Свет доклад по физике 11 класс

Обновлено: 04.07.2024

План урока:

Что такое свет? Источники света

Много тысячелетий прошло прежде, чем была выяснена природа этого замечательного явления – свет. Десятки гипотез, предположений, догадок выдвигались учеными. Но вот в конце девятнадцатого века Д. Максвелл и Г. Герц установили, что природа света электромагнитная.

Значение света в жизни человека и в природе громадно. Зарождение и развитие всего живого происходит под влиянием тепла и, конечно, света.

Свет для человека – важнейшее средство познания окружающего мира.

Основной источник света для всей Земли – это Солнце. Световые потоки устремляются к планетам от Солнца благодаря ядерным реакциям, происходящим на нем.

При изучении тепловых явлений одним из видов теплообмена названо излучением, с помощью которого Земля получает от Солнца тепло. Тепло невидимо. Та часть излучения, которая видима глазом человека, называется видимым излучением.

Именно это излучение рассматривается как световое явление.

Сейчас известна природа света, свойства его, строение глаза, создано большое число оптических устройств и простых приборов. Световые явления широко используются в жизни человека.

Создается световое излучение источниками света, которые бывают естественными и искусственными. Сама природа создала естественные источники света. Искусственные источники придумал и изготовил человек.

Естественные (природные) источники света:

  • Солнце и другие звезды;
  • молния;
  • полярные сияния;
  • светящиеся вещества (фосфор, радий, актиний и другие);
  • насекомые (например, светлячки, грибные комары);
  • морские животные (медузы, электрические скаты, угри и другие);
  • старые гниющие пни;
  • светящиеся грибы.

Среди таких источников есть яркие, дающие много света, а есть едва видимые в темноте.

Например, науке известно уже около семидесяти видов светящихся грибов. Из них некоторые можно увидеть ночью на расстоянии десяти метров.

Светиться могут подгнившие грузди и старые сыроежки.

Подкрашенный фосфором циферблат часов.

Искусственные источники света:

  • всевозможные фонари и лампы;
  • прожекторы и маяки;
  • экраны телевизоров, проекторов;
  • гаджеты;
  • светящиеся рекламы;
  • свечи.

Не может деятельность человека протекать без освещения. Трудно представить современный город в ночное время без освещенного дома, улицы, квартиры.

Созданные человеком источники света.

Искусственное освещение создано человеком лишь благодаря научному подходу к изучению таких интересных явлений природы – световых.

Распространение света

Чтобы лучше понять, как свет распространяется, введено понятие светового луча. А там, где лучи, там геометрия. Поэтому появился новый подход к световым явлениям, который называется геометрическая оптика.

Для практического изучения света учеными рассматриваются узкие пучки световых лучей. Для их получения используют непрозрачные экраны с отверстиями.

Каковы же главные законы, по которым свет распространяется?

Один из них подтверждается достаточно легко. Человек, который не хочет, чтобы яркий свет бил ему в глаза, приставляет ко лбу ладонь. Он видит окружающие предметы, а свет прямо в глаза ему не попадает.

Это говорит о том, что свет не может обогнуть ладонь и попасть в глаза наблюдателю. Этот пример показывает, что свет идет по прямой.

Значит, существует закон прямолинейного распространения света. Он звучит так:

Как на рисунке, луч света не пойдет. Он не может огибать препятствия.

Первая научная формулировка этого важного закона была дана в третьем веке до нашей эры Евклидом.

В соответствии с этим законом свет в одной и той же среде не может идти по ломаной траектории и огибать препятствия. Отсюда вытекает понятие тени. Тень сопровождает человека всюду.

На экране тень и полутень. Источник

Если поместить между источником света предмет, например, шар, он перекроет путь световых лучей. За шаром на экране в центре тень более темная, чем по краям. Почему так?

Объяснить это можно, проведя два эксперимента.

Первый. Источник по своим размерам очень мал по сравнению с шаром и расстоянием до экрана. Такой источник света называют точечным. Пусть это будет светящаяся точка А. Та часть прямых лучей, которая упирается на шар не дойдет до экрана, и в соответствующей области его образуется темное пятно – тень. Лучи, идущие выше и ниже шара достигают цели и на экране в этой области светло.

Второй эксперимент. Берется источник света большой или сравнимый с предметом, помещенным между источником и экраном. Такой источник содержит огромное число светящихся точек, испускающих лучи. Из каждой точки, которые находятся между А и В выходит такой же пучок света, как и в первом эксперименте.

Потоки лучей из разных точек источника устремляются к экрану, но доходят до него не все. Мешает шар, дающий для каждого потока свою тень. Все тени пересекаются в центре экрана и образуют общее темное пятно – общую тень. Вокруг нее образуется область размытая, куда от одних точек свет попадает, а от других нет – это полутень.

Природа предоставила человеку яркий пример распространения света, который очень напоминает второй эксперимент. Это солнечные и лунные затмения.

Они происходят, когда Солнце, Луна и Земля, двигаясь по законам Солнечной системы, выстраиваются в одну линию, как показано на схемах.

Схема солнечного затмения. Источник

Схема лунного затмения. Источник

Затмения для науки представляют большой интерес, особенно солнечные. Они позволяют наблюдать, хоть и кратковременно, состояние солнечной атмосферы, процессы внутри ее и состав.

Отражение света и его законы

Наверное, нет человека, который бы не наблюдал одно из явлений. Снежинки попадают в свет фар автомобиля или солнечные лучи попадают в запыленную комнату, или солнце освещает влажный воздух леса.

Сами снежинки не являются источниками света, но человек их видит. Но видит только те, которые падают на землю в свете фар. Падающий снег за пределами автомобиля человеческий глаз не фиксирует.

В пыльной комнате наблюдается плавное движение мелких пылинок в том месте, где через окно проникает солнечный свет. Но ведь это не значит, что пыль в комнате находится только там, где лучи света. Пылинки летают по всей комнате, но не видны глазом.

В утреннем влажном лесу там, куда прокрадываются яркие лучи, становятся видны мельчайшие капельки воды и лесные пылинки. Они тоже есть по всему лесу, но видны только, где свет.

Эти явления объясняются тем, что человеческий глаз воспринимает свет, идущий от источника или отраженный от освещенного тела.

Если взять в темноте лист бумаги, то сказать, какого цвета этот лист, невозможно. Лист – не источник света и не освещен, поэтому он невидим. Другое дело, если лист попал в руки в светлом помещении. Человек его видит, так как бумага отражает световые лучи, отраженные лучи уже попадают в глаз.

Так снежинки в свете фар, капельки воды и пылинки на свету отражают лучи света, которые и воспринимает человек.

Для экспериментального подтверждения этого закона используется устройство, называемое оптическим диском.

На светлый круг этого прибора нанесена шкала с градусами. Яркая лампочка осветителя находится в светонепроницаемом футляре с очень узким отверстием. В центре диска прикрепляется отражающая поверхность, например, зеркальная пластинка. Осветитель имеет возможность перемещаться вокруг диска.

Из осветителя луч света от лампочки падает на пластинку и отражается от нее. Если переместить осветитель, направление падения луча света изменится. Соответственно изменится и направление отражения света. Но все это происходит в одной плоскости диска, что подтверждает первый закон отражения света.

При сравнении углов, которые образуются световыми лучами в этих опытах, подтверждается второй закон отражения света. Но прежде, чтобы его понять, следует изучить геометрическую схему отражения света.

На схеме представлен геометрический подход к изучению световых явлений. Пучки света заменены геометрическими лучами и добавлены некоторые геометрические элементы, нужные для исследования.

  • α – угол падения;
  • β – угол отражения.
  • прямая MN – плоскость отражения;
  • СО – перпендикуляр к поверхности отражения;
  • АО – падающий луч;
  • ОВ – отраженный луч;

Нужно четко запомнить: углы падения и отражения берутся не к поверхности отражения, а к проведенному в точку падения перпендикуляру.

Если передвигать осветитель вокруг диска, угол падения будет меняться. Угол отражения тоже изменится и будет таким же, как угол падения. Это свойство отражения является вторым законом отражения света:

Если падающий луч пойдет от точки В по направлению ВО, то он отразится от поверхности MN как раз по линии ОА. Это свойство называют обратимостью световых лучей, о чем говорили еще в древности, но дать научного объяснения не могли.

Почему сломался карандаш?

Наблюдательный рыболов видит, что весла от его лодки при погружении в воду как будто ломаются. Когда весла над поверхностью воды, они снова прямые. Почему? Это объясняют оптические законы.

Взмахнуть рукой в воздухе гораздо легче, чем провести рукой внутри воды. Вот и свет проходит в разных средах (например, в вакууме, стекле, воздухе, алмазе, воде) тоже по-разному. На границе двух различных сред меняется направление хода лучей света.

Углы падения и преломления, которые определяются, как и при отражении, с помощью перпендикуляра к границе раздела, в данном случае не равны.

Вот почему карандаш выглядит в стакане сломанным. Здесь не нужно путать световые лучи и сам карандаш. Лучи идут человеку в глаз, как показано на чертеже. То, что карандаш воспринимается глазом в сломанном виде – это оптическая иллюзия, созданная ходом всех лучей, отражающихся от карандаша.

Как проходит свет в разных средах?

Различные среды преломляют лучи по-разному. Так, на границе между воздухом и водой угол преломления примерно 30 о , а на границе воздух – алмаз, угол преломления около 21 о . Причем, это с одним углом падения в 60 о .

Не всегда угол преломления меньше угла падения, как в приведенных примерах. Если вспомнить, что свет – это электромагнитная волна, то значит, он обладает скоростью (300 000 км/с в вакууме). В веществах скорость света другая, всегда меньше.

На своем пути лучи света проходят по различным прозрачным веществам, которые образуют оптическую среду. Если скорость света в одной среде больше, чем в другой, то первая среда называется оптически менее плотной, а вторая – оптически более плотной средой. Например, попадая в воду из воздуха, лучи света переходят из оптически менее плотной среды (воздух) в оптически более плотную (воду).

Преломление лучей на границе раздела связано с оптической плотностью каждой из сред следующим правилом:

Отсюда видно, что угол преломления может быть больше или меньше угла падения. Все объясняется оптическими свойствами среды, куда переходит световой луч.

Занимаясь усовершенствованием телескопов, Ньютон обратил внимание на то, что изображение, даваемое объективом, по краям окрашено.

Радужную окраску изображения, получаемого с помощью линзы, наблюдали, конечно, и до него.
Было замечено также, что радужные края имеют предметы, рассматриваемые через призму.
Пучок световых лучей, прошедших через призму, окрашивается по краям.

Стилизованное изображение опыта Ньютона показано на рисунке.
Следуя многовековой традиции, согласно которой радуга считалась состоящей из семи основных цветов, Ньютон тоже выделил семь цветов: фиолетовый, синий, голубой, зеленый, желтый, оранжевый и красный.
Саму радужную полоску Ньютон назвал спектром.




Закрыв отверстие красным стеклом, Ньютон наблюдал на стене только красное пятно, закрыв синим стеклом — синее пятно и т. д.
Это означало, что не призма окрашивает белый свет, как предполагалось раньше.
Призма не изменяет свет, а лишь разлагает его на составные части.

Белый свет имеет сложный состав.
Из него можно выделить пучки различных цветов, и лишь совместное их действие вызывает у нас впечатление белого цвета.
В самом деле, если с помощью второй призмы, повернутой на 180° относительно первой, собрать все пучки спектра, то опять получится белый свет.
Выделив какую-либо часть спектра, например зеленую, и заставив свет пройти еще через одну призму, мы уже не получим дальнейшего изменения окраски.

Зависимость показателя преломления света от его цвета Ньютон назвал дисперсией.


Показатель преломления зависит и от скорости света в веществе.
Абсолютный показатель преломления
Луч красного цвета преломляется меньше из-за того, что красный свет имеет в веществе наибольшую скорость, а луч фиолетового цвета преломляется больше, так как скорость для фиолетового света наименьшая.
Именно поэтому призма и разлагает свет.
В пустоте скорости света разного цвета одинаковы.
Если бы это было не так, то, к примеру, спутник Юпитера Ио, который наблюдал Рёмер, казался бы красным в момент выхода спутника из тени.
Но этого не наблюдается.

Впоследствии была выяснена зависимость цвета от физической характеристики световой волны: ее частоты колебаний ν (или длины волны λ).
Поэтому можно дать более глубокое определение дисперсии, чем то, к которому пришел Ньютон.

Дисперсией называется зависимость показателя преломления среды от частоты световой волны.

Зная, что белый свет имеет сложный состав, можно объяснить удивительное многообразие красок в природе.
Если предмет, например лист бумаги, отражает все падающие на него лучи различных цветов, то он будет казаться белым.

Покрывая бумагу слоем красной краски, мы не создаем при этом свет нового цвета, но задерживаем на листе некоторую часть имеющегося.
Отражаться теперь будут только красные лучи, остальные же поглотятся слоем краски.

Трава и листья деревьев кажутся нам зелеными потому, что из всех падающих на них солнечных лучей они отражают лишь зеленые, поглощая остальные.
Если посмотреть на траву через красное стекло, пропускающее только красные лучи, то она будет казаться почти черной.

Явление дисперсии, открытое Ньютоном, — первый шаг к пониманию природы цвета.
Основательно понять дисперсию смогли лишь после того, как была выяснена зависимость цвета от частоты колебаний (или длины световой волны).

Световые волны. Физика, учебник для 11 класса - Класс!ная физика


Световые лучи не похожи на электрическое поле вокруг наэлектризованных предметов или магнитное поле вокруг магнита. Однако, на самом деле, в этих явлениях немало общего. Поговорим кратко об электромагнитной природе света.

Свет и волновые явления


Рис. 1. Кольца Ньютона.

Кроме того, многие исследователи изучали радужные узоры, образующиеся на тонких пленках – в каплях масла на воде или в воздушных пузырях. Однако, объяснить эти явления удалось только лишь в начале XIXв Т. Юнгу. Гениальная догадка этого физика состоит в том, что свет имеет волновой характер. И для него должны выполняться все явления, присущие волнам. В частности, радужная картина – это результат интерференции (результата сложения двух волн, приходящих в разных фазах).

Длины световых волн

Рис. 2. Длины световых волн.

Электромагнитная теория света

К середине XIXв были открыты электромагнитные волны и разработана теория электромагнетизма Дж. Максвелла. Из этой теории следовало, что электромагнитные волны являются поперечными, и распространяются не мгновенно, а с конечной, хотя и очень большой скоростью. Как раз к этому времени стало накапливаться все больше фактов, что свет также является поперечной волной (хотя, сам Т. Юнг считал свет волной продольной). Кроме того, обнаружилось, что электромагнитные волны проявляют все волновые свойства точно так же, как световые, и имеют ту же скорость. Наконец, к концу XIXв было установлено, что световые волны возбуждаются заряженными частицами (переходами электронов на разные энергетические уровни внутри атомов вещества) точно так же, как и другие электромагнитные волны. Была полностью установлена электромагнитная природа света, и создана теория, описывающая световые явления.

Свет, как и любая электромагнитная волна представляет собой распространяющуюся в пространстве структуру электрических и магнитных вихревых полей, поддерживающих друг друга. Живые ткани очень слабо реагируют на магнитное поле. Как показали специальные опыты, ощущение освещенности на сетчатке вызывает только электрическая составляющая световых волн.

Восприятие света и цвета глазом

Рис. 3. Восприятие света и цвета глазом.

Что мы узнали?

Свет проявляет ряд волновых признаков, что позволило доказать его волновую природу, а ряд совпадений с поведением электромагнитных волн позволил описать все световые явления в рамках электромагнитной теории Максвелла к середине XIX в.

Геометрическая оптика. Прямолинейное распространение света.

Скорость света и описание методов её измерения;

Принцип Гюйгенса, законы отражения и преломления света, границы их применимости;

Определение показателя преломления среды.

Ключевые слова: оптика; свет; световой луч; преломление; отражение; показатель преломления.

Глоссарий по теме:

Оптика – раздел физики, изучающий световые явления, выясняющий физическую природу и свойства света, закономерности его излучения и взаимодействия с веществом.

Геометрическая оптика – раздел оптики, изучающий законы распространения света в прозрачных средах и законы его отражения от зеркальных поверхностей на основе представления о световых лучах.

Волоконная оптика - раздел оптики, который изучает систему передачи света и изображений с помощью световодов.

Световой луч – линия, вдоль которой распространяется световая энергия.

Свет – это электромагнитное излучение, воспринимаемое человеческим глазом.

Скорость света – абсолютная величина скорости распространения электромагнитных волн в вакууме.

Преломление света – явление изменения направления распространения света при прохождении через границу раздела сред с разными оптическими свойствами.

Закон прямолинейного распространения света: в однородной оптической среде свет распространяется прямолинейно.

Закон отражения света: луч падающий, луч отражённый и нормаль к отражающей поверхности в точке падения лежат в одной плоскости, причём угол падения равен углу отражения.

Отражение света - явление изменения направления распространения света на границе двух сред, при котором свет остается в первой среде.

Угол падения – угол между падающим лучом и нормалью к отражающей поверхности в точке падения.

Угол отражения – угол между нормалью к отражающей поверхности и отражённым лучом.

Плоская волна – волна, у которой поверхности равной фазы (волновые поверхности) и соответственно фронт волны имеет форму плоскости.

Список обязательной литературы и дополнительная литература:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М.. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. С.170 – 190.

Теоретический материал для самостоятельного изучения

Геометрическая оптика – раздел оптики, изучающий законы распространения света в прозрачных средах на основе представления о нем как о совокупности световых лучей. Световой луч – это линия, указывающая, в каком направлении свет переносит энергию.

В соответствии с двумя способами передачи энергии от источника к приёмнику в XVII в. возникли две противоречащие друг другу теории света: а) корпускулярная теория света Ньютона; б) волновая теория света Гюйгенса.

С установлением электромагнитной природы света в XIX в. и обнаружением квантовых свойств света в начале XX в. и волновая и корпускулярная теории света одержали победу. Выяснилось, что свет имеет двойственную природу. Астрономическим и лабораторным методами измерена скорость света в вакууме. По современным вычислениям скорость света равна 299 792 458 м/с или приближенно .

Скорость распространения света в веществе всегда меньше, чем в вакууме.

В основе геометрической оптики лежат четыре закона: закон прямолинейного распространения света; закон независимости световых лучей; закон отражения света; закон преломления света. С помощью принципа Гюйгенса можно вывести и объяснить законы распространения света.

Плоская поверхность, зеркально отражающая свет, называется плоским зеркалом.

Свойства плоского зеркала:

изображение предмета мнимое;

изображение симметричное предмету относительно зеркала;

размеры изображения равны размерам предмета.

При падении света на плоскую границу раздела, часть светового потока частично отражается, а часть преломляется.

Законы преломления: 1. Падающий луч, преломлённый луч и нормаль к границе раздела двух сред в точке падения луча лежат в одной плоскости. 2. Отношение синуса угла падения α к синусу угла преломления β – величина постоянная для данных сред и равная относительному показателю преломления второй среды относительно первой:


где n – относительный показатель преломления второй среды относительно первой; n1 и n2 - абсолютные показатели преломления первой и второй сред.

Абсолютный показатель преломления среды n – это физическая величина, показывающая, во сколько раз скорость света c в вакууме больше, чем в среде 𝛖:


Относительный показатель преломления второй среды относительно первой n21 – величина, показывающая во сколько скорость 𝛖1 распространения света в первой среде больше (меньше; равна) скорости 𝛖2 распространения света во второй:


Полное отражение – это явление отражения света, падающего из оптически более плотной среды на границу с оптически менее плотной средой под углом падения, большим некоторого предельного угла α0.

Предельный угол полного отражения α0 - угол падения луча, при котором преломлённый луч скользит вдоль границы раздела двух сред

Разбор тренировочного типового задания:

Правильный вариант: отражение, поглощение, конечна.

2. Решите задачу и зачеркните неверные ответы. Найти показатель преломления рубина, если предельный угол полного отражения для рубина равен 34 0 .

Читайте также: