей зоне осуществляется посредством воздействия электромагнитного поля. Для этого типа ядерных ракетных двигателей элементы конструкции не являются сдерживающим фактором, поэтому скорость истечения рабочего тела может превышать 30 км/с. Могут быть использованы в качестве двигателей первой ступени, невзирая на утечку делящегося вещества.

В 70-х гг. XX в. в США и Советском Союзе активно испытывались ядерные ракетные двигатели с делящимся веществом в твердой фазе. В США разрабатывалась программа по созданию опытного ядерного ракетного двигателя в рамках программы NERVA.

В настоящее время в стадии теоретической разработки находится газофазный ядерный ракетный двигатель. В газофазном ядерном двигателе подразумевается использовать плутоний, медленно движущаяся газовая струя которого окружена более быстрым потоком охлаждающего водорода. На орбитальных космических станциях МИР и МКС проводились эксперименты, которые могут дать толчок к дальнейшему развитию газофазных двигателей.

* - НОО – низкая опорная орбита; ГПО – геопереходная орбита; ГСО – геостационарная орбита; ССО – солнечно-синхронная орбита

3. Орбитальная сборочная платформа.

Согласно нашего постулата, орбитальная сборочная платформа предназначается для комплектования доставленных на околоземную орбиту модулей и блоков космического корабля в собственно корабль, в соответствии с заданными параметрами, а также для хранения запаса комплектующих. Мы предполагаем, что данная платформа должна состоять из жилого модуля, агрегатного модуля, энергетических блоков и собственно платформы для размещения и монтажа компонентов будущего космического корабля (приложение 8). Жилой модуль орбитальной платформы предназначен для размещения дежурной смены инженеров сборщиков. Агрегатный модуль включает в себя системы и механизмы жизнеобеспечения, а так же аппаратуру управления маневровыми двигателями платформы, для осуществления коррекции орбиты. Энергетические модули, которыми оснащается орбитальн6ая платформа аналогичны корабельным. Учитывая, что по своей сути орбитальная сборочная платформа является универсальной, то в зависимости от необходимости на ней возможно размещение блоков соответствующего назначения.

В данной работе мы постарались исследовать возможности и перспективы применения ядерных ракетных двигателей в ракетостроении. В результате проведенных исследований мы выяснили, что в условиях атмосферного старта использование ракетных двигателей подобного типа абсолютно недопустимо и запрещено на уровне международного законодательства. Однако, по своим характеристикам ядерный ракетный двигатель выглядит весьма перспективным. Следовательно, использование данного двигателя в космическом пространстве не будет ничем ограничено. Ввиду этого мы предложили перейти на модульно-блочный вариант строительства (сборки) космических аппаратов на околоземной орбите. Данное предложение, по нашему видению, имеет очень хорошие, но из-за ограниченности возможностей доставки грузов на околоземную орбиту, весьма отдаленные перспективы. Отсюда напрашивается вывод, что использование ядерного ракетного двигателя – это перспектива будущего.

Список использованной литературы.

Окунев, Вячеслав Основы прикладной ядерной физики и введение в физику ядерных реакторов / Вячеслав Окунев. - Москва: Высшая школа, 2018.

Емельянов, В. М. Введение в релятивистскую ядерную физику / В.М. Емельянов, С.Л. Тимошенко, М.Н. Стриханов. - М.: ФИЗМАТЛИТ, 2017

Цандер, Ф. А. Проблемы межпланетных полетов / Ф. А. Цандер; [АН СССР, Комис. по разраб. науч. наследия Ф. А. Цандера, Ин-т истории естествознания]. – М. : Наука, 1988.

Бобков В.Н., Васильев В.В., Демченко Э.К. и др. Космические аппараты / Под общ. ред. К. П. Феоктистова. М.: Воениздат, 1983.

Бережной, А.А. Солнечная система / А.А. Бережной. - М.: ФМЛ, 2017.

Классификации ракетных двигателей

Вид ракетного двигателя

Удельный импульс м/с

Твердотопливный ракетный двигатель

Жидкостный ракетный двигатель

Твердофазный ядерный ракетный двигатель

Жидкофазный ядерный ракетный двигатель

Газофазный ядерный ракетный двигатель

Импульсный ядерный ракетный двигатель

Сравнение ракетных двигателей

Устройство твердо-фазного ядерного ракетного двигателя

Характеристики ядерного топлива

Название материала

Обозначение

Температура плавления, o C

Характеристики тугоплавких материалов

Название материала

Обозначение

Температура плавления, o C

Карбид тантала гафния

Характеристики рабочего тела для ЯРД

Агрегатное состояние

Удельная теплоемкость, кДж/(кг·K)

Темп. криста-лизации,

Воздух (100 % влажность)

Воздух (сухой, 300 К, 27 °C)

Модули и блоки космического аппарата

Жилой (командный) модуль

Блок маневровых двигателей

Главный топливный блок

Вспомогательный топливный блок

Главный маршевый ядерный двигатель

Вспомогательный маршевый ядерный двигатель

Орбитальная сборочная платформа

Вакуум (от лат. vacuum - пустота)

В классической физике критерием существования в каком-либо объеме вакуума принимается следующее условие: длина свободного пробега молекулы, т.е. без столкновений с другими молекулами, должна быть больше, чем линейные размеры рассматриваемого объема. Однако понятие вакуум имеет три значения - различных для техники, космических исследований и физики.

В технике вакуумом называется состояние газа при его давлении ниже стандартного атмосферного давления, равного 101 325 Паскалей. Приняты следующие степени - градации технического вакуума:

Степень (градация) вакуума

Диапазон давлений

(Паскали)

Диапазон высот над

поверхностью Земли с таким же

диапазоном давлений (км)

На высоте 50 тысяч километров над поверхностью Земли давление составляет около 1*10 -19 паскалей, т.е. концентрация молекул равна примерно четырем штукам в 1 см 3 . Такая концентрация уже близка к состоянию космического вакуума. В околоземном межпланетном пространстве концентрация атомов порядка нескольких штук в 1 см 3 . В основном они являются компонентами солнечного ветра и поэтому ионизированы. В межзвездном пространстве, вне газовых облаков, концентрация атомов раз в десять меньше. Внутри газовых облаков она примерно такая же, как в межпланетном пространстве. Таким образом, да еще с учетом существования космической пыли, космический вакуум - это отнюдь не пустота.

Искусственные спутники Земли

Космические аппараты, запущенные на орбиту вокруг Земли, называются искусственными спутниками Земли - ИСЗ. В зависимости от установленной на спутниках аппаратуры они решают разнообразные задачи: позволяют производить научные измерения, обеспечивают ретрансляцию информации и навигацию земных транспортных средств, производят мониторинг Земли для различных нужд и т.д.

Космическая платформа

Космической платформой называется часть космического аппарата, на которую возложена функция обеспечения необходимых условий работы в космическом пространстве полезной нагрузки - целевой аппаратуры: для научных исследований, дистанционного зондирования Земли, обеспечения радиосвязи и т.п.

Модульная технология создания космической платформы позволяет с небольшими затратами и в короткие сроки адаптировать возможности платформы к применению в составе космических аппаратов разного типа с разной целевой аппаратурой.

Космические аппараты

Любые технические устройства, предназначенные для функционирования в космическом пространстве, называются космическими аппаратами. Они разделяются на два больших класса: пилотируемые, которые называются космическими кораблями и станциями, и непилотируемые - автоматические космические аппараты.

Космическое право

Ракета-носитель

Ракетой-носителем называется многоступенчатая ракета, предназначенная для выведения в космическое пространство полезных нагрузок: космических аппаратов, технических устройств, предметов, веществ, материалов. Обычно она имеет от двух до пяти ступеней.

Солнечная система

В нее входят не только Солнце и девять больших планет, но и малые планеты, кометы, метеороиды. Все они движутся вокруг Солнца по орбитам, плоскости которых очень мало наклонены к плоскости земной орбиты, называемой плоскостью эклиптики. В плоскости эклиптики сосредоточены основные массы пыли, газа и плазмы солнечного ветра, пронизанные магнитными полями (см. Поле физическое, электромагнитное). На долю Солнца приходится 99,866% всей массы Солнечной системы, на долю девяти больших планет - 0,1337%. Остальная масса - 0,0003% - приходится на кометы и метеороиды, спутники больших планет, астероиды, пыль и газ с плазмой. Выше объекты перечислены в порядке убывания доли в общей массе. При этом диаметр Солнца - 1,5 млн. км - составляет 0,0001 долю от диаметра внутренней части Солнечной системы, ограниченной орбитой самой дальней ее планеты - Плутона. Полный же диаметр Солнечной системы в плоскости эклиптики, ограниченный облаком Оорта, состоящим из кометных ядер, в 1-4 тысячи раз больше диаметра орбиты Плутона.

В перпендикулярном к эклиптике направлении границей Солнечной системы является гелиопауза. Здесь происходит уравнивание влияний солнечного ветра и межзвездного газа, обтекающего движущуюся вокруг центра Галактики Солнечную систему. В этом направлении расстояние до ее границы всего в 2,5-5 раз больше, чем диаметр орбиты Плутона.

Солнечная система, даже внутренняя ее часть, имеет плотность 1*10 -12 г/см 3 , что составляет одну триллионную от плотности воды, и ее с полным основанием можно считать “видимой пустотой”. Однако следует отметить, что плотность Вселенной составляет 3*10 -31 г/см 3 , т.е. в три миллиона триллионов раз меньше, правда, без учета некоторой неизвестной, возможно, значительной, добавки скрытой массы. См. Вселенной, критическая плотность.

Энергия (от греч. energia - действие, деятельность)

Энергией называется одна из двух форм существования материи.

Энергия эквивалентна величине запаса работы, как физического понятия, содержащейся в той или иной материальной системе.

Энергия может проявляться во многих видах. Среди них: механическая, электромагнитная, гравитационная, ядерная, тепловая и т.д. Одни виды энергии могут превращаться в другие, но при этом общее ее количество не изменяется - соблюдается закон сохранения энергии. Этот закон выполняется во всех процессах, протекающих во Вселенной, и позволяет рассматривать их в едином комплексе.

При любых преобразованиях энергии некоторая ее часть расходуется на нагревание вещества, т.е. тепловая - внутренняя - энергия системы, т.е. вещества тел, участвующих во взаимодействии, увеличивается. Энергия любого вида может переходить в тепловую - внутреннюю -энергию без остатка, но внутренняя энергия не может переходить в энергию других своих видов целиком. Она путем теплообмена расходуется на нагревание всего окружающего, в том числе, находящегося вне системы вещества, т.к. в реальных условиях ни одна система, в которой производится работа, не может оказаться полностью изолирована от окружающей среды. Любые преобразования энергии из одного вида в другой обязательно увеличивают долю тепловой энергии.

Согласно знаменитому соотношению Эйнштейна, вещество является огромным резервуаром энергии. Однако возможность его естественной или искусственной активизации в сколько-нибудь заметных масштабах отсутствует. Такое событие могло бы быть реализовано только в процессе аннигиляции, но этому препятствует дефицит антивещества, вызванный барионной асимметрией, возникшей на ранней стадии Большого взрыва.

Формула Циолковского

определяет скорость, которую развивает летательный аппарат под воздействием тяги ракетного двигателя, неизменной по направлению, при отсутствии всех других сил. Эта скорость называется характеристической скоростью:

где V — конечная скорость летательного аппарата, которая для случая маневра в космосе при орбитальных манёврах и межпланетных перелетах часто обозначается ΔV, также именуется характеристической скоростью;

I — удельный импульс ракетного двигателя (отношение тяги двигателя к секундному расходу массы топлива);

M1 > — начальная масса летательного аппарата (полезная нагрузка + конструкция аппарата + топливо);

> M2— конечная масса летательного аппарата (полезная нагрузка + конструкция аппарата).

Часто в общеобразовательных публикациях о космонавтике не различают разницу между ядерным ракетным двигателем (ЯРД) и ядерной ракетной электродвигательной установкой (ЯЭДУ). Однако под этими аббревиатурами скрывается не только разница в принципах преобразования ядерной энергии в силу тяги ракеты, но и весьма драматичная история развития космонавтики.

Драматизм истории состоит в том, что если бы остановленные главным образом по экономическим причинам исследования ЯДУ и ЯЭДУ как в СССР, так и в США продолжились, то полёты человека на марс давно бы уже стали обыденным делом.

Всё начиналось с атмосферных летательных аппаратов с прямоточным ядерным двигателем


Двигатели, разработанные в рамках проекта Pluto, планировалось устанавливать на крылатые ракеты, которые в 1950-х годах создавались под обозначением SLAM (Supersonic Low Altitude Missile, сверхзвуковая маловысотная ракета).

В США планировали построить ракету длинной 26,8 метра, диаметром три метра, и массой в 28 тонн. В корпусе ракеты должен был располагаться ядерный боезаряд, а также ядерная двигательная установка, имеющая длину 1,6 метра и диаметр 1,5 метра. На фоне других размеров установка выглядела весьма компактной, что и объясняет её прямоточный принцип работы.

Разработчики полагали, что, благодаря ядерному двигателю, дальность полета ракеты SLAM составит, по меньшей мере, 182 тысячи километров.

В 1964 году министерство обороны США проект закрыло. Официальной причиной послужило то, что в полете крылатая ракета с ядерным двигателем слишком сильно загрязняет все вокруг. Но на самом деле причина состояла в значительных затратах на обслуживание таких ракет, тем более к тому времени бурно развивалось ракетостроение на основе жидкостных реактивных ракетных двигателей, обслуживание которых было значительно дешевле.

В РД-0410 был применён гетерогенный реактор на тепловых нейтронах, замедлителем служил гидрид циркония, отражатели нейтронов — из бериллия, ядерное топливо — материал на основе карбидов урана и вольфрама, с обогащением по изотопу 235 около 80 %.

Конструкция включала в себя 37 тепловыделяющих сборок, покрытых теплоизоляцией, отделявшей их от замедлителя. Проектом предусматривалось, что поток водорода вначале проходил через отражатель и замедлитель, поддерживая их температуру на уровне комнатной, а затем поступал в активную зону, где охлаждал тепловыделяющие сборки, нагреваясь при этом до 3100 К. На стенде отражатель и замедлитель охлаждались отдельным потоком водорода.

Реактор прошёл значительную серию испытаний, но ни разу не испытывался на полную длительность работы. Однако, вне реакторные узлы были отработаны полностью.

Технические характеристики РД 0410

Тяга в пустоте: 3,59 тс (35,2 кН)
Тепловая мощность реактора: 196 МВт
Удельный импульс тяги в пустоте: 910 кгс·с/кг (8927 м/с)
Число включений: 10
Ресурс работы: 1 час
Компоненты топлива: рабочее тело — жидкий водород, вспомогательное вещество — гептан
Масса с радиационной защитой: 2 тонны
Габариты двигателя: высота 3,5 м, диаметр 1,6 м.


Относительно небольшие габаритные размеры и вес, высокая температура ядерного топлива (3100 K) при эффективной системе охлаждения потоком водорода свидетельствует от том, что РД0410 является почти идеальным прототипом ЯРД для современных крылатых ракет. А, учитывая современные технологии получения самоостанавливающегося ядерного топлива, увеличение ресурса с часа до нескольких часов является вполне реальной задачей.

Конструкции ядерных ракетных двигателей

Ядерный ракетный двигатель (ЯРД) — реактивный двигатель, в котором энергия, возникающая при ядерной реакции распада или синтеза, нагревает рабочее тело (чаще всего, водород или аммиак)[3].

Существует три типа ЯРД по виду топлива для реактора:

  • твердофазный;
  • жидкофазный;
  • газофазный.


В газофазных ЯРД топливо (например, уран) и рабочее тело находится в газообразном состоянии (в виде плазмы) и удерживается в рабочей зоне электромагнитным полем. Нагретая до десятков тысяч градусов урановая плазма передает тепло рабочему телу (например, водороду), которое, в свою очередь, будучи нагретым до высоких температур и образует реактивную струю.

По типу ядерной реакции различают радиоизотопный ракетный двигатель, термоядерный ракетный двигатель и собственно ядерный двигатель (используется энергия деления ядер).

Интересным вариантом также является импульсный ЯРД — в качестве источника энергии (горючего) предлагается использовать ядерный заряд. Такие установки могут быть внутреннего и внешнего типов.

Основными преимуществами ЯРД являются:

  • высокий удельный импульс;
  • значительный энергозапас;
  • компактность двигательной установки;
  • возможность получения очень большой тяги — десятки, сотни и тысячи тонн в вакууме.
  • потоки проникающей радиации (гамма-излучение, нейтроны) при ядерных реакциях;
  • вынос высокорадиоактивных соединений урана и его сплавов;
  • истечение радиоактивных газов с рабочим телом.

Ядерная энергодвигательная установка

Учитывая, что какую-либо достоверную информацию о ЯЭДУ по публикациям, в том числе и из научных статей, получить невозможно, принцип работы таких установок лучше всего рассматривать на примерах открытых патентных материалов, хотя и содержащих ноу-хау.

Так, например, выдающимся российским учёным Коротеевым Анатолием Сазоновичем, автором изобретения по патенту [4], приведено техническое решение по составу оборудования для современной ЯРДУ. Далее привожу часть указанного патентного документа дословно и без комментариев.



Сущность предлагаемого технического решения поясняется схемой, представленной на чертеже. ЯЭДУ, функционирующая в двигательно-энергетическом режиме, содержит электроракетную двигательную установку (ЭРДУ) (на схеме для примера представлено два электроракетных двигателя 1 и 2 с соответствующими системами подачи 3 и 4), реакторную установку 5, турбину 6, компрессор 7, генератор 8, теплообменник-рекуператор 9, вихревую трубку Ранка-Хильша 10, холодильник-излучатель 11. При этом турбина 6, компрессор 7 и генератор 8 объединены в единый агрегат — турбогенератор-компрессор. ЯЭДУ оснащена трубопроводами 12 рабочего тела и электрическими линиями 13, соединяющими генератор 8 и ЭРДУ. Теплообменник-рекуператор 9 имеет так называемые высокотемпературный 14 и низкотемпературный 15 входы рабочего тела, а также высокотемпературный 16 и низкотемпературный 17 выходы рабочего тела.

ЯЭДУ работает следующим образом. Нагретое в реакторной установке 5 рабочее тело направляется на турбину 6, которая обеспечивает работу компрессора 7 и генератора 8 турбогенератора-компрессора. Генератор 8 производит генерацию электрической энергии, которая по электрическим линиям 13 направляется к электроракетным двигателям 1 и 2 и их системам подачи 3 и 4, обеспечивая их работу. После выхода из турбины 6 рабочее тело направляется через высокотемпературный вход 14 в теплообменник-рекуператор 9, где осуществляется частичное охлаждение рабочего тела.

Компрессор 7 производит подачу охлажденного рабочего тела в теплообменник-рекуператор 9 через низкотемпературный вход 15. Это охлажденное рабочее тело в теплообменнике-рекуператоре 9 обеспечивает частичное охлаждение встречного потока рабочего тела, поступающего в теплообменник-рекуператор 9 из турбины 6 через высокотемпературный вход 14. Далее, частично подогретое рабочее тело (за счет теплообмена с встречным потоком рабочего тела из турбины 6) из теплообменника-рекуператора 9 через высокотемпературный выход 16 вновь поступает к реакторной установке 5, цикл вновь повторяется.

Таким образом, находящееся в замкнутом контуре единое рабочее тело обеспечивает непрерывную работу ЯЭДУ, причем использование в составе ЯЭДУ вихревой трубки Ранка-Хильша в соответствии с заявляемым техническим решением обеспечивает улучшение массогабаритных характеристик ЯЭДУ, повышает надежность ее работы, упрощает ее конструктивную схему и дает возможность повысить эффективность ЯЭДУ в целом.

Ядерный ракетный двигатель — реактивный двигатель, рабочее тело в котором (например, водород, аммиак и др.) нагревается за счет энергии, выделяющейся при ядерных реакциях (распада или термоядерного синтеза). Различают радиоизотопные, ядерные и термоядерные ракетные двигатели.

Работа содержит 1 файл

Ядерный ракетный двигатель.docx

Ядерный ракетный двигатель — реактивный двигатель, рабочее тело в котором (например, водород, аммиак и др.) нагревается за счет энергии, выделяющейся при ядерных реакциях (распада или термоядерного синтеза). Различают радиоизотопные, ядерные и термоядерные ракетные двигатели.

Ядерные ракетные двигатели позволяют достичь значительно более высокого (по сравнению с химическими ракетными двигателями) значения удельного импульса благодаря большой скорости истечения рабочего тела (от 8 000 м/с до 50 км/с и более). Вместе с тем, общая тяга ЯРД может быть сравнима с тягой химических ракетных двигателей, что создает предпосылки для замены в будущем химических ракетных двигателей ядерными. Основной проблемой при использовании ЯРД является радиоактивное загрязнение окружающей среды факелом выхлопа двигателя, что затрудняет использование ЯРД (кроме, возможно, газофазных — см. ниже), на ступенях ракет-носителей, работающих в пределах земной атмосферы. Впрочем, конструктивно совершенный ГФЯРД, исходя из его расчётных тяговых характеристик, может легко решить проблему создания полностью многоразовой одноступенчатой ракеты- носителя.

ЯРД по агрегатному состоянию ядерного топлива в них подразделяются на твёрдо, жидко- и газофазные. В твёрдофазных ЯРД делящееся вещество, как и в обычных ядерных реакторах, размещено в сборках-стержнях (ТВЭЛах) сложной формы с развитой поверхностью, что позволяет эффективно нагревать (лучистой энергией в данном случае можно пренебречь) газообразное рабочее тело (обычно — водород, реже — аммиак), одновременно являющееся теплоносителем, охлаждающим элементы конструкции и сами сборки. Температура РТ ограничена максимальной допустимой температурой элементов конструкции (не более 3 000 °К), что ограничивает скорость истечения. Удельный импульс твердофазного ЯРД, по современным оценкам, составит 8000—9000 м/с, что более, чем вдвое превышает показатели наиболее совершенных химических ракетных двигателей. Такие ядерные ракетные двигатели были созданы и успешно испытаны на стендах (программа NERVA в США, ядерный ракетный двигатель РД-0410 в СССР). Жидкофазные ЯРД являются более эффективными: ядерное топливо в их активной зоне находится в виде расплава, и, соответственно, тяговые параметры таких двигателей выше (удельный импульс может достигать величин порядка 1500 с).

На конец 1-го десятиления XXI в. нет ни одного случая практического применения ядерных ракетных двигателей, несмотря на то, что основные технические проблемы создания такого двигателя были решены ещё полвека тому назад. Основным препятствием на пути практического применения ЯРД являются оправданные опасения того, что авария летательного аппарата с ЯРД может создать значительное радиационное загрязнение атмосферы и некоторого участка поверхности Земли, нанеся как прямой вред, так и осложнив геополитическую ситуацию. Вместе с тем очевидно, что дальнейшее развитие космонавтики, приняв масштабный характер, не сможет обойтись без применения схем с ЯРД, так как химические ракетные двигатели уже достигли практического предела своей эффективности и их потенциал развития весьма ограничен, а для создания скоростного, долговременно работающего и экономически оправданного межпланетного транспорта химические двигатели по ряду причин непригодны.

Читайте также: