Научные открытия в астрономии доклад

Обновлено: 18.05.2024

Самые значительные открытия в астрономии

Наука

Астрономия - одна из древнейших наук, а может быть, даже самая древняя. Древние цивилизации со всего мира пристально наблюдали за звездами, планетами, светилами.

Но настоящий прорыв в астрономии имел место в 17-м столетии, когда ученые, наконец, раскрыли массу секретов космоса. С тех пор астрономия продолжает развиваться, и с каждым годом мы делаем все новые невероятные открытия. В этой статье вы узнаете об самых важных открытиях прошлого.

Открытия в области астрономии

Первые предположения о том, что Солнце – всего лишь звезда

Люди тысячи лет строили карты звездного неба, однако долгое время они и не подозревали, что же представляют собой звезды. Идея о том, что Солнце является ни чем иным, как звездой, не приходила в голову ни одному астроному вплоть до 16-го века.

В 1584 году итальянский философ Джордано Бруно выдвинул ряд теорий, которые, как мы сегодня знаем, были истинными. Он предположил, что звезды похожи на Солнце, однако расположены намного дальше от Земли, а также что, возможно, где-то существуют такие же миры, как и наш. Еще одной его теорией была теория о бесконечности Вселенной.


Естественно, во времена Средневековья, когда жил этот замечательный ученый, подобные теории не приветствовались. В 1592 году за столь вольные мысли Бруно был заключен Католической Церковью в тюрьму, а через 8 лет был сожжен на костре . Впрочем, его теории не канули в лету, а заинтересовали последователей и получили распространение в последующие века.


Расстояние до звезд

Первые измерения расстояния до звезд и появление термина "световой год"

Когда ученый мир наконец признал, что звезды и Солнце - подобные объекты, появилось множество других вопросов. Например, как далеко звезды расположены от нас?

Первые измерения расстояния до звезд сделал астроном Фридрих Бессель. Первой звездой, расстояние до которой он вычислил, была звезда 61 Лебедя. В 1838 году он использовал такую технику, как параллакс, и вычислил, что расстояние до этой звезды составляет 10,3 световых года. Современные методы позволили уточнить это расстояние: оно составляет на самом деле 11,4 световых года.


Это было поразительное открытие для того времени. Заслуги Бесселя на этом не завершились. Он всю жизнь работал со звездами и нанес на карты более 50 тысяч этих объектов.


Первый телескоп

Первый патент за изобретение телескопа был выдан голландскому производителю очков Хансу Липперсгею. В 1608 году он создал устройство, смотря через которое, можно было увидеть объекты, увеличенные в 3 раза.

Однако изобретение телескопа, как и многие другие гениальные изобретения прошлого, вызвало массу споров. То же самое было и с микроскопом, устройством, которое берет за основу ту же самую технологию, что и телескоп.


В городе Мидделбург, где жил Липперсгей, также проживали Ханс и Захарий Янсены, отец и сын, производители линз для очков, которые также подали запрос на получение патента за изобретение телескопа и обвинили Липперсгея в воровстве. Были и другие претенденты на звание изобретателя первого в мире телескопа.

Голландские мастера так были заняты спорами о том, кому же принадлежит пальма первенства в том, что касается изобретения телескопа, что так и не воспользовались этим устройством в научных целях.

Первым, кто действительно стал смотреть в телескоп и делать открытия, был Галилео Галилей. Его телескопы были куда мощнее оригиналов и давали увеличения в 10 раз. Кстати, ни один из мастеров, борющихся за звание изобретателя телескопа, не преследовался церковью так, как ученые, которые этим изобретением воспользовались.


Первый астероид

Первый обнаруженный астероид

В Солнечной системе имеется более миллиона астероидов, но большинство из них очень малы. Самым крупным является астероид Церера, карликовая планета, которая находится в Поясе астероидов.

Астероиды настолько мелкие объекты, что астрономы не замечали их вплоть до 1801 года. Итальянский астроном Джузеппе Пиацци наблюдал за звездами, когда обнаружил, что одна из них сравнительно более тусклая и что она постоянно движется.


Несколько недель он наблюдал за объектом и, в конечном итоге, предположил, что обнаружил комету без хвоста. Позже объект был классифицирован как планета. В реальности это было не то и не другое: это оказался астероид, который получил название Церера.


Астрономы рассматривали астероиды, как помехи. Они оставляли полосы на фотографиях звезд и получили прозвище "космический мусор". Первые астероиды рядом с Землей были обнаружены через 100 лет, чем вызвали массу опасений из-за возможного столкновения с нашей планетой.

Первое использование спектроскопии

"Информация, которую мы можем получить о таких космических объектах, как планеты, никогда не будет полной. Мы можем судить об их форме, расстоянии от нас, размерах и движении, однако мы никогда не узнаем что-либо об их химической структуре или минералогическом составе ", - писал французский философ Огюст Конт в 1842 году.


Сегодня в распоряжении ученых есть такая техника, как спектроскопия. Если применять ее на свете звезд или других космических объектов, это позволяет определить их композицию, и не важно, если эти объекты расположены на огромном расстоянии от нас.

Немецкий физик Йозеф Фраунгофер изобрел метод спектроскопии в начале 19-го века. Он использовал его для того, чтобы сделать анализ света Солнца и Луны.


Самое первое фото Луны

Первая фотография космического объекта

Наблюдения, сделанные невооруженным глазом, не давали достаточно информации о Солнечной системе и имели существенные ограничения. Изобретение фотографии в 19-м веке дало массу возможностей для развития астрономии.

Первый человек, который направил фотокамеру в небо и впервые запечатлел космические объекты, был Луи Дагер. Это произошло в 1839 году. Он сделал первый в истории снимок Луны.


К сожалению, лаборатория Дагера была охвачена пожаром вскоре после этого, поэтому эти первые фотографии Луны не сохранились. Самый старый дошедший до наших дней снимок Луны был сделан в 1851 году Джоном Адамасом Уипплом. Кстати, заслуги Дагера не были забыты, а один из фотографических процессов получил название дагеротипия.


Древнее затмение

Первое предсказание солнечного затмения

Первое, что заметили древние астрономы, наблюдая за ночным небом, было то, что движение объектов имеет свою закономерность. Люди научились предсказывать расположение планет на небе в определенный момент времени намного раньше, чем поняли, что же представляют собой эти объекты.


Первыми, что научились предсказывать древние астрономы, были солнечные затмения. Сегодня имеются точные даты и точное время каждого затмения вплоть до 3000 года.

Первое подобное предсказание было сделано древнегреческим философом и математиком Фалесом в 585 году до нашей эры. Греческий историк Герадот писал, что затмение, которое предсказал Фалес, совпало с битвой между двумя империями, которая имела место на территории современной Турции.


Затмение заставило солдат бросить оружие, а вскоре после этого был подписан мирный договор, который положил конец 15-летней войне. К сожалению, астрономические события наших дней не могут остановить международные конфликты.

Скорость света

Первое измерение скорости света

Когда Бессель смог определить расстояние до звезды 61 Лебедя, он уже знал, какова скорость света. Она была определена примерно за 2 столетия до этого в 1676 году датским астрономом Олафом Рёмером. До того момента ученые спорили, имеет ли свет скорость. Многие философы полагали, что свет движется мгновенно.


Ремер сделал свое открытие случайно. Он работал с затмениями спутников Юпитера. Было замечено, что на протяжении многих лет затмения имели место позже, чем предсказывалось, когда Земля находилась на более дальнем расстоянии от Юпитера. И наоборот: затмения наступали раньше, когда наша планета приближалась к Юпитеру.


Ремер догадался, что это происходит из-за того, что свету нужно больше времени для преодоления большего расстояния от Юпитера до Земли и наоборот. После обработки данных, оставленных Ремером, голландец Христиан Гюйгенс определил, что скорость света равна 210 824 километра в секунду. Это не намного отличается от истинной цифры в 299792 километра в секунду.

Первые наблюдения за галактикой

О том, что наша галактика Млечный путь не единственная во Вселенной, заметили еще в 964 году нашей эры. Наблюдения за другой галактикой были сделаны персидским астрономом Абд-ар-Рахман ибн Умар ас-Суфи, который заметил нашу ближайшую соседку, галактику Андромеда.


Впрочем, Ас-Суфи понятия не имел, что же это такое. Он назвал объект "небольшим облачком". Только почти через тысячу лет Эдвин Хаббл подтвердил существование множества галактик.

В 1924 году Хаббл направил свой телескоп на Андромеду и смог замерить яркость звезд галактики, определив, что до нее около 860 тысяч световых лет.

Астрономия — наука наблюдательная, главное в ней — открытия, в результате которых происходит изменение старых представлений. Не все открытия неожиданные, так, последним открытиям — бозона Хиггса и гравитационных волн — предшествовала долгая подготовка. Но все-таки астрономические открытия, как правило, неожиданные, противоречащие здравому смыслу, меняющие прежнюю картину мира. Какие из них могут войти в десятку величайших в истории человечества?

Юпитер

1. Открытия Галилея: пятна на Солнце, горы на Луне, спутники Юпитера, фазы Венеры, звезды в Млечном Пути

В XVII веке люди впервые посмотрели в телескоп, многие увидели, что творится в небе. Но Галилей отнесся к наблюдениям наиболее ответственно, поэтому открытия маркируются его именем. Стало понятно, что Земля не является центром вращения всего на свете. Солнце же, во-первых, тоже вращается, а во-вторых — само оно несовершенно: на нем есть пятна! Неидеальность ключевого космического объекта того времени поразила современников Галилея больше всего. Стало видно, что и Луна не является идеальной сферой. Известие о фазах Венеры доказывало вращение Венеры вокруг Солнца, то есть — правоту Коперника. И далее: Млечный Путь оказался множеством слабых звезд, и это меняло наивное отношение к видимому миру: человеческий глаз не подогнан для восприятия всего сущего, не все можно увидеть и понять без приборов.

Уран

2. Открытие Урана

До начала XVIII века Уран отмечался как звезда, но телескопы совершенствовались, и в звезде увидели планету. Так границы известного людям мира еще больше раздвинулись.

Учителю физики:

Годичный параллакс и расстояния до звезд

3. Звездные параллаксы

В XIX веке уже догадывались, что звезды-это далекие солнца. Когда был обнаружен параллактический сдвиг, который возникает из-за движения Земли вокруг Солнца, стало возможным измерение расстояний от земли до звезд. Первым делом измерили до Веги, до 61-Лебедя, до Альфы Центавра. Впервые был задан масштаб межзвездных расстояний, вместе с чем появилась бОльшая уверенность в рассуждениях о звездах и о структуре Галактики. Иллюстрация: Астрономия. 11 класс. Учебник (Линия УМК Б. А. Воронцова-Вельяминова)

Галактика

В 1837 г. впервые были осуществлены надёжные измерения годичного параллакса. Русский астроном Василий Яковлевич Струве (1793—1864) провел эти измерения для ярчайшей звезды Северного полушария Веги (a Лиры). Почти одновременно в других странах определили параллаксы еще двух звёзд, одной из которых была a Центавра. Эта звезда, которая с территории России не видна, оказалась ближайшей к нам. Даже у нее годичный параллакс составил всего 0,75ʺ. Под таким углом невооруженному глазу видна проволочка толщиной 1 мм с расстояния 280 м. Поэтому неудивительно, что столь малые угловые смещения так долго не могли заметить. Больше информации — Астрономия. 11 класс. Учебник (Линия УМК Б. А. Воронцова-Вельяминова)

4. Межзвездная среда

Астрономы начала XX века представляли межзвездную пустоту, допуская межзвездную пыль. В 1904 году Иоганн Гартман смог получить спектр, препарировать излучение и обнаружить газ: межзвездная среда существует. Это она затрудняет наблюдения. Без этого знания было бы невозможно построить верную схему нашей Галактики.

Бесплатные методические материалы:

Туманность Карина

5. Мир галактик

Еще 100 лет назад люди не были уверены в существовании разных галактик. Знаменитые дебаты Кертиса и Шелли о туманностях ничем не закончились, и только впоследствии подтвердилась правота Кертиса: гигантские туманности — это другие галактики. В 20-е годы Эдвин Хаббл обнаружил следы нескольких галактик, и до открытия расширения галактик оставался один шаг.

Это интересно:

Вселенная

6. Расширение Вселенной

Это глобальнейший процесс: скорость удаления объекта прямо пропорциональна расстоянию до него. В каждой галактике есть самая яркая звезда, они примерно одинаковы, и по ним можно определить, как удаляются галактики. Это похоже на то, как удаляется рисунок на воздушном шарике, когда его надувают, — по мере расширения поверхности. Важный вывод о том, что вся Вселенная эволюционирует — а ведь даже Эйнштейн считал Вселенную статичной — побуждает ученых к новым исследованиям: куда и откуда идет процесс.

Георгий Гамов

7. Реликтовое излучение

В 60-е годы XX века стало достоверно известно, что вся Вселенная расширяется: раньше в каждой ее точке плотность была больше и температура выше. Что важнее — количество или температура? Ученые Альфер и Гамов доказали, что излучение, доминировавшее после термоядерной реакции, никуда не девалось, обнаружить его очень легко (это шумы через радиоантенны все сталкивались), но надо было это распознать и назвать: реликтовое излучение. Астрономы получили еще один инструмент изучения Вселенной. Иллюстрация: Г.Гамов на фотографии из учебника Астрономия. 11 класс. Учебник (Линия УМК Б. А. Воронцова-Вельяминова)

В 1948 г. в работах Георгия Антоновича Гамова (1904—1968) и его сотрудников была выдвинута гипотеза о том, что вещество во Вселенной на начальных стадиях расширения имело не только большую плотность, но и высокую температуру. Так, спустя 0,1 с после начала расширения температура была около 3•1010 К. При столь высокой температуре взаимодействие фотонов высокой энергии, которых в горячем веществе было много, приводило к образованию пар всех известных частиц и античастиц: электрон — позитрон, нейтрино — антинейтрино и т. п. При аннигиляции этих пар снова рождались фотоны, а протоны и нейтроны, взаимодействуя с ними, превращались друг в друга. Больше информации — Астрономия. 11 класс. Учебник (Линия УМК Б. А. Воронцова-Вельяминова)

нейтронная звезда

8. Нейтронные звезды

Их открывали несколько раз. Нейтронная звезда — такая звезда, где природа остановила изменения. Они вбирают в себя всю физику, с ними связано изучение радиопульсаров, регистрация гравитационных волн, точное время, теория поведения веществ при высокой плотности, процессы в сильном магнитном поле.

Излучение пульсара (разновидность нейтронных звезд, которое испускается в узком конусе, наблюдатель видит лишь в том случае, когда при вращении звезды этот конус направлен на него подобно свету маяка. Вещество пульсаров состоит из нейтронов, образовавшихся при соами, тесно прижатых друг к другу гравитационными силами. Диаметры таких нейтронных звезд всего 20—30 км, а плотность близка к ядерной и может превышать 1018 кг/м3. Таким образом, нейтронные звезды являются одним из тех объектов во Вселенной, которые предоставляют учёным возможность изучать поведение вещества в условиях, пока недостижимых в земных лабораториях. Больше информации — Астрономия. 11 класс. Учебник (Линия УМК Б. А. Воронцова-Вельяминова)

Экзопланеты

9. Экзопланеты

Главное открытие конца XX века. Это планеты, которые вращаются вокруг другой яркой звезды, из-за чего их плохо видно. Первая была открыта в 1995 году. Они совершенно непохожи на нас, гигантские газовые планеты, которые вращаются вокруг своей звезды очень быстро, круг — за несколько часов. Вероятно, они образовались где-то далеко, а потом как-то притянулись к звезде, — но как? Почему? Тайн много.

Туманность Орел

10. Ускоренное расширение Вселенной

Говоря о будущем Вселенной, предлагают разные сценарии. Вселенная расширяется, но гравитация этому препятствует. Все зависит от того, хватит ли плотности вещества, или не хватит. Может быть, она порасширяется да и выйдет на долговременное постоянство? Ученые предполагали, что есть во вселенной ЧТО-ТО, заставляющее ее расширяться, работает какое-то отталкивание, антигравитация. В 1998 году открыли темную энергию (при взрыве белых сверхкарликов) — 70% среды связано с темной энергией, она-то и является компонентом плотности (условием гравитации).

В список не вошли: темное вещество и черные дыры, космические лучи и нейтрино, появление спектрального анализа, всеволновые наблюдения, квазары. Потому что эти явления — еще не до конца открыты. И если говорить о преподавании астрономии, то будем помнить: содержание этой дисциплины очень быстро устаревает и меняется — стабильный учебник вряд ли возможен.

Записала Людмила Кожурина


Аристарх Белопольский (01.07.1854-16.05.1934) - русский и советский астроном и астрофизик. Разработал метод и сконструировал прибор, с помощью которых первым получил экспериментальное доказательство существования эффекта Доплера применительно к световым волнам. Белопольский применил эффект Доплера, проявляющийся в виде смещения спектральных линий в оптических спектрах, для исследований в астроспектроскопии. Он в числе первых определил элементы орбит нескольких переменных и спектрально-двойных звёзд, исследовал спектры новых звёзд и солнечной поверхности, краев и короны; — лучевые скорости небесных светил, один из пионеров в фотографировании их спектров с помощью спектрографов. Ученый обнаружил периодическое изменение лучевой скорости у цефеид. Он всесторонне исследовал кометы, вращение около оси Венеры, Юпитера и колец Сатурна. Внёс существенный вклад в развитие и оснащение Пулковской обсерватории и её отделений.

Василий Яковлевич Струве


Галилео Галилей


Гипатия Александрийская


Гипатия Александрийская (350-370 (?) - март 415 г.)– женщина-ученый греческого происхождения, философ, математик, астроном. Около 400 года Гипатия была приглашена читать лекции в Александрийскую школу, где заняла одну из ведущих кафедр — кафедру философии. Преподавала философию Платона и Аристотеля; также преподавала математику, занималась вычислением астрономических таблиц.

Гиппарх Никейский


Гиппарх Никейский (ок. 190 до н. э. — ок. 120 до н. э) - древнегреческий астроном, механик, географ и математик. Гиппарх составил первый в Европе звёздный каталог, включивший точные значения координат около тысячи звёзд. Новшеством Гиппарха при составлении каталога явилась система звёздных величин: звёзды первой величины самые яркие и шестой — самый слабые, видимые невооружённым взглядом. Эта система в усовершенствованном виде используется в настоящее время. Наиболее важным достижением древнегреческого ученого считается открытие предварения равноденствий, или астрономической прецессии, заключающееся в том, что точки равноденствий постепенно перемещаются среди звёзд, благодаря чему каждый год равноденствия наступают раньше, чем в предшествующие годы. Гиппарх сделал это открытие, сопоставляя определённые им самим координаты Спики с измерениями александрийского астронома Тимохариса.

Григорий Шайн


Жозеф Луи Лагранж


Жозеф Луи Лагранж (25.01.1736-10.04.1813) - французский математик, астроном и механик итальянского происхождения. В 1764 году Французская академия наук объявила конкурс на лучшую работу по проблеме движения Луны. Лагранж представил работу, посвященную либрации Луны. Точки либрации – это точки в системе из двух массивных тел, в которых третье тело с пренебрежимо малой массой, не испытывающее воздействие никаких других сил, кроме гравитационных, со стороны двух первых тел, может оставаться неподвижным относительно этих тел. Более точно точки Лагранжа представляют собой частный случай при решении так называемой ограниченной задачи трёх тел — когда орбиты всех тел являются круговыми и масса одного из них намного меньше массы любого из двух других. В этом случае можно считать, что два массивных тела обращаются вокруг их общего центра масс с постоянной угловой скоростью. В пространстве вокруг них существуют пять точек, в которых третье тело с пренебрежимо малой массой может оставаться неподвижным во вращающейся системе отсчёта, связанной с массивными телами. В этих точках гравитационные силы, действующие на малое тело, уравновешиваются центробежной силой.

Иоганн Кеплер


Исаак Ньютон


Исаак Ньютон (4.I. 1643 — 31.III. 1727)- английский физик, астроном и математик, член Лондонского королевского общества. Один из основоположников современного естествознания. Родился в Вулсторпе в семье фермера. В 12 лет Ньютон начал учебу в школе, в 19 лет поступил в Тринити-колледж Кембриджского университета, который окончил в 22 года со степенью бакалавра. Возглавляя физико-математическую кафедру Кембриджского университета, он издал величайший труд "Математические начала натуральной философии", в котором изложил закон всемирного тяготения и три закона механики. На их основе Ньютон вывел законы движения тел Солнечной системы - планет, их спутников и комет. Объяснил главные особенности движения Луны, приливы и отливы в океанах, сжатие Юпитера и дал теорию фигуры Земли. В работах по оптике доказал, что с помощью стеклянной призмы можно разложить белый свет на лучи разных цветов, создал телескоп-рефлектор. Его открытия привели к пониманию природы изображения в телескопе. На основе его работ была развита небесная механика, давшая миру предсказание существования Нептуна и Плутона. В честь Ньютона названы кратеры на Луне и на Марсе

Клавдий Птолемей


Михаил Ломоносов


Николай Коперник


Павел Карлович Штернберг


Пьер-Симон Лаплас


Тихо Браге


Тихо Браге (14.12.1546-24.10.1601) - датский астроном эпохи Возрождения. Первым в Европе начал проводить систематические и высокоточные астрономические наблюдения, на основании которых Кеплер вывел законы движения планет. В ноябре 1577 года на небе появилась яркая комета. Тихо Браге тщательно проследил её траекторию вплоть до исчезновения видимости в январе 1578 года. Сопоставив свои данные с полученными коллегами в других обсерваториях, он сделал однозначный вывод: кометы — не атмосферное явление, как полагал Аристотель, а внеземной объект, втрое дальше, чем Луна. Свои научные достижения Браге изложил в многотомном астрономическом трактате. Сначала вышел второй том, посвящённый системе мира Тихо Браге и комете 1577 года. Первый же том (о сверхновой 1572 года) вышел позднее, в 1592 году в неполном виде. В 1602 году, уже после смерти Браге, Иоганн Кеплер опубликовал окончательную редакцию этого тома. Браге собирался в последующих томах изложить теорию движения других комет, Солнца, Луны и планет, однако осуществить этот замысел уже не успел.

Уильям Гершель


Фалес Милетский


Шарль Мессье


Эдвин Пауэлл Хаббл


Эдвин Пауэлл Хаббл- выдающийся американский астроном. Хаббл родился в Менсфилде, США, 20 ноября 1889 г. в семье преуспевающего владельца страхового агентства. Он был третьим ребёнком, всего в семье было восемь детей. Духовная жизнь семьи Хаббл была разносторонней. Эдвин много читал, увлекался фантастическими романами Жюля Верна. Он рано заинтересовался астрономией. Окончив школу, поступил в Чикагский университет, где изучал астрономию, математику и физику. В числе наиболее способных студентов он получил стипендию для продолжения образования в Великобритании. Первая научная работа была посвящена собственным движениям звёзд. Хаббл открыл 512 новых туманностей на крупномасштабных фотографиях неба. Хаббл много наблюдал. Он разделил все туманности на два типа: галактические, связанные с Млечным Путём, и внегалактические, видимые в основном в стороне от него. Особый интерес Хаббл проявил к знаменитой туманности Андромеды. Хаббл оценил её удалённость в 1 млн световых лет (по современным данным, около 2 млн световых лет). Работая в обсерватории Маунт-Вилсон, исследует галактики, изучает их состав, структуру и вращение, их распределение в пространстве и движения. Им была предложена первая научная классификация галактик по их формам. Все внегалактические туманности Хаббл подразделил на три типа: эллиптические, спиральные и иррегулярные, неправильные. В ближайших галактиках Хаббл открыл новые звёзды, цефеиды, шаровые скопления, газовые туманности, красные и голубые сверхгиганты. Он установил шкалу внегалактических расстояний, разработал методику оценки расстояний до самых далёких объектов Вселенной. Хаббла интересовал вопрос об общем строении нашего мира — Вселенной. Он полагал, что только наблюдения могут привести к пониманию истинной природы вещей. Скончался 28 сентября 1953 г. Имя Эдвина Хаббла носит крупнейший космический телескоп.

Эдмунд Галлей


Ян Гевелий


Достижения в астрономии XX в. [08.12.13]

Введение
Астрономия – наука о Вселенной, изучающая расположение, движение, строение, происхождение и развитие небесных тел и образованных ими систем.
Астрономия является одной из древнейших наук. Доисторические культуры оставили после себя такие астрономические артефакты как древнеегипетские монументы и Стоунхендж. А первые цивилизации вавилонян, греков, китайцев, индийцев и майя уже в своё время проводили методические наблюдения ночного небосвода.
После изобретения телескопа, развитие астрономии, как современной науки, было значительно ускорено. Исторически, астрономия включала в себя астрометрию, навигацию по звёздам, наблюдательную астрономию, создание календарей, и даже астрологию. Профессиональная астрономия в наши дни часто рассматривается как синоним астрофизики.
В XX в. астрономия разделилась на две главные ветви:
- наблюдательная астрономия сфокусирована на получении данных из наблюдений небесных тел, которые затем анализируются с помощью основных законов физики.
- теоретическая астрономия ориентирована на разработку компьютерных, математических или аналитических моделей для описания астрономических объектов и явлений. Эти две ветви дополняют друг друга: теоретическая астрономия ищет объяснения результатам наблюдений, а наблюдательная астрономия используется для подтверждения теоретических выводов и гипотез. 2009 год был объявлен ООН Международным годом астрономии (IYA2009). Основной упор делается на повышении общественной заинтересованности и понимании астрономии.

Достижения в астрономии XX в., связанные с именами А.А. Фридмана, Э.П.Хаббла, Г.А. Гамова и М. Шмидта

Александр Александрович Фридман (1888 - 1925)

Весной 1922 года в главном физическом журнале того времени - "Zeitschrift fur Physik" появилось обращение "К немецким физикам". Правление Германского физического общества извещало о трудном положении коллег в России, которые с начала войны не получали немецких журналов. Поскольку лидирующее положение в тогдашней физике занимали немецкоязычные ученые, речь шла о многолетнем информационном голоде. Немецких физиков просили направлять по указанному адресу публикации последних лет, с тем, чтобы потом переслать их в Петроград. Однако в том же самом журнале, всего двадцатью пятью страницами ниже, была помещена статья, полученная из Петрограда и, на первый взгляд, противоречащая призыву о помощи. Имя автора - А.Фридман - физикам было неизвестно. Его статья с названием "О кривизне пространства" касалась Общей теории относительности. Точнее - ее самого грандиозного приложения: космологии.
Именно в этой статье родилось "расширение Вселенной". До 1922 года такое словосочетание выглядело бы полной нелепостью. Конечно, о том, что расширение Вселенной началось миллиарды лет назад, астрофизике еще только предстояло узнать; еще предстояло измерять и вычислять; еще предстояло размышлять над проблемой горизонта Вселенной. Но выдвинул эту идею впервые в 1922 году тридцатичетырехлетний Александр Фридман. В своей работе "О кривизне пространства" Фридман по существу дал набросок основных идей космологии: об однородности распределения вещества в пространстве и, как следствие, об однородности и изотропности пространства-времени, т.е. о существовании "мирового" времени, для которого в каждый момент метрика пространства будет одинакова во всех точках и по всем направлениям. Эта теория важна прежде всего тем, что приводит к достаточно корректному объяснению фундаментального явления - эффекта красного смещения. Полученное Фридманом при указанных предположениях решение уравнений поля является образцом для любых космологических теорий.
Современная теория гравитации (общая теория относительности) была создана Альбертом Эйнштейном в 1915 году. Согласно этой теории, под воздействием массы и энергии тел пространство (точнее говоря, пространство-время) искривляется, что, в свою очередь, приводит к искривлению траекторий тел, что и воспринимается нами как проявление тяготения. Сразу же после возникновения теории относительности ее создатель попытался применить ее к Вселенной в целом, но эта попытка оказалась безуспешной. И вот через 7 лет неизвестный автор из Советской России - страны, казалось бы, изолированной от мировой науки, - смело утверждает, что эйнштейновский результат совсем не обязателен, а представляет собой весьма частный случай. Фридман впервые отбросил догму о неизменности Вселенной, с античных времен владевшую умами исследователей. Его выводы были настолько необычны, что Эйнштейн сначала не согласился с ним и заявил, что нашел в его выкладках ошибку.
Полученные Фридманом в 1922-1924 годах первые нестатические решения уравнений Эйнштейна при исследовании релятивистских моделей Вселенной положили начало развитию теории нестационарной, раздвигающейся или пульсирующей Вселенной. Ученый исследовал нестационарные однородные изотропные модели с пространством положительной кривизны, заполненным пылевидной материей (с нулевым давлением). Нестационарность рассмотренных моделей описывается зависимостью радиуса кривизны и плотности от времени, причем плотность изменяется обратно пропорционально кубу радиуса кривизны.
Фридман выяснил типы поведения таких моделей, допускаемые уравнениями тяготения, причем модель стационарной Вселенной Эйнштейна оказалась действительно лишь частным случаем. Он опроверг мнение о том, что общая теория относительности требует допущения конечности пространства. Решив уравнения эйнштейновской теории гравитации с учетом космологического принципа, Фридман показал, что Вселенная не может быть неизменной, в зависимости от начальных условий она должна либо расширяться, либо сжиматься. Он же впервые дал правильную по порядку величины оценку возраста Вселенной.
Результаты Фридмана продемонстрировали, что уравнения Эйнштейна не приводят к единственной модели Вселенной, какой бы ни была космологическая постоянная. Из модели однородной изотропной Вселенной следует, что при ее расширении должно наблюдаться красное смещение, пропорциональное расстоянию. В 1927 году к тем же выводам, что и Фридман, пришел бельгийский ученый и католический аббат Жорж Леметр. Леметр уделял большое внимание сопоставлению теории и наблюдений, впервые указав, что расширение Вселенной можно наблюдать с помощью красного смещения в спектрах галактик. Таким образом, расширение Вселенной, было предсказано теоретически, на основе теории относительности сначала Фридманом и чуть позднее Леметром. Это был один из самых блестящих примеров предсказаний в истории науки. В 1929 году Эдвин П. Хаббл на основании астрономических наблюдений подтвердил: спектральные линии в спектрах галактик оказались смещены к красному концу спектра. Так астрономы, не обращавшие внимания на теорию Фридмана, убедились в его правоте. Но Александр Фридман, к сожалению, не дожил до открытия закона Хаббла. Уже после открытия Хаббла было показано, что нестационарность Вселенной фактически следует уже из закона всемирного тяготения (открытого Исааком Ньютоном еще в конце XVII в), точнее, из самого общего свойства гравитации, заключающегося в том, что эта сила только притягивает, но не отталкивает тела.
Фридман был математиком, яркой звездой мелькнувшим на физическом небосклоне. Выведенные им уравнения обратили плотность вещества в бесконечность, радиус Вселенной — в ноль, а наш мир — в одну, самую первую точку.

Эдвин Пауэлл Хаббл (1889-1953)

Георгий Антонович Гамов (1904 - 1968)

Вопреки известному мнению о катастрофической специализации и дифференциации наук в ХХ веке, об исчезновении из науки ученых-универсалов постепенно становится очевидным, что и наш век дал крупных мыслителей, которым был доступен широкий охват современного научного знания. В ряду таких выдающихся ученых находится и Георгий Антонович Гамов. Ему была свойственна способность выдвигать оригинальные, новаторские идеи в наиболее фундаментальных направлениях развития науки. Ядерная физика и физика элементарных частиц, астрофизика и космология, генетика и, наконец, яркая просветительская деятельность популяризатора науки - вот обширное поприще, на котором проявились его дарования. Гамов отличался особым талантом постановки и эффективного решения конкретных, и притом всегда ключевых, задач.
Теория взрывающейся, расширяющейся "из точки" Вселенной, строгая математическая теория, описывающая эволюцию однородного мира, была дана в 1922 г. А. А. Фридманом, основоположником современной космологии. Гамов был одним из учеников Фридмана по Ленинградскому университету. Работы Фридмана, разгоревшаяся вокруг них дискуссия, спор Фридмана с Эйнштейном - все это живо интересовало Гамова.
Космология Большого Взрыва - так назвал свою концепцию, более известную у нас как теория горячей Вселенной. По Гамову, вначале был взрыв. Он произошел одновременно повсюду во Вселенной, заполнив пространство горячим веществом, из которого через миллиарды лет образовались все наблюдаемые тела Вселенной - Солнце, звезды, галактики, планеты и мы сами. Ключевым - и новым - словом в этой теории было слово "горячее", относящееся к космическому веществу.
С середины 40-х годов он заинтересовался ранней историей Вселенной, начальными этапами космологического расширения. Побудительным мотивом в этом новом обращении к космологии стало стремление объяснить происхождение химических элементов, их относительную распространенность во Вселенной. Гамов выдвигает предположение о том, что вещество ранней Вселенной было не только плотным, но и горячим. Ранняя Вселенная, по его идее, была тем "котлом", в котором при известной плотности и гигантской температуре произошел синтез всех химических элементов.
В своей космологической теории он выделял прежде всего два аспекта: синтез элементов и космическое излучение. Они тесно связаны: синтез элементов возможен лишь при высокой температуре; но в разогретом веществе, согласно общим законам термодинамики, всегда должно иметься и излучение, находящееся с ним в тепловом равновесии. После эпохи нуклеосинтеза, которая длилась всего несколько минут, излучение никуда не исчезает и продолжает движение вместе с веществом в ходе общей эволюции расширяющейся Вселенной. Оно должно сохраниться и к настоящей эпохе, только его температура должна быть - из-за значительного расширения - гораздо ниже, чем вначале. Такова качественная сторона дела. Количественное решение проблемы предполагает объяснение и предсказание конкретных величин - космической распространенности атомных ядер и современной температуры остаточного излучения.
Трактовка ранней Вселенной в духе общих законов термодинамики и ядерной физики была тогда для большинства физиков и астрономов немалой неожиданностью. Поиск в гипотетических космологических теориях ответа на конкретные вопросы о реальном составе космического вещества представляется дерзкой и рискованной затеей. Тем более что космология в те годы, казалось, зашла в тупик, она давала слишком низкую оценку возраста мира, всего 2 миллиарда лет, тогда как возраст
Солнца никак не меньше по крайней мере 4,5 или 5 миллиардов лет. Это было связано с ошибкой в тогдашних измерениях постоянной Хаббла; противоречие оказалось окончательно снятым к концу 50-х годов. Давняя убежденность в правильности теории Фридмана была, по-видимому, столь глубокой, что Гамов не придал слишком большого значения противоречивым оценкам возраста мира. Вместе с Гамовым в работе участвовали сначала один человек, потом два, позже три. Это были его ученики Р.Альфер, Р.Херман (оба из семей с российскими корнями) и Дж.Фоллин. Молодые физики были увлечены подходом Гамова к эволюционной космологии как к достойной и благодарной области деятельности вопреки "научной моде" тех лет.
Первая публикация, подготовленная Гамовым и Альфером, появилась в печати в 1948 г. за тремя именами: Альфер, Бете, Гамов. Это была очередная проделка Гамова: как рассказывается в уже упоминавшейся статье его учеников, Гамов с загадочным видом вписал имя Бете в уже готовый текст с пометкой "in absentia" ("в отсутствие" - лат.), которая при дальнейшей обработке в редакции почему-то пропала. Так возникла теория, ставшая знаменитой. В последовавшей затем серии статей группы Гамова первоначальная теория совершенствовалась и разрабатывалась от года к году.
В дальнейшем процесс космологического нуклеосинтеза заново изучали в более строгой постановке задачи, ставшей возможной благодаря уточнению данных ядерной физики, академик Я. Б. Зельдович и его сотрудник В. М. Якубов в 1964-1965 гг., одновременно с ними Ф. Хойл, а чуть позже американский теоретик Дж. Пиблс. Вместе с тем шло уточнение наблюдательных астрономических данных о химическом составе вещества Вселенной.
В итоге этой большой многолетней коллективной деятельности ученых разных стран, инициированной Гамовым, стало очевидным, что
космическая распространенность двух главных элементов - водорода и гелия - действительно может быть объяснена ядерными реакциями в горячем веществе ранней Вселенной. Более тяжелые элементы должны, по-видимому, синтезироваться иным путем, например, при вспышках сверхновых звезд. Что же касается фонового излучения, то оно должно иметь в нашу эпоху температуру, весьма близкую к абсолютному нулю, в пределах от 1 до 10 кельвинов.
С чувством признательности думаем, читаем, вспоминаем мы о трудах и днях одного из самых крупных ученых ХХ века, человека универсальных дарований, русского по происхождению и культуре, ленинградца по "физическому" происхождению. Плоды его трудов принадлежат мировой науке, всему человечеству. Принадлежат они и нам.

Мартен Шмидт (род. 1929)

Заключение
Современная астрономия переживает новую эпоху великих открытий, которые превосходят сделанные в свое время Галилеем. Они приводят к радикальным изменениям в научной картине мира. Теория раздувающейся Вселенной, квантовая космология расширили границы мегамира; наша Метагалактика выступает сейчас лишь одной из множества вселенных. Объектом интенсивного изучения стали черные дыры, существование которых во Вселенной предсказано общей теорией относительности. Бурные мировоззренческие дискуссии вызывает антропный принцип, выявляющий неразрывную связь между глобальными свойствами Метагалактики и появлением в ней человека. Сохраняет значение и проблема внеземных цивилизаций. Моделирование возможных сценариев их развития позволяет по-новому, с космической точки зрения оценить перспективы нашей собственной цивилизации, пути разрешения глобальных проблем современности.
Наше время — эпоха непрерывного и необычайно быстрого расширения знаний о Вселенной и проникновения во все более далекие ее глубины с помощью не только спектрального анализа и фотографии, но и нового мощного средства — радиоисследований.

Чтобы полностью ознакомиться с рефератом, скачайте файл!

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы

Читайте также: