Преобразование алгебраических выражений доклад

Обновлено: 12.06.2024

1. Алгебраическим выражением называется выражение, составленное из конечного числа букв и чисел, соединенных знаками действий сложения, вычитания, умножения, деления, возведения в целую степень и извлечение корня.


Все алгебраические выражения (А.В) по действиям, которые производятся над буквами можно классифицировать следующим образом:

Буквы, входящие в А.В могут принимать значения из некоторого числового множества, которое называется множеством допустимых значений или областью определения А.В.

Так, в рассмотренных выше примерах 1) и 2) значениями букв, входящих в А.В могут быть любые числа. В общем случае область определения (О.О.) целых алгебраических выражений может быть любым числовым множеством.

Так как делить на выражение равное нулю нельзя, то с и b в пр.3) могут принимать любые числовые значения, кроме с=0 и b=0, таким образом О.О. А.В из пр.3) с¹0, b¹0. На этом же основании О.О. А.В из пр.4) x+y¹0 или х¹y.

В общем случае О.О. дробно-рационального А.В не включает те значения, входящих в выражение букв, при которых знаменатель дробей в выражении обращается в нуль.

Область определения А.В из пр.5) а¹b, b¹0 и а>0 т.к. выражение стоящее под знаком корня четной степени должно быть, по определению арифметического корня, неотрицательным.

О.О. А.В из пр.6) х+1³0 или х³-1.

В общем случае О.О. иррационального выражения включает только те значения букв, при которых выражения, стоящие под знаком корня четной степени принимают неотрицательные значения.

Тождеством называется равенство двух А.В справедливое для любых допустимых значений, входящих в него букв.

Равенство (a+b)2=a2+2ab+b2 справедливое для любых a и b есть тождество.

Равенство является тождеством только для а¹1.

Тождественным преобразованием А.В называется замена одного А.В другим тождественно ему равным, но отличным по форме.

Целью тождественных преобразований (Т.П) может быть приведение выражению вида, более удобного для численных расчетов или дальнейших преобразований.

приведение подобных членов

разложение на множители

приведение алгебраических дробей к общему знаменателю

избавление от иррациональности в знаменателе и т.п.

2. Рассмотрим тождественные преобразования А.В.

Для успешного осуществления Т.П. целых А.В нужно помнить:

Формулы сокращенного умножения

(a ± b)2 = a2 + 2ab + b2

a3 ± b3 = (a ± b)( a2ab+b2)

(a ± b)3 = a3 ± 3a2b + 3ab2 ± b3

a2 – b2 = (a + b)(a – b)

Свойства степени с целыми показателями

Формулы корней квадратного трехчлена ax2 + bx + c

Теорему Виета х1 и х2 — корни ax2 + bx + c в том и только том случае, если

Разложение квадратного трехчлена ax2 + bx + c на множители.

Если х1, х2 — корни трехчлена, то ax2 + bx + c = а(х–х1)(х–х2)

Рассмотрим несколько примеров тождественных преобразований целых А.В.

Пример 1. Разложить многочлен на множители

Задача заключается в том, чтобы сгруппировать слагаемые так, чтобы они имели общий множитель, который можно будет затем вынести за скобки, прейдя от суммы к произведению.

Объединим крайние слагаемые в одну группу, а средние в другую:

2) Вынесем за скобки во второй группе общий множитель 2ab, получим:

3) Вынесем за скобки общий множитель первого и второго слагаемого (a2 + b2):

Полученное выражение есть произведение двух сомножителей, а значит многочлен f(a,b) разложили на множители.

Пример 2. Разложить на множители f(a)= a3 – 7а2 + 7а +15

Как бы мы не группировали слагаемые мы не получим группы слагаемых, имеющие одинаковые множители. Поэтому, сначала преобразуем сами слагаемые.

f (a) = a3 – 7а2 + 7а +15 = a3 – 3а2 – 4а2 + 12а – 5а +15

3) Сгруппируем слагаемые попарно, и из каждой скобки вынесем общий множитель.

f(a) = (a3 – 3а2) +( – 4а2 +12а) + (– 5а +15) = а2 (а – 3) – 4а (а – 3) – 5(а – 3)

4) В полученном выражении все слагаемые имеют общий множитель (а – 3), который и выносим за скобки. f(a) = (а – 3)(а2 – 4а – 5)

5) Мы получили разложение на множители f(a), но второй множитель в свою очередь может быть разложен на множители. Для этого, используя теорему Виета, разложим трехчлен (а2 – 4а – 5) на множители.

По теореме Виета корнями трехчлена (а2 – 4а – 5) являются а1=5 и а2= –1. Тогда имеем (а2 – 4а – 5) = (а – 5)(а + 1) и f(a) = (а – 3)(а – 5)(а + 1)

Ответ: a3 – 7а2 + 7а +15 = (а – 3)(а – 5)(а + 1).

Пример 3. Разложить на множители f(a,b,c) = ab(a+b) – bc(b+c) + ac(a – c).

1) Заметим, что выражение, стоящее в первых скобках есть сумма выражений, стоящих во второй и в третьей скобках a+b=(b+c)+(a–c). Подставим это вместо а+b.

2) Сгруппируем 1-е и 3-е слагаемые и 2-е и 4-е и вынесем общие множители за скобки.

Полученное есть произведение трех сомножителей.

Ответ: ab(a+b) – bc(b+c) + ac(a – c)=(a–c)(b+c)(b+a).

Пример 4. Разложить на множители f(a,b)=4a2–12ab+5b2.

1) Выделим полный квадрат

f(a,b)=(2a)2–2(2a)(3b)+(3b)2 –4b2 =(2a–3b)2 –4b2.

2) Воспользуемся формулой разности квадратов:

Пример 5. Разложить на множители f(a)=а3+9а2+27а+19.

Так как выражение зависит только от а, которое входит в выражение в 3-ей, 2-ой и 1-ой степенях, попытаемся выделить полный куб, воспользуясь формулой (a+b)3=a3+3a2b+3ab2+b3.

1) f(a)=a3+3a2 ×3+3a×32+33 –8

2) т.к. 8=23, то воспользуемся формулой разности кубов: a3 –b3=(a–b)(a2+ab+b2).

Раздел: Математика
Количество знаков с пробелами: 13480
Количество таблиц: 0
Количество изображений: 9


Реферат на тему "Тождественные преобразования выражений". Поможет обучающимся систематизированить знания по данному разделу алгебры (например, при подготовке к итоговой аттестации), содержит примеры заданий для интерактивной доски, которые можно использовать на уроках математики в 6 классе и уроках алгебры в 7 классе.

Содержимое разработки

Порядок выполнения действий при тождественных преобразованиях

Основные тождественные преобразования

Перестановка местами слагаемых, множителей

Группировка слагаемых, множителей

Вынесение за скобки общего множителя

Приведение подобных слагаемых

Простейшие преобразования выражений и формул, опирающиеся на свойства арифметических операций, производятся в начальной школе и 5 и 6 классах. Формирование умений и навыков выполнения преобразований происходит в курсе алгебры. Это связано как с резким увеличением числа и разнообразия совершаемых преобразований, так и с усложнением деятельности по их обоснованию и выяснению условий применимости, с выделением и изучением обобщенных понятий тождества, тождественного преобразования, равносильного преобразования.

Понятие тождества.

Тождество – это равенство, верное при любых значениях переменных.

Два выражения, значения которых равны при любых значениях переменных, называются тождественно равными.

Тождественное преобразование выражения – это замена исходного выражения на выражение, тождественно равное ему.

Для тождественных преобразований используют формулы сокращенного умножения, законы арифметики и другие тождества.

При выполнении тождественных преобразований алгебраических выражений необходимо знать порядок выполнения действий, действия с дробями и степенными выражениями, формулы сокращенного умножения и др.

Следует иметь в виду, что при тождественных преобразованиях остаются неизменными:

- величина допустимых изменений буквенных величин;

- область допустимых значений каждой из буквенных величин.

Однако это не значит, что мы должны отказываться от таких преобразований, которые изменяют области допустимых значений величин. Напротив, мы ими часто пользуемся и при упрощении выражений и при решении уравнений. Нужно только при каждом таком преобразовании указать, как изменились области допустимых значений буквенных величин.

Порядок выполнения действий при тождественных преобразованиях.

Порядок выполнения действий:

- действия с одночленами;

- действия в скобках;

- умножение или деление (в порядке появления);

- сложение или вычитание (в порядке появления).

Основные тождественные преобразования.

Существует ряд наиболее часто используемых тождественных преобразований, которые проводятся с выражениями различных видов.

Такие преобразования назовем основными:

Перестановка местами слагаемых, множителей

Справедливо правило: в любой сумме слагаемые или в любом произведении множители можно переставлять местами.

Это правило вытекает из переместительного и сочетательного свойств сложения и произведения. Из этих свойств следует, что все выражения, полученные после перестановки местами слагаемых (или множителей), тождественно равны исходному выражению. Поэтому, перестановка местами слагаемых в сумме (или множителей в произведении) является тождественным преобразованием.


Раскрытие скобок.

Числовые выражения и выражения с переменными в своей записи могут содержать скобки. Эти выражения можно заменить тождественно равными выражениями, в которых будет меньшее количество скобок или их не будет вовсе.

Правило раскрытия скобок, в которые заключены одиночные положительные числа: пусть a – положительное число, тогда (a) заменяется на a, +(a) заменяется на +a и −(a) заменяется на −a.

Правило раскрытия скобок, в которых содержатся одиночные отрицательные числа: +(−a) заменяется на −a, а −(−a) заменяется на +a, если же выражение начинается с отрицательного числа (−a), записанного в скобках, то скобки, содержащие это число, просто опускаются, и вместо (−a) остается −a.

Правило раскрытия скобок в произведении двух чисел.

Пусть a и b – положительные числа. Тогда произведение двух отрицательных чисел −a и −b вида (−a)·(−b) заменяется на (a·b), а произведения двух чисел с противоположными знаками вида (−a)·b и a·(−b) заменяются на (−a·b).

Иными словами, умножение минуса на минус дает плюс, а умножение минуса на плюс, как и умножение плюса на минус дает минус.

Аналогичное правило справедливо и для частного двух чисел, так как деление можно рассматривать как умножение на обратное число.

Слайды и текст этой презентации Открыть в PDF

Алгебраические выражения и их преобразование 9 класс (повторение)

Алгебраические выражения
и их преобразование
9 класс (повторение)

Девиз урока: Математику нельзя изучать, наблюдая как это делает сосед.

Математику нельзя изучать,
наблюдая
как это делает сосед.

Мне хорошо, я готов к уроку

Я тревожусь: все ли у меня получится?

Рефлексия на начало урока

Этап проверки домашнего заданияЭкзаменационный сборник№14: -11а№16: №8:№23: 6m + 13 №31: 5mn(m – 4n)№33: (1

Этап проверки домашнего задания

Экзаменационный сборник
№14: -11а
№16:
№8:
№23: 6m + 13
№31: 5mn(m – 4n)
№33: (1 -8в)(1 + 8в)
№40: с (1 – 4с)(1 + 4с)

Актуализация знаний: 1. Алгебраические выражения


1. Алгебраические выражения

2. Алгебраические дроби

3. Преобразование алгебраических дробей

Алгебраические выражения Алгебраическое выражение – выражение , состоящее из чисел и букв, соединенных знаками

Алгебраическое выражение – выражение , состоящее из чисел и букв, соединенных знаками действий.
Целые алгебраические выражения: m - 5n; 8х у; 6ab +2;
Дробные алгебраические выражения:

Алгебраические дробиАлгебраическая дробь - дробь , числитель и знаменатель которой алгебраические выражения.Примеры:

Алгебраическая дробь - дробь , числитель и знаменатель которой алгебраические выражения.
Примеры:

Устная работа Найти выражение, которое не является алгебраической дробью:а) (а+в)2; б) в) г)

Найти выражение, которое не является алгебраической дробью:

Устная работаСократить дробь и каждой дроби найти равную ей дробь, используя соответствие число – буква..

Сократить дробь и каждой дроби найти равную ей дробь, используя соответствие число – буква.

Устная работа Найдите ошибки: .

Алгоритм приведения алгебраических дробей к общему знаменателю. Чтобы несколько рациональных дробей привести к общему знаменателю

Алгоритм приведения алгебраических дробей к общему знаменателю.

Чтобы несколько рациональных дробей привести к общему знаменателю нужно:
1.Разложить знаменатель каждой дроби на множители;
2.Составить общий знаменатель, включив в него в качестве сомножителей все множители полученных разложений; если множитель имеется в нескольких разложениях, то он берется с наибольшим показателем степени;
3.Найти дополнительные множители для каждой из дробей (для этого общий знаменатель делят на знаменатель дроби);
4.Домноживчислитель и знаменатель на дополнительный множитель, привести дроби к общему знаменателю.

Задание №1Привести дробик общему знаменателюи

к общему знаменателю

Алгоритм сложения и вычитания алгебраических дробей с разными знаменателями:Найти наименьший общий знаменатель дробей;• Определить дополнительные

Алгоритм сложения и вычитания алгебраических дробей с разными знаменателями:

Найти наименьший общий знаменатель дробей;
• Определить дополнительные множители дробей;
• Привести дроби к новому знаменателю;
• Сложить или вычесть дроби;
• Упростить полученный результат.

Задание №2 б) Выполнить вычитание:а) Выполнить сложение:

б) Выполнить вычитание:

а) Выполнить сложение:

Алгоритм умножения алгебраических дробей: • Перемножить числители; • Перемножить знаменатели; • Упростить полученный результат, если

Алгоритм умножения алгебраических дробей:

• Перемножить числители;
• Перемножить знаменатели;
• Упростить полученный результат, если это возможно.

Выполнить действие умножения дробей:

Алгоритм деления алгебраических дробей: Умножить первую дробь на дробь обратную второй; • Перемножить числители;

Алгоритм деления алгебраических дробей:

Умножить первую дробь на дробь обратную второй;
• Перемножить числители;
• Перемножить знаменатели;
• Упростить полученный результат, если это возможно.

Задание №4Выполнить действие деления дробей:

Выполнить действие деления дробей:

Физкультминутка для глаз Упражнение 1. Сделайте 15 колебательных движений глазами по горизонтали справа – налево,

Физкультминутка для глаз

Упражнение 1. Сделайте 15 колебательных движений глазами по горизонтали справа – налево, затем слева – направо.
Упражнение 2. Сделайте 15 колебательных движений глазами по вертикали вверх - вниз и вниз - вверх.
Упражнение 3. Тоже 15, но круговых вращательных движений глазами слева – направо.
Упражнение 4. То же самое , но справа – налево.
Упражнение 5. Сделайте по 15 круговых вращательных движений глазами вначале в правую, затем в левую стороны, как бы вычерчивая глазами уложенную набок восьмёрку.

Порядок выполнения действийВ выражениях со скобками сначала вычисляют значения выражений в скобках, затем по порядку

Порядок выполнения действий

В выражениях со скобками сначала вычисляют значения выражений в скобках, затем по порядку слева направо выполняют возведение в степень, умножение и деление, потом сложение и вычитание.
2. Если выражение составлено с помощью арифметических действий первой и второй ступеней, то по порядку слева направо выполняют умножение и деление, а затем сложение и вычитание.
3. Если выражение составлено с помощью арифметических действий одной ступени, то их выполняют слева направо.

Определить порядок выполнения действий и упростить алгебраическое

Определить порядок выполнения действий и упростить алгебраическое выражение :

Работа по закреплению навыков сложения, вычитания , умножения и деления алгебраических дробей .

Самостоятельная работа Экзаменационный сборник:№ 171, стр.147 № 66, стр. 143№ 62, стр.

Экзаменационный сборник:
№ 171, стр.147
№ 66, стр. 143
№ 62, стр. 143
№114,стр. 145
№ 108, стр. 145
№ 141, стр.146
№153, стр.146
№163, стр.147
№22, стр. 96

ДОМАШНЕЕ ЗАДАНИЕ 1) прочитать опорные конспекты , 2) выучить все алгоритмы, 3)

1) прочитать опорные конспекты ,
2) выучить все алгоритмы,
3) решить задачи из экзаменационного сборника (индивидуальное задание).

Статья рассказывает о преобразовании рациональных выражений. Рассмотрим виды рациональных выражений, их преобразования, группировки, вынесения за скобки общего множителя. Научимся представлять дробные рациональные выражения в виде рациональных дробей.

Определение и примеры рациональных выражений

Выражения, которые составлены из чисел, переменных, скобок, степеней с действиями сложения, вычитания, умножения, деления с наличием черты дроби, называют рациональными выражениями.

Для примера имеем, что 5 , 2 3 · x - 5 , - 3 · a · b 3 - 1 c 2 + 4 a 2 + b 2 1 + a : ( 1 - b ) , ( x + 1 ) · ( y - 2 ) x 5 - 5 · x · y · 2 - 1 11 · x 3 .

То есть это такие выражения, которые не имеют деления на выражения с переменными. Изучение рациональных выражений начинается с 8 класса, где их называют дробными рациональными выражениями. Особое внимание уделяют дробям в числителе, которые преобразовывают с помощью правил преобразования.

Это позволяет переходить к преобразованию рациональных дробей произвольного вида. Такое выражение может быть рассмотрено как выражение с наличием рациональных дробей и целых выражений со знаками действий.

Основные виды преобразований рациональных выражений

Рациональные выражения используются для того, чтобы выполнять тождественные преобразования, группировки, приведение подобных, выполнение других действий с числами. Цель таких выражений – это упрощение.

Преобразовать рациональное выражение 3 · x x · y - 1 - 2 · x x · y - 1 .

Видно, что такое рациональное выражение – это разность 3 · x x · y - 1 и 2 · x x · y - 1 . Замечаем, что знаменатель у них идентичный. Это значит, что приведение подобных слагаемых примет вид

3 · x x · y - 1 - 2 · x x · y - 1 = x x · y - 1 · 3 - 2 = x x · y - 1

Ответ: 3 · x x · y - 1 - 2 · x x · y - 1 = x x · y - 1 .

Выполнить преобразование 2 · x · y 4 · ( - 4 ) · x 2 : ( 3 · x - x ) .

Первоначально выполняем действия в скобках 3 · x − x = 2 · x . Данное выражение представляем в виде 2 · x · y 4 · ( - 4 ) · x 2 : ( 3 · x - x ) = 2 · x · y 4 · ( - 4 ) · x 2 : 2 · x . Мы приходим к выражению, которое содержит действия с одной ступенью, то есть имеет сложение и вычитание.

Избавляемя от скобок при помощи применения свойства деления. Тогда получаем, что 2 · x · y 4 · ( - 4 ) · x 2 : 2 · x = 2 · x · y 4 · ( - 4 ) · x 2 : 2 : x .

Группируем числовые множители с переменной x , после этого можно выполнять действия со степенями. Получаем, что

2 · x · y 4 · ( - 4 ) · x 2 : 2 : x = ( 2 · ( - 4 ) : 2 ) · ( x · x 2 : x ) · y 4 = - 4 · x 2 · y 4

Ответ: 2 · x · y 4 · ( - 4 ) · x 2 : ( 3 · x - x ) = - 4 · x 2 · y 4 .

Преобразовать выражение вида x · ( x + 3 ) - ( 3 · x + 1 ) 1 2 · x · 4 + 2 .

Для начала преобразовываем числитель и знаменатель. Тогда получаем выражение вида ( x · ( x + 3 ) - ( 3 · x + 1 ) ) : 1 2 · x · 4 + 2 , причем действия в скобках делают в первую очередь. В числителе выполняются действия и группируются множители. После чего получаем выражение вида x · ( x + 3 ) - ( 3 · x + 1 ) 1 2 · x · 4 + 2 = x 2 + 3 · x - 3 · x - 1 1 2 · 4 · x + 2 = x 2 - 1 2 · x + 2 .

Преобразуем в числителе формулу разности квадратов, тогда получаем, что

x 2 - 1 2 · x + 2 = ( x - 1 ) · ( x + 1 ) 2 · ( x + 1 ) = x - 1 2

Ответ: x · ( x + 3 ) - ( 3 · x + 1 ) 1 2 · x · 4 + 2 = x - 1 2 .

Представление в виде рациональной дроби

Алгебраическая дробь чаще всего подвергается упрощению при решении. Каждое рациональное приводится к этому разными способами. Необходимо выполнить все необходимые действия с многочленами для того, чтобы рациональное выражение в итоге смогло дать рациональную дробь.

Представить в виде рациональной дроби a + 5 a · ( a - 3 ) - a 2 - 25 a + 3 · 1 a 2 + 5 · a .

Данное выражение можно представить в виде a 2 - 25 a + 3 · 1 a 2 + 5 · a . Умножение выполняется в первую очередь по правилам.

Следует начать с умножения, тогда получим, что

a 2 - 25 a + 3 · 1 a 2 + 5 · a = a - 5 · ( a + 5 ) a + 3 · 1 a · ( a + 5 ) = a - 5 · ( a + 5 ) · 1 ( a + 3 ) · a · ( a + 5 ) = a - 5 ( a + 3 ) · a

Производим представление полученного результата с исходное. Получим, что

a + 5 a · ( a - 3 ) - a 2 - 25 a + 3 · 1 a 2 + 5 · a = a + 5 a · a - 3 - a - 5 a + 3 · a

Теперь выполняем вычитание:

a + 5 a · a - 3 - a - 5 a + 3 · a = a + 5 · a + 3 a · ( a - 3 ) · ( a + 3 ) - ( a - 5 ) · ( a - 3 ) ( a + 3 ) · a · ( a - 3 ) = = a + 5 · a + 3 - ( a - 5 ) · ( a - 3 ) a · ( a - 3 ) · ( a + 3 ) = a 2 + 3 · a + 5 · a + 15 - ( a 2 - 3 · a - 5 · a + 15 ) a · ( a - 3 ) · ( a + 3 ) = = 16 · a a · ( a - 3 ) · ( a + 3 ) = 16 a - 3 · ( a + 3 ) = 16 a 2 - 9

После чего очевидно, что исходное выражение примет вид 16 a 2 - 9 .

Ответ: a + 5 a · ( a - 3 ) - a 2 - 25 a + 3 · 1 a 2 + 5 · a = 16 a 2 - 9 .

Представить x x + 1 + 1 2 · x - 1 1 + x в виде рациональной дроби.

Заданное выражение записывается как дробь, в числителе которой имеется x x + 1 + 1 , а в знаменателе 2 · x - 1 1 + x . Необходимо произвести преобразования x x + 1 + 1 . Для этого нужно выполнить сложение дроби и числа. Получаем, что x x + 1 + 1 = x x + 1 + 1 1 = x x + 1 + 1 · ( x + 1 ) 1 · ( x + 1 ) = x x + 1 + x + 1 x + 1 = x + x + 1 x + 1 = 2 · x + 1 x + 1

Следует, что x x + 1 + 1 2 · x - 1 1 + x = 2 · x + 1 x + 1 2 · x - 1 1 + x

Получившаяся дробь может быть записана как 2 · x + 1 x + 1 : 2 · x - 1 1 + x .

После деления придем к рациональной дроби вида

2 · x + 1 x + 1 : 2 · x - 1 1 + x = 2 · x + 1 x + 1 · 1 + x 2 · x - 1 = 2 · x + 1 · ( 1 + x ) ( x + 1 ) · ( 2 · x - 1 ) = 2 · x + 1 2 · x - 1

Можно решить это иначе.

Вместо деления на 2 · x - 1 1 + x производим умножение на обратную ей 1 + x 2 · x - 1 . Применим распределительное свойство и получаем, что

x x + 1 + 1 2 · x - 1 1 + x = x x + 1 + 1 : 2 · x - 1 1 + x = x x + 1 + 1 · 1 + x 2 · x - 1 = = x x + 1 · 1 + x 2 · x - 1 + 1 · 1 + x 2 · x - 1 = x · 1 + x ( x + 1 ) · 2 · x - 1 + 1 + x 2 · x - 1 = = x 2 · x - 1 + 1 + x 2 · x - 1 = x + 1 + x 2 · x - 1 = 2 · x + 1 2 · x - 1

Читайте также: