Поливинилацетат применение ацетиленовых углеводородов доклад

Обновлено: 30.06.2024

В данной работе речь пойдет об одном из таких высокомолекулярных соединений под названием поливинилацетат.
Целью данной работы является изучение зависимости выхода поливинилацетата от температуры реакции полимеризации, изучение физико-химических свойств мономера и полимера, получение регрессионной модели данного процесса.

Содержание работы

Введение
1. Исходные и конечные вещества.
1.2 Физико-химические свойства винилацетата.
1.3 Физико-химические свойства поливинилацетата.

Содержимое работы - 1 файл

поливинилацетат.docx

Живая природа представляет собой форму существования высокомолекулярных соединений. Она развивается в окружении и действии с неорганическим миром, построенным в основном из ВМС. Только вода и воздух распространены на земном шаре так же широко, как ВМС.

Человечество для удовлетворения своих нужд так же создает и использует высокомолекулярные материалы. По своей значимости для человечества с высокомолекулярные материалами конкурируют лишь металлы, как конструкционные материалы, топливо как источник энергии и пищевые продукты. Такое широкое распространение и необычайно высокое значение ВМС вытекает из их общих свойств, обусловленных громадной величиной и сложностью макромолекул.

В данной работе речь пойдет об одном из таких высокомолекулярных соединений под названием поливинилацетат.

Поливинилацетат – является высокомолекулярным соединением, это полимер винилацетата, который относится к сложным эфирам поливинилового спирта и является одним из важнейших технических полимеров. Мировое производство поливинилацетата превышает 2,5 млн. т/год и имеет тенденцию к росту. Поливинилацетат впервые был получен в США в 1914.

Этот относительно дешевый термопласт находит широкое применение. Большая часть поливинилацетата выпускается в виде водных дисперсий (концентрация 50-55%, размер частиц 0,05-2 мкм), из которых изготовляют водоэмульсионные краски,клеи, шпатлевки и др. Поливинилацетат применяется в производстве лаков, где он ценен благодаря высоким свойствам прилипания (адгезии), пластичности, светостойкости и бесцветности.

Растворы поливинилацетата в органических растворителях - клеи. Высокие клеящие свойства открывают возможности для его применения при склейке древесины. В виде эмульсий он применяется для мастичных полов, не подвергающихся увлажнению, и для получения полимербетонов.

Клей ПВА - раствор поливинилацетата в воде, с пластификатором и специальными добавками. Применяют для склеивания различных материалов друг с другом.

Целью данной работы является изучение зависимости выхода поливинилацетата от температуры реакции полимеризации, изучение физико-химических свойств мономера и полимера, получение регрессионной модели данного процесса.

1. Исходные и конечные вещества.

1.2 Физико-химические свойства винилацетата.

ВИНИЛАЦЕТАТ -виниловый эфир уксусной кислоты. Его стуктурная формула имеет вид:

Винилацетат- бесцветная жидкость с запахом эфира. Молекулярная масса-86,09; температура плавления-100,2 °С, температура кипения 72,7°С; d4 20 0,9342; nD 20 1,3953; 0,42 мПа*с (20°С); tкрит 228,9°С, ркрит 2,27 МПа; -118 кДж/моль, 102 кДж/моль; 23,95 мм/м (20 °С); хорошо раств. в обычных орг. растворителях; растворимость в воде 2,0-2,4% по массе при 20 °С, воды в винилацетата - ок. 1% (2% при 50 °С). Образует азеотропные смеси с водой (т. кип. 66°С; 7,3% Н2О), спиртами, углеводородами .

По химическим свойствам винилацетат - типичный виниловый эфир. В растворах кислот или щелочей гидролизуется с образованием уксусной кислоты и ацетальдегида. Взаимодействует с карбоновыми кислотами в присутствии солей Hg, образуя новые виниловые эфиры. Полимеризуется под действием света, радикальных инициаторов с образованием поливинилацетата, сополимеризуется с виниловыми мономерами. Для предотвращения самопроизвольной полимеризации винилацетат ингибируют дифениламином, гидр охиноном, уксуснокислым триэтилбензиламмонием и др. Винилацетат присоединяет по двойной связи галогены, НСl или НВr, Н2, уксусную кислоту, подвергается карбонилированию, вступает в диеновый синтез и др.

В промышленности винилацетат получают главным образом окислительным присоединением уксусной кислоты к этилену в присутствии солей Pd:

Процесс проводят преимущественно на стационарном твердом катализаторе (0,1-2,0% Pd, нанесенного на А12О3, SiO2 или др. и модифицированного, напр. CH3COONa, солями Сu) при 170-200 °С и 0,5-1,0 МПа. Объемное соотношение этилен: пары уксус ной к-ты: О2 в исходной смеси ~ 8:4:1. Степень превращения этилена, уксусной к-ты и О2 за проход соотв. 10, 20 и 60-70%. Основной побочный продукт-СО2; ацетальдегида обр азуется менее 1%.

Процесс на гомогенном катализаторе (PdCl2 с СиС12 в уксусной к-те с добавками CH3COONa или LiCl) осуществляют при 110-130 °С и 1-3 МПа. Суммарный выход винилацетата и ацетальдегида ~ 90% в расчете на этилен. Недостаток процесса - высокая коррозионная активностькатализ атора (требуется аппаратура из титана).

Не утратил значения также способ синтеза винилацетата из ацетилена и уксусной к-ты в присут. ацетата Zn на активированном угле при 170-220°С. Мольное соотношение ацетилен: уксусная к-та составляет (3-5): 1; выход винилацетата 95-98% по уксусной к-те.

В лаборатории винилацетат синтезируют пропусканием ацетилена в безводную уксусную к-ту в присут. солей Hg. Винилацетат - мономер для производства поливинилацетата (св. 80% производимого винилацетата) и сополимеров с винилхлоридом, этиленом и др.

Для винилацетата т. всп. -1,1°С, т. самовоспл. 380°С; КПВ 2,6-13,4%. Винилацетат вызывает сильное раздражение и омертвение кожи животных, его пары - ожог роговой оболочки глаз; ПДК 10мг/м 3 ; ЛД50 1,6 г/кг (белые мыши; перорально). Мировое произ-во св. 1,5 млн. т/год (1979).

1.3 Физико-химические свойства поливинилацетата.

Поливинилацетат - аморфный, бесцветный термопластичный полимер без вкуса и запаха. Является полимером винилацетата, а точнее продуктом полимеризации винилового эфира уксусной кислоты – винилацетата

1. Молекулярная масса от 10 000 до 1 500 000 ;

2. Температура размягчения 30-50 °С;

3. Плотность 1,19 г/см 3 ;

4. Относительное удлинение 10-20%;

5. Теплопроводность 0,16 Вт/(м·К);

6. Температура стеклования 28 0 C;

7. Теплостойкость по Вику 44-50 0 C, по Мартенсу 30-32 0 C;

8. Электрическая прочность 1 МВ/м;

9. Влагопроницаемость (2,5-5,8)· 10 -14 кг/(м·с·Па);

10. Газопроницаемость по H2 56·10 -15 м 3 /(м·с·Па).

Поливинилацетат обладает хладотекучестью, устойчив к старению в атмосферных условиях, высокой адгезией к различным поверхностям, хорошими оптическими свойствами, износостоек. Хорошо растворим в кетонах, сложных эфирах, хлорированных и ароматических углеводородах, метаноле, хуже - в этаноле. Не растворим в воде, алифатичных углеводородах, бензине, минеральных маслах, гликолях.

Химические свойства ПВА определяются наличием сложноэфирных групп и привитых цепей, соединенных с главной цепью сложноэфирными связями. ПВА омыляется водными растворами кислот или щелочей и подвергается алкоголизу под действием каталитических количеств кислот и алкоголятов щелочных металлов в безводных средах с образованием ПВС.

Химические свойства сополимеров винилацетата зависят от природы сомономеров. Например, сополимер винилацетата с кротоновой кислотой растворяется в щелочной среде. Сополимер винилацетата с N-метилолакриламидом при нагревание образует трехмерную структуру. Сополимеры винилацетата с 1-хлор-2- гидроксипропилакрилатом отверждаются в присутствии оксида цинка при 80°C, образуя водостойкие пленки и покрытия. Ведение в состав сополимеров звеньев этилена, винилхлорида, виниловых эфиров увеличивает стойкость сополимеров к гидролизу. С другой стороны, включение в сополимер небольших количеств карбоксилсодержащих сомономеров ускоряет гидролиз ПВА.

Концентрированная азотная кислота окисляет ПВА до щавелевой кислоты. При нагревании ПВА до 180-200°C происходит деструкция, сопровождающаяся выделением уксусной кислоты и образованием одиночных и сопряженных двойных связей в основной цепи полимера, облегчающих отщепление CH3COOH. В присутствии каталитических количеств минеральных кислот, ZnCl2, AlCl3 и других солей деструкция начинается при более низкой температуре.

Покрытия из ПВА отличаются высокой светостойкостью. Хотя под действием УФ-облучения и происходит частичная деструкция полимера, однако она сопровождается рекомбинацией образующихся макрорадикалов и реакциями переноса цепи. В результате увеличивается ММ полимера и появляется нерастворимая фракция. Аналогичным образом действуют на ПВА малые дозы радиационного облучения. При высоких дозах происходит деструкция ПВА с выделением уксусной кислоты. Эффект сшивания или деструкции и критическая доза облучения зависят от природы растворителя и природы полимера.

Омыление ПВА может быть осуществлено различными способами. В зависимости от природы катализатора и среды, в которой производится реакция, различают алкоголиз, гидролиз, аминолиз и аммонолиз ПВА.

К молекулярным гигантам относятся, например, важнейшие природные полимеры (белки, нуклеиновые кислоты, полисахариды), синтетические материалы (полиэтилен, поливинилхлорид, каучук и т.д.). Поэтому ВМС играют важную роль и в биологических процессах, и в практической деятельности человека.

Органические полимеры построены из элементарных звеньев - многократно повторяющихся и связанных между собой остатков молекул низкомолекулярных веществ (мономеров). Длину макромолекул выражают средним числом звеньев мономера, которое называют степенью полимеризации.

Полимеры могут иметь линейное, разветвлённое и сетчатое строение. Если каждое звено мономера условно обозначить буквой М, то макромолекула линейного строения будет выглядеть так:

В этом случае каждое из элементарных звеньев связано только с двумя соседними и образует неразветвлённую цепь. Основная цепь макромолекулы может иметь короткие ответвления, и тогда построенные по такому типу полимеры будут разветвлёнными: R



. -М-М-М-М-М-М- .

В сетчатых (сшитых) полимерах длинные линейные цепи связаны друг с другом в единую сетку более короткими поперечными цепями.

Макромолекулы полимеров могут быть построены из остатков разных мономеров; ВМС такого типа называются сополимерами. При этом в зависимости от способа чередования различных звеньев они также бывают регулярного и нерегулярного строения:

. -М-М -М-М -М-М - .

. -М -М -М-М-М-М - .

По своему происхождению все МС делятся на природные - биополимеры (например, крахмал и целлюлоза) и синтетические (полиэтилен, полистирол и др.).

Природные полимеры синтезируются клетками растительных и животных организмов, а синтетические человек научился получать из проектов переработки природного газа, нефти, каменного угля.

Полимеры могут быть кристаллическими или аморфными. Для кристаллизации высокомолекулярных веществ необходимо упорядоченное строение достаточно длинных участков молекулярной цепи.

Высокомолекулярные соединения не имеют четкой температуры плавления. При нагревании многие полимеры не плавятся, а лишь размягчаются, что позволяет формовать из них изделия методами пластической деформации - прессованием, выдавливанием, литьём. Такие полимеры называют пластическими массами (пластмассами, пластиками). У пластмасс низкая плотность, они легче самых лёгких металлов (магния, алюминия) и потому считаются ценными конструкционными материалами. По прочности некоторые пластики превосходят чугун и алюминий, а по химической стойкости - почти все металлы. Они могут быть устойчивы к действию воды и кислорода, кислот и щелочей.

Обычно пластмассы - диэлектрики (не проводят электрический ток), и отдельные их сорта известны как лучшие изоляционные материалы из всех используемых в современной технике.

Поливинилацетат - аморфный, бесцветный термопластичный полимер без вкуса и запаха. Является полимером винилацетата, а точнее продуктом полимеризации винилового эфира уксусной кислоты - винилацетата:


Винилацетат представляет собой бесцветную легкоподвижную негорючую жидкость удельного веса 1,191, обладающую эфирным запахом, которая имеет температуру кипения 72,7°С, и напоминает воду, имея вязкость 0,4 мПа с при 20°С. Он немножко набухает в воде и неустойчив к действию кислот и щелочей.

- физические свойства:

1. Молекулярная масса от 10 000 до 1 500 000 ;

2. Температура размягчения 30-50 °С;

3. Плотность 1,19 г/см 3 ;

4. Относительное удлинение 10-20%;

5. Теплопроводность 0,16 Вт/(м·К);

6. Температура стеклования 28 0 C;

7. Теплостойкость по Вику 44-50 0 C, по Мартенсу 30-32 0 C;

8. Электрическая прочность 1 МВ/м;

9. Влагопроницаемость (2,5-5,8)· 10 -14 кг/(м·с·Па);

10. Газопроницаемость по H2 56·10 -15 м 3 /(м·с·Па).

Поливинилацетат обладает хладотекучестью, устойчив к старению в атмосферных условиях, высокой адгезией к различным поверхностям, хорошими оптическими свойствами, износостоек. Хорошо растворим в кетонах, сложных эфирах, хлорированных и ароматических углеводородах, метаноле, хуже - в этаноле. Не растворим в воде, алифатичных углеводородах, бензине, минеральных маслах, гликолях.

- химические свойства:

Химические свойства ПВА определяются наличием сложноэфирных групп и привитых цепей, соединенных с главной цепью сложноэфирными связями. ПВА омыляется водными растворами кислот или щелочей и подвергается алкоголизу под действием каталитических количеств кислот и алкоголятов щелочных металлов в безводных средах с образованием ПВС.

Химические свойства сополимеров винилацетата зависят от природы сомономеров. Например, сополимер винилацетата с кротоновой кислотой растворяется в щелочной среде. Сополимер винилацетата с N-метилолакриламидом при нагревание образует трехмерную структуру. Сополимеры винилацетата с 1-хлор-2-гидроксипропилакрилатом отверждаются в присутствии оксида цинка при 80°C, образуя водостойкие пленки и покрытия. Ведение в состав сополимеров звеньев этилена, винилхлорида, виниловых эфиров увеличивает стойкость сополимеров к гидролизу. С другой стороны, включение в сополимер небольших количеств карбоксилсодержащих сомономеров ускоряет гидролиз ПВА.

Концентрированная азотная кислота окисляет ПВА до щавелевой кислоты. При нагревании ПВА до 180-200°Cпроисходит деструкция, сопровождающаяся выделением уксусной кислоты и образованием одиночных и сопряженных двойных связей в основной цепи полимера, облегчающих отщепление CH3 COOH. В присутствии каталитических количеств минеральных кислот, ZnCl2 , AlCl3 и других солей деструкция начинается при более низкой температуре.

Покрытия из ПВА отличаются высокой светостойкостью. Хотя под действием УФ-облучения и происходит частичная деструкция полимера, однако она сопровождается рекомбинацией образующихся макрорадикалов и реакциями переноса цепи. В результате увеличивается ММ полимера и появляется нерастворимая фракция. Аналогичным образом действуют на ПВА малые дозы радиационного облучения. При высоких дозах происходит деструкция ПВА с выделением уксусной кислоты. Эффект сшивания или деструкции и критическая доза облучения зависят от природы растворителя и природы полимера.

Омыление ПВА может быть осуществлено различными способами. В зависимости от природы катализатора и среды, в которой производится реакция, различают алкоголиз, гидролиз, аминолиз и аммонолиз ПВА. Эти реакции протекают по следующим схемам:






В промышленности поливинилацетат получают радикальной полимеризацией винилацетата в растворе, эмульсии или суспензии. Мономер винилацетата диспергирует в воде при сильном перемешивании в присутствии эмульгаторов. В этой дисперсии мономера в воде при введении ингибитора начинается процесс полимеризации. Постепенно формируется поливинилацетат, который растворяется в остаточном мономере, но не растворяется в воде, с которой он образует эмульсию. Наряду с линейным может образовываться и разветвленный поливинилацетат.

В процессе полимеризации в растворе (обычно в метаноле) при 60-65 0 C в присутствии инициатора получаемый поливинилацетат перерабатывается главным образом в поливиниловый спирт. В случае непрерывного процесса реакцию прекращают при степени превращения винилацетата 50-65%; образующийся поливинилацетат имеет меньше разветвлений, его степень полимеризации достигает 1800-2000.

Эмульсионную полимеризацию винилацетата в воде проводят при 65-90 0 C в присутствии защитных коллоидов (например, поливинилового спирта, гидроксиэтилцеллюлозы) или ПАВ и окислительно-восстановительных инициирующих систем.

Выпускается в виде гранул (бисера), водных дисперсий или растворов (лаков).

Отверждение может происходить вследствие различных механизмов, которые в основном делятся на три группы:

1. Отверждение с добавлением солей металлов.

2. Отверждение с добавлением термореактивных смол, полученных в результате конденсации формальдегида.

3. Отверждение с добавлением изоцианата.

Мировое производство поливинилацетата превышает 2,5 млн. т/год и имеет тенденцию к росту. Поливинилацетат впервые был получен в США в 1914.

Этот относительно дешевый термопласт находит широкое применение. Большая часть поливинилацетата выпускается в виде водных дисперсий (концентрация 50-55%, размер частиц 0,05-2 мкм), из которых изготовляют водоэмульсионные краски, клеи, шпатлевки и др. Поливинилацетат применяется в производстве лаков, где он ценен благодаря высоким свойствам прилипания (адгезии), пластичности, светостойкости и бесцветности.

Растворы поливинилацетата в органических растворителях - клеи. Высокие клеящие свойства открывают возможности для его применения при склейке древесины. В виде эмульсий он применяется для мастичных полов, не подвергающихся увлажнению, и для получения полимербетонов.

Клей ПВА - раствор поливинилацетата в воде, с пластификатором и специальными добавками. Применяют для склеивания различных материалов друг с другом.

Виды (наиболее распространенные):

· Клей ПВА бытовой (обойный) применяется для склеивания изделий из бумаги, для приклеивания бумажных и моющихся обоев на бумажной основе на оштукатуренные, деревянные и бетонные поверхности. По внешнему виду представляет собой однородную, без комков, массу белого или кремового цвета. Морозостойкость бытового клея ПВА составляет 6 циклов замораживания-оттаивания при −40 °C.

· Клей ПВА канцелярский (ПВА-К) применяется для склеивания бумаги, фотобумаги, картона. По внешнему виду представляет собой вязкую жидкость белого или слегка желтоватого цвета, без комков и механических включений; допускается поверхностная плёнка. Клей неводостоек, неморозоустойчив.

· Клей ПВА универсальный (ПВА-МБ) применяется для склеивания изделий из дерева, бумаги, картона, кожи, для приклеивания бумаги, ткани на деревянные, стеклянные, металлические поверхности, в качестве компонента рецептур шпатлевок, грунтовок, бетонных смесей на водной основе. По внешнему виду представляет собой вязкую массу белого или слегка желтоватого цвета, без комков и посторонних включений. Морозостойкость составляет 6 циклов замораживания-оттаивания при −20 °C.

· Клей ПВА супер (ПВА-М) применяется для склеивания изделий из дерева, бумаги, картона, стекла, фарфора, кожи, тканей, а также приклеивания фотографий, линолеума, облицовочных плиток при ремонте. По внешнему виду представляет собой вязкую массу белого или слегка желтоватого цвета, без комков и посторонних включений. Морозостойкость составляет 6 циклов замораживания-оттаивания при −40 °C.

· Дисперсия ПВА - водный раствор полимера, стабилизированный защитным коллоидом, как правило, другим высокомолекулярным соединением (например поливиниловым спиртом), отличается высокой клеящей способностью. По внешнему виду представляет собой вязкую жидкость белого или слегка желтоватого цвета (желтизну придает в основном пластификатор), без комков и посторонних механических включений; допускается поверхностная пленка. Морозостойкость непластифицированной дисперсии составляет 4 цикла замораживания-оттаивания. Дисперсия ПВА находит широкое применение:

· в строительстве, как добавка в строительные растворы;

· в стекольной, текстильной, полиграфической, обувной и кожевенной промышленности;

· в производстве вододисперсионных красок, сигарет, упаковок, техно-тканей, бытовой химии;

· при склеивании дерева, бумаги и картона.

Добавление в строительные растворы ПВА повышает адгезию растворов к основам и пр., придает пластичность, увеличивает прочность конечного изделия.

Живая природа представляет собой форму существования высокомолекулярных соединений. Она развивается в окружении и действии с неорганическим миром, построенным в основном из ВМС. Только вода и воздух распространены на земном шаре так же широко, как ВМС.

Человечество для удовлетворения своих нужд так же создает и использует высокомолекулярные материалы. По своей значимости для человечества с высокомолекулярные материалами конкурируют лишь металлы, как конструкционные материалы, топливо как источник энергии и пищевые продукты. Такое широкое распространение и необычайно высокое значение ВМС вытекает из их общих свойств, обусловленных громадной величиной и сложностью макромолекул.

Многообразие ВМС неограниченно. Отсюда вытекает еще большее многообразие явлений природы, особенно жизненных явлений, т.к. подавляющее большинство природных процессов представляют собой процессы образования, изменения и превращения высокомолекулярных тел. Характеризуя значения многообразия органических ВМС, один из создателей макромолекулярной химии – Герман Штаудингер в 1932г. указывал, что для понимания жизненных процессов биологическая химия требует бесконечного числа органических веществ, и, соответственно, бесконечного ряда возможных реакций.

Устойчивость к физико-химическим превращениям и многообразие ВМС являются теми фундаментальными принципами, которые определяют их роль и распространение в природе.

В условиях земного шара непрерывно протекают разнообразные взаимные превращения низко- и высокомолекулярных соединений.

Алкины или углеводороды ряда ацетилена (ацетилен-углеводороды, ацетиленовые углеводороды)

Определение алкинов, формула, основные химические свойства

Алкины (углеводороды ряда ацетилена) представляют собой химические вещества из группы углеводородов алифатического ряда, которые содержат одну тройную связь -С≡С-.

Общая формула алкинов СnH2n-2.

Самым простым представителем алкинового ряда является ацетилен (этин) С2Н2.

Согласно заместительной номенклатуре IUPAC названия ацетилен углеводородов образуются по названию соответствующих алкана, при этом следует заменить суффикс -ан на -ин (-ин) с обозначением положения тройной связи в цепи углеродных атомов.

Нумерацию атомов карбона начинают с того конца, к которому ближе всего находится тройная связь, например, СН3СН (СН 3) С≡ССН3 - 4-метилпентин-2.

По рациональной номенклатуре углеводороды ацетиленового ряда или алкины называют производными ацетилена, в эмпирической формуле которого атомы водорода замещаютя на радикалы: НС≡С-СН 2 СН 3 - этилацетилен.

Изомерия ацетилен углеводородов связана с положением тройной связи и разветвлением углеродной цепи. Алкины С2-С4 - это газы, С5-С16 - жидкости, а начиная с С17 - твердые субстанции.

Химические свойства алкинов

Химические свойства ацетилен углеводородов обусловленные наличием в структуре их субстанции тройной связи. Ацетиленовая (алкинная) группа -С≡С-Н или -С≡С-R имеет линейное строение, атомы углерода sp-гибридизованные. Они связаны одной σ- и двумя π-связями, при этом максимальные их плотности расположены в двух взаимоперпендикулярных участках, образуя цилиндрическое облако π-электронной плотности. Расстояние -С≡С- равно 1,1205 нм, энергия тройной связи - 836 кДж / моль. Вследствие особенностей строения тройной связи для алкинов характерны реакции окисления, присоединения, полимеризации, изомеризации и замещения. Ацетилен углеводороды присоединяют по связи -С≡С- непосредственно галогены, галогеноводороды – при наличии катализаторов (например, HgCl2, CuCl), образуя дигалогениды и тетрагалогениды.

Указанные реакции используют в производстве трихлорэтилена, тетрахлорэтилена, винилхлорида и других хлоропроизводных соединений. Гидрогенизация алкинов натрием в жидком NH3 приводит к транс-алкенов, водородом над Pd / C - до цис-алкенов. Вода присоединяется в присутствии солей Hg2 + с образованием ацетальдегида для ацетилена и кетонов для всех остальных алкинов (Реакция Кучерова). Прямая гидратация ацетилена возможна при пропускании его в смеси с парами воды при T=300-400° С над фосфатами тяжелых металлов. Реакцию гидратации ацетилена используют в промышленности для получения ацетальдегида и продуктов дальнейших его преобразований - ацетона, уксусной кислоты, спирта и т.д. Спирты взаимодействуют с ацетилен углеводородами в присутствии ROH, BF3 или HgO, алкоксиды щелочных металлов, солей меди при температуре 150-200° С.

Продукты реакции - виниловые эфиры, которые используются в производстве полимеров, эмульгаторов, смазочных материалов и т.д. Аналогично ацетилен углеводородам присоединяются также карбоновые кислоты (при этом в качестве катализатора применяют HgSO4, ацетаты Cd или Zn на активированном угле), амиды кислот, амины, тиолы и другие с образованием виниловых соединений, например:

карбоновые кислоты взаимодействуют с ацетилен углеводородами

Винилацетат широко применяют для получения полимера поливинилацетата (ПВА). Путем присоединения к ацетилену цианидной кислоты или при взаимодействии с СО и спиртами, NH3, а также аминами в присутствии в качестве катализатора Ni (CO) 4 под давлением получают нитрил, амиды или эфиры акриловой кислоты, которые используются в синтезе полимеров:

получения полимера поливинилацетата

Ацетилен углеводороды в присутствии щелочных катализаторов присоединяют кетоны и альдегиды (реакция Фаворского):

алкины присоединяют кетоны и альдегиды

Большую практическую роль играет реакция взаимодействия в присутствии ацетиленидов Cu ацетилена с формальдегидом (реакция Реппе):

ацетилен с формальдегидом

Пропаргиловий спирт (I) - выходное соединение при производстве 1,4-бутиленгликоля. Алкины вступают в реакции циклоприсоединения и Дильса - Альдера. Термическая или каталитическая полимеризация приводит к образованию олигомеров и полимеров. Например, под воздействием солей Cu (I) в водном растворе HCl ацетилен димеризуется в винилацетилен, из которого впоследствии получают хлоропрен. Над активным углем ацетилен тримеризуется в бензол в присутствии в качестве катализатора N и (CN)2; в тетрагидрофуране - в циклооктатетраен (реакция Реппе), в присутствии водорода над Ni - в изобутилен. Из метилацетилена можно получить мезитилен и др. В присутствии окислителя и солей меди (I) ацетилен полимеризуется с образованием полиацетилена - карбина, который считается наряду с алмазом и графитом третьей аллотропная видоизменением углерода с кумулированным строением макромолекул:

ацетилен полимеризуется с образованием полиацетилена - карбина

При действии щелочных металлов тройная связь у алкинов перемещается через стадию образования промежуточных но не на конец молекулы. А в присутствии спиртовых растворов щелочи, наоборот, тройная связь перемещается к середине молекулы:

При действии щелочных металлов тройная связь у алкинов перемещается

Алкины с конечными тройными связями (R-C≡CH) обладают высокой для углеводородов кислотностью (для ацетилена рКа≈25) и образуют при действии щелочных, щелочно-земельных металлов, амидов металлов, металлических производных, так называемые ацетилениды МС≡СR, энергично реагирующие с водой, регенерирующим ацетилен углеводороды.

Из магнийорганических соединений легко образуются магнийгалогенопроизводные ацетилен углеводородов (Реактивы Иоцича). Ацетилениды Na, Mg, Li применяют в органическом синтезе для введения в молекулу ацетиленовой группы, например:

магнийгалогенопроизводные ацетилен углеводородов

Дизамещенные ацетилениды Cu2C2 и Ag2C2 синтезируются при воздействии на ацетилен аммиачных растворов солей Cu (I) и Ag, соответственно. Образование Cu2C2 красно-бурого цвета применяют для идентификации ацетилена и его гомологов с конечной тройной связью. Ацетилениды тяжелых металлов в сухом виде – это неустойчивые соединения, которые взрываются от сотрясения. В процессе сгорании ацетилена при доступе чистого кислорода выделяется значительное количество тепла (при этом температура пламени достигает 3000 градусов С), что дает возможность применять ацетилен с целью автогенной резки и сварки металлов. Окислители KMnO4 (в нейтральном или щелочной среде), K2Cr2O7, RuO4, SeO2, CrO3 в кислой среде, озон приводят к расщеплению тройной связи с синтезом карбоновых кислот. В некоторых случаях возможно окисление до α-дикетонов. С конечным тройной связью алкины в указанных условиях образуют карбоновую кислоту и СО2.

Методы извлечения ацетилена в промышленности:

Получают ацетиленовые углеводороды в лабораторных условиях в результате действия спиртового раствора щелочи (КОН - спиртовой раствор) на 1,1- или 1,2-дигалогенопроизводные углеводородов:

Алкины, в частности полиацетилен, обнаруженные в природе во многих растениях, грибах (Basidiomycetes) например из подсолнечника выделено желтый пентаинен СН3- (С≡С) 5-СН = СН2.

Алкины (ацетиленовые углеводороды) наркотического действия, усиливается с увеличением молекулярной массы субстанции.

Длительная работа специалистов с ацетиленом в промышленных условиях могут привести к функциональным нарушениям нервной системы. Высокие концентрации ацетилена при незначительном содержании кислорода приводят к отеку легких и потере сознания.

Применение алкинов (ацетиленовых углеводородов) в медицине

Ацетилен - один из базовых сырьевых источников промышленности органического синтеза. При конденсации ацетилена с пирролидоном получают N-винилпирролидона, который легко полимеризуется с синтезом поливинилпирролидона (ПВП):

синтез поливинилпирролидона

Полимерные соединения на основе винилпирролидона нашли широкое применение в медицинской практике как вещества при производстве лекарственных препаратов, а многие из них сами являются лекарственными. Например низкомолекулярный поливинилпирролидон (12000-13000 молекулярная масса) образует коллоидные растворы в воде и используется в процессе приготовления гемодеза (кровезаменителя), среднемолекулярные поливинилпирролидон (с молекулярной массой 35000-40000) применяется в фармации как связующее вещество для изготовления таблеток.

При сополимеризации винилпирролидона, акриламида и этилкрилата получают биорастворимый полимер, который обеспечивает удлиненное действие лекарственных препаратов (пролонгируя эффект), например, лекарственных пленок для глаз.

Полезно знать

© VetConsult+, 2015. Все права защищены. Использование любых материалов, размещённых на сайте, разрешается при условии ссылки на ресурс. При копировании либо частичном использовании материалов со страниц сайта обязательно размещать прямую открытую для поисковых систем гиперссылку, расположенную в подзаголовке или в первом абзаце статьи.

Поливинилацетат (ПВА): свойства и применение

Поливинилацетат – мы знаем как клей ПВА, а если обратиться к научной формулировке, то это полимер винилацетата или по-другому – сложный эфир поливинилового спирта и уксусной кислоты.

История

Клей поливинилацетат был открыт в Германии в 1912 году. Он быстро обрел популярность и плотно вошел в обиход, в настоящее время применяется в самых различных сферах.

Физические и химические свойства

  • Молекулярный вес – 10-1500 тыс г/моль.
  • Плотность – 1,1-1,2 г/см3.
  • Твердое вещество.
  • Прозрачное.
  • Без запаха.
  • Не токсичное.
  • Растворяется во многих органических растворителях, уксусной кислоте.

Получение

Получают поливинилацетат полимеризацией винилацетата в специальном растворителе, или в эмульсии или в блоке.

Применение

Основной областью использования поливинилацетата является производство поливинилацетатного клея или как мы все его знаем ПВА. Также на его основе изготавливают акриловые краски, столь популярные среди отделочных и живописных материалов, изготавливаются водоэмульсионные краски, применяется он и для изготовления поливинилового спирта и поливинилацетата.

Поливинилацетат подвергают омылению щелочами и получают новый очень популярный полимер, который носит название поливиниловый спирт и широко используется в производстве косметики и бытовой химии.

Поливинилацетат также применяют для создания покрытий для пола. Для этих целей используют смесь с наполнителем и краской.

Но, конечно, самое благородное и эффектное его применение – это акриловые краски. Они создают шикарное декоративное покрытие стен, позволяют создать уникальный и бесподобный интерьер. Кроме того, с ними очень удобно работать, так как они не имеют запаха.


Частный продукт ПВА: что это и где используется

Клей ПВА в зависимости от своих характеристик известен от строителя для малыша, который делает аппликации. Средство очень популярное.

Бытовой клей ПВА

Применяется для наклеивания плотных виниловых обоев, стеклохолста, ткани, фотообоев. Обеспечивает прекрасное сцепление с множеством поверхностей – бетон, гипс, штукатурка.

Консистенция клея умеренно густая. На вид это молочная жидкость. Материал морозостойкий. По истечению срока годности сворачивается в творожно подобную массу.

Канцелярский клей ПВА

Разновидность схожа с бытовой, но имеет более узкую область использования – как правило, применяют для творчества, создания аппликаций, поделок, детских работ.

Выпускает как в жидкой форме – в баночках, так и в твердой – в виде клея карандаша. Кстати, для легкости скольжения клея карандаша в его состав добавляют глицерин.

А еще в последнее время среди детского творчество стало популярно создавать слаймы, лизуны дома. Для их изготовления также применяют клей ПВА.

Универсальный клей ПВА

Изготавливается для работы с различными материалами. Он применяется для скрепления материалов из дерева, картона, кожи, стекла.

Также он часто входит в состав строительных материалов – водоэмульсионных смесей.

Суперклей ПВА

Данный клей модифицирован специальными добавками, которые после высыхания дают очень прочный клеевой шов. Применяется как для поклейки обоев, так и для ремонта кафельной плитки.

Состав не боится влаги, морозостойким, может быть использован для уличных работ.

Строительный клей ПВА

Профессиональный водостойкий материал. Выпускается в виде эмульсии и содержит особые полимерные частицы, за счет которых повышается уровень адгезии с рабочим основанием.

Вводится данная суспензия в состав различных красок, грунтовок, как загуститель, применяется при монтаже плитки и заливки бетонной стяжки.


Как правило состав прозрачный, с повышенным коэффициентом вязкости, морозостойкий, можно смело применять как для внутренних, так и для наружных работ, имеет достаточно низкий расход и стоек к действию солнечных лучей, имеет высокую прочность, не дает усадки, а еще и быстро сохнет.

Поливинилацетат на первый взгляд простое, но как показывает практика очень распространенное соединение, которое очень популярно в виде клея. Составы на основе поливинилацетата безопасны и удобны в использовании. С ними легко работать как профессионалам строителям, так и маленьким творцам. Благодаря прочностным и адгезионным характеристикам поливинилацетата стало возможным создавать уникальные декоративные покрытия, а также восстанавливать любимые, но случайно сломанные вещи.

Поливинилацетат (ПВА,PVAC) — это полимер винилацетата с химической формулой [—CH2—CH(OCOCH3)—] n , представляет собой твердое бесцветное прозрачное нетоксичное вещество без запаха.

Производство поливинилацетата в растворе

Вследствие протекания реакций передачи растущей цепи на растворитель образуются макромолекулы с более низкими значениями молекулярных масс, более однородные по молекулярной массе и менее разветвленные полимеры по сравнению с полимерами, получаемыми в массе или другими методами.

При получении из поливинилацетата поливинилового спирта и поливинилацеталей обычно в качестве растворителя применяют метанол (для удобства последующего гидролиза и алкоголиза в щелочной среде). Для получения поливинилацетата в виде порошка или при дальнейшем его использовании в виде поливинилацетатного лака в качестве растворителей применяют этилацетат, ацетон и бензол.

При получении поливинилацетата в растворе облегчается отвод теплоты реакции полимеризации, что позволяет легко осуществлять управление технологическим процессом. В технике полимеризацию винилацетата в растворе проводят как периодическим, так и непрерывным способом.

Непрерывный способ. По одному из вариантов полимеризацию винилацетата непрерывным способом осуществляют в двух каскадно-расположенных полимеризаторах. Процесс проводят в среде метанола в присутствии инициатора — динитрила азобисизомасляной кислоты в атмосфере азота при температуре 65— 70 °С до конверсии мономера 60—70%. Непрореагировавший винилацетат подвергают азеотропной отгонке и получают 25%-ный раствор поливинилацетата в метаноле (лак).

Полимеризаторы представляют собой аппараты колонного типа, футерованные нержавеющей сталью, стеклом, эмалью или изготовленные из алюминия. Полимеризаторы снабжены рамными двухъярусными мешалками, рубашками для обогрева и охлаждения, обратными холодильниками для возврата испаряющегося мономера и растворителя. 10 6 10 7

Схема процесса производства полиавинилацетата непрерывным способом

Технологический процесс получения поливинилацетата (рис.1) состоит из стадий приготовления раствора инициатора, полимеризации винилацетата и отгонки непрореагировавшего винилацетата.

Винилацетат непрерывно поступает в первый полимеризатор 1 , в который подается также инициатор — раствор динитрила азобисизомасляной кислоты в метаноле. Ниже приведены нормы загрузки компонентов в реактор:

  • Винилацетат, % (об.) – 95 ;
  • Метанол, % (об.) – 5 ;
  • Динитрил азобисизомасляной кислоты, масс. ч. 0,30 ;

Полимеризацию проводят при 65—68 °С в течение 4 ч. Конверсия мономера в полимер составляет 35%. Затем реакционная смесь поступает во второй полимеризатор 2 , куда непрерывно загружают метанол и раствор инициатора в метаноле. Содержание метанола в полимеризате доводят до 25—30% (об.) и инициатора до 0,065—0,075 масс. ч. в пересчете на винилацетат. Полимеризацию проводят при 68—70 °С в течение 4—5 ч. Конверсия мономера составляет 60—65%..

Раствор поливинилацетата в метаноле из второго полимеризатора направляют в ректификационную колонну 4 для отгонки винилацетата. Полимеризат перед поступлением в колонну разбавляют метанолом. Винилацетат отгоняют подачей метанола в испаритель 6 . Пары винилацетата, метанола и ацетальдегида через конденсатор 7 направляют на регенерацию. Раствор поливинилацетата в метаноле, содержащий 25% полимера, собирается в приемнике. Выделение мономера и концентрирование метанола проводят на одном в трехколонном агрегате. Винилацетат после очистки возвращают в цикл. Метанол после экстрактивной ректификации и дополнительной очистки используется для разбавления поливинилацетатного лака.

При получении твердого поливинилацетата из раствора после удаления растворителя и остаточного мономера расплавленный полимер выдавливают шнеком или сжатым воздухом через щель. Выходящую ленту охлаждают и нарезают на полоски, из которых затем получают гранулы или порошок.

Производство эмульсионного поливинилацетата

Эмульсионную полимеризацию винилацетата проводят в водной среде в присутствии водорастворимых инициаторов: пероксида водорода, иногда персульфата калия и натрия. Эмульгатором служат различные мыла, соли жирных сульфокислот, а при получении водных дисперсий — поливиниловый спирт. Для поддержания определенного рН среды вводят буферные соединения— бикарбонат натрия, муравьиную кислоту и др. Качество эмульсий зависит от применяемых компонентов и метода их получения. Эмульсии выпускают двух типов: мелкодисперсные (латексные) с частицами размером от 0,05 до 0,5 мкм и крупнодисперсные (дисперсные) с частицами размером от 0,5 до 10 мкм. В технике более широко применяются крупнодисперсные эмульсии поливинилацетата. Они обладают значительно большей стойкостью к действию коагулирующих агентов и охлаждению.

Поливинилацетатные эмульсии можно получать как периодическим, так и непрерывным методом.

Непрерывный способ. В Советском Союзе разработан непрерывный способ эмульсионной полимеризации винилацетата.

Полимеризацию осуществляют в водной среде в присутствии инициатора и защитного коллоида. Для регенерации свободных радикалов применяют окислительно-восстановительную систему, состоящую из пероксида водорода и соли двухвалентного железа FeS04 .

Схема процесса производства поливинилацетатной дисперсии непрерывным способом

Технологический процесс получения поливинилацетата состоит из стадий приготовления водной фазы, полимеризации винилацетата, нейтрализации и пластификации дисперсии.

Водную фазу приготавливают в аппарате 1 (рис. 2), снабженном рамной мешалкой и рубашкой для обогрева. В аппарат загружают водный раствор поливинилового спирта, обессоленную воду и муравьиную кислоту до получения рН, равного 2,8—3,2. Затем при перемешивании добавляют водный раствор сульфата железа. Ниже приведены нормы загрузки компонентов в аппарат (в масс. ч.):

  • Вода дистиллированная – 80,0;
  • Поливиниловый спирт, 100%-ный – 7—7,5;
  • Муравьиная кислота, 90%-ная – 0,14—0,34;
  • Сульфат железа 95%-ный – 0,0005-0,0014.

После перемешивания определяют содержание сухого осадка, который должен находиться в пределах 6,8—7,5% в зависимости от вязкости исходного поливинилового спирта. Полученную водную фазу выгружают в промежуточную емкость 2 . Полимеризацию винилацетата проводят в агрегате непрерывного действия, состоящем из трех полимеризаторов 5 , 6 и 7 , снабженных мешалками, рубашками для обогрева и охлаждения и обратными холодильниками 8 . В полимеризатор 5 из емкости 3 непрерывно подают винилацетат, нагретый до 20—30 °С, и водную фазу из аппарата 2 , нагретую до 45—50 °С. Пероксид водорода поступает в линию подачи водной фазы из мерника 4 . Ниже приведены нормы загрузки компонентов в полимеризаторы (в масс, ч.):

  • Винилацетат – 100 ;
  • Водная фаза – 88 ;
  • Пероксид водорода, 30%-ный – 1,0—3,0.

Реакционная масса самотеком проходит последовательно через все три полимеризатора. При этом степень конверсии мономера постоянно повышается и на выходе из полимеризатора 7 она достигает 99%. Температура в полимеризаторе 5 составляет 80—85 °С, и полимеризаторе 6 — 70—75 °С и в последнем полимеризаторе 7 — 65—70 °С. Заданная температура поддерживается путем охлаждения и нагревания полимеризаторов через рубашки и конденсации паров азеотропной смеси винилацетат — вода в холодильниках 8 . Для предотвращения получения дисперсии с повышенным содержанием мономера, предусмотрена подача дополнительного количества пероксида водорода в полимеризатор 6 .

Поливинилацетатная дисперсия из полимеризатора 7 самотеком поступает в промежуточную емкость 9 , откуда под давлением азота передавливается в стандартизатор 10 , в котором при 20—30 °С и перемешивании проводят усреднение дисперсии. Здесь же ее нейтрализуют 20—25%-ным водным раствором аммиака до рН=4,5—5,5 и пластифицируют дибутилфталатом при интенсивном перемешивании. Для повышения качества дисперсии в некоторых случаях ее подвергают вакуумотгонке для удаления остаточного мономера (винилацетата). Готовая дисперсия через фильтр 13 передается в приемник 14 .

Водная дисперсия поливинилацетата должна содержать 48— 52% твердой фазы и не более 0,5% мономера, иметь кислотное число не более 2, плотность 1020—1030 кг/м 3 и вязкость при – 20 °С, равную 0,05—0,5 Па·с. В пластифицированной дисперсии содержание пластификатора должно составлять 5—35%, сухого вещества— не менее 50%, мономера — не более 0,8% при рН 4,0—5,5.

Характерной особенностью поливинилацетатных эмульсий (латексов и дисперсий) является невысокая вязкость при относительно большом содержании полимера. Они применяются для нанесения различных покрытий, изготовления водных красок, для пропитки бумаги, тканей, изготовления искусственной, кожи, мастик для полов и т. д.

Производство суспензионного и блочного поливинилацетата

Суспензионная полимеризация винилацетата осуществляется периодическим способом в водной среде в присутствии инициаторов, растворимых в мономере. В качестве инициаторов применяют пероксид бензоила, динитрил азобисизомасляной кислоты, пероксид ацетила и др. Для стабилизации водной суспензии используют поливиниловый спирт, метилцеллюлозу и другие растворимые в воде вещества.

По одному из вариантов полимеризацию винилацетата проводят в эмалированном реакторе с мешалкой, обратным холодильником, системой обогрева и охлаждения. В реактор загружают воду и раствор стабилизатора, из смесителя подают винилацетат с растворенным в нем инициатором. Реакционную смесь нагревают до 70 °С, затем температуру повышают до 90—95 °С, и при этой температуре выдерживают в течение 30 мин. Продолжительность полимеризации 2—3 ч.

Нормы загрузки компонентов в реактор (в масс.ч.) приведены ниже:

  • Винилацетат – 100;
  • Вода обессоленная – 100-120;
  • Стабилизатор суспензии – 0,1—0,2;
  • Пероксид бензоила – 0,5—1,0.

По окончании процесса реакционную смесь постепенно охлаждают до 25 °С. Затем суспензию (в технике поливинилацетатные дисперсии часто называют эмульсиями) сливают отдельными порциями в центрифугу, фильтруют и промывают гранулы полимера водой. После этого полимер направляют на сушку. Сушка полимера проводится при 60—70 °С в сушилке с циркуляцией воздуха.

В промышленности гранульный, или бисерный, поливинилацетат выпускается различных марок в зависимости от вязкости его растворов. Он применяется для изготовления лаков, клеящих составов и для других целей.

При полимеризации винилацетата в блоке, или массе, в качестве инициатора применяют пероксид бензоила. Полимеризацию проводят при 75—95 °С в среде азота.

Способ полимеризации винилацетата в блоке не нашел широкого применения из-за большой продолжительности процесса.

Свойства и применение поливинилацетата

Поливинилацетат представляет собой прозрачный полимер плотностью 1180—1190 кг/м 3 без запаха и цвета. Полимер нетоксичен. Его молекулярная масса колеблется от 10 000 до 1600 000 в зависимости от способа и условий полимеризации. Поливинилацетат имеет аморфную структуру. Теплостойкость по Вика составляет 37—38 °С, температура стеклования 28 °С.

Поливинилацетат стоек к действию света при повышенной температуре (до 100 °С) и к температурным воздействиям. При 120 °С развивается необратимое пластическое течение. При нагревании до 170 °С происходит деструкция поливинилацетата, сопровождающаяся выделением уксусной кислоты и образованием двойных связей в основной цепи. При этом под действием температуры и кислорода воздуха происходит сшившие макромолекул с образованием нерастворимого полимера.

Поливинилацетат как полярный полимер немного набухает в воде, разрушается под действием сильных кислот и щелочей. В присутствии водных растворов кислот и щелочей при нагревании он легко гидролизуется в поливиниловый спирт. Поливинилацетат хорошо растворяется во многих органических растворителях, хорошо совмещается с пластификаторами, с эфирами целлюлозы, с хлорированным каучуком, а также с некоторыми полиэфирами и фенолоформальдегидными олигомерами. Модификация поливинилацетата повышает его водостойкость и поверхностную твердость. Поливинилацетат обладает хорошими адгезионными свойствами. При введении пластификаторов в большинстве случаев адгезионные свойства улучшаются.

Твердый поливинилацетат весьма ограниченно применяется для изготовления изделий из-за ползучести, невысокой твердости, низких теплостойкости и морозостойкости, недостаточной водо- и химической стойкости. Введение наполнителей повышает теплостойкость поливинилацетата. В наполненном виде он применяется для изготовления галантерейных изделий.

Поливиниладетат широко применяется в производстве лаков, красок и клеев. Он используется также для поверхностной обработки кожи, бумаги, ткани, в производстве искусственной кожи, в качестве добавки к цементу и т. д. Для склеивания и пропитки употребляют растворы полимера в летучих растворителях (лаки) и водные эмульсии (латексы и дисперсии). В результате испарения растворителей или воды и слипания частиц полимера образуется пленка.

Лаки применяются для получения покрытий на поверхностях (в качестве защитных и декоративных пленок) в различных областях техники.

Для повышения водостойкости эмульсий в них добавляют пластификаторы, обладающие повышенной водостойкостью. Кроме того, эмульсии получают из сополимеров винилацетата с другими мономерами: винилхлоридом, эфирами акриловой, метакриловой и малеиновой кислот или с высшими сложными виниловыми эфирами.

Широкое применение нашли сополимеры винилацетата с другими мономерами: винилхлоридом, метилметакрилатом, акрилонитрилом и др.

Список литературы:
Кузнецов Е. В., Прохорова И. П., Файзулина Д. А. Альбом технологических схем производства полимеров и пластмасс на их основе. 2-е изд. М., Химия, 1976. 108 с.
Лосев И. Я., Тростянская Е. Б. Химия синтетических полимеров. 3-е изд. М., Химия, 1971. 615 с.
Николаев А. Ф. Синтетические полимеры и пластические массы на их основе. 2-е изд. М. — Л., Химия, 1966. 768 с. Технология пластических масс. Л., Химия, 1977. 366 с.
Розеноерг М. Э. Полимеры на основе винилацетата. Л., Химия, 1983. 252 с.
Автор: Коршак В.В.
Источник: Коршак В.В., Технологии пластических масс, 3-е издание, 1985 год
Дата в источнике: 1985 год

Читайте также: