Клетка единица строения и жизнедеятельности организма доклад

Обновлено: 17.05.2024

Все живые организмы состоят из одной или многих ячеек микроскопического размера. Эти мельчайшие структуры, способные к самовоспроизведению, называются клетками.

Бактерии, некоторые водоросли, простейшие представляют собой отдельные клетки или колонии из нескольких десятков клеток. Грибы, высшие растения и животные состоят из многих миллионов и даже миллиардов клеток. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии.

Считается, что все организмы и все составляющие их клетки произошли эволюционным путем от общей преДНКовой клетки. Два основных процесса эволюции - это:

1. случайные изменения генетической информации, передаваемой от организма к его потомкам;

2. отбор генетической информации, способствующей выживанию и размножению своих носителей.

Эволюционная теория является центральным принципом биологии, позволяющим нам осмыслить ошеломляющее разнообразие живого мира.

Естественно, в эволюционном подходе есть свои опасности: большие пробелы в наших знаниях мы заполняем рассуждениями, детали которых могут быть ошибочными.

Но, что еще более важно, каждый современный организм содержит информацию о признаках живых организмов в прошлом. В частности, существующие ныне биологические молекулы позволяют судить об эволюционном пути, демонстрируя фундаментальное сходство между наиболее далекими живыми организмами и выявляя некоторые различия между ними.

История изучения клетки.

История изучения клетки неразрывно связана с развитием методов исследования, в первую очередь с развитием микроскопической техники.

Оптический прибор приобрел значение ценного научного инструмента благодаря усовершенствованиям знаменитого голландского исследователя Антонии Ван Левенгука. Его микроскоп позволил увидеть живые клетки при увеличении в 270 раз.

Клеточная теория одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов.

Общие сведения

Клеточная теория — основополагающая для общей биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Матиас Шлейден и Теодор Шванн сформулировали клеточную теорию, основываясь на множестве исследований о клетке (1838). Рудольф Вирхов позднее (1858) дополнил её важнейшим положением (всякая клетка из клетки).

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.

Основные положения клеточной теории:

1) Клетка - элементарная единица живого, основная единица строения, функционирования, размножения и развития всех живых организмов.

1.1) О вирусах (1898г.): вне клетки жизни нет.

2) Клетки всех одноклеточных и многоклеточных организмов имеют общее происхождение и сходны по своему строению и химическому составу, основным проявлениям жизнедеятельности и обмену веществ.

3) Размножение клеток происходит путём их деления. Новые клетки всегда возникают из предшествующих клеток.

4) Клетка - это единица развития живого организма.

Современная клеточная теория

Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов. Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.

Строение клетки. Все клетки, за исключением бактериальных, построены по общему плану. Они имеют шаровидное ядро и разделены на многочисленные отсеки мембранными перегородками. Такие клетки называют эукариотическими , а организмы состоящие из них, - эукариотами. Бактериальные клетки ядра не имеют, их внутренняя организация проще, чем у эукариот, их называют прокариотическими ( доядерными ) или прокариотами. Средняя эукариотическая клетка имеет диаметр 25мкм (микрометров). Большинство прокариот имеет размеры 1-5 мкм. В одну эукариотическую клетку могло бы поместиться более 10 тыс. бактерий.

Несмотря на многообразие форм, организация клеток всех живых организмов подчинена единым структурным принципам.

Живое содержимое клетки — протопласт — отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Прокариоты (от лат. pro — перед, до и греч. κάρῠον — ядро, орех) — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи.

Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды.

Эукариотическая клетка

Эукариоты (эвкариоты) (от греч. ευ — хорошо, полностью и κάρῠον — ядро, орех) — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты - прокариоты — митохондрии, а у водорослей и растений — также и пластиды.

Заключение

Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.

Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.

ВложениеРазмер
halilova_gulnaz.8kl.doc 43 КБ

Предварительный просмотр:

Конкурсная работа по биологии

Работу выполнила ученица 8 класса Халилова Гульназ Фаргатовна .

Преподаватель: Баязитов Р.З.

Реферат по биологии

  1. Введение
  2. История изучения клетки
  3. Клеточная теория
  4. Строение клетки
  5. Заключение

Все живые организмы состоят из одной или многих ячеек микроскопического размера. Эти мельчайшие структуры, способные к самовоспроизведению, называются клетками.

Бактерии, некоторые водоросли, простейшие представляют собой отдельные клетки или колонии из нескольких десятков клеток. Грибы, высшие растения и животные состоят из многих миллионов и даже миллиардов клеток. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии.

Считается, что все организмы и все составляющие их клетки произошли эволюционным путем от общей преДНКовой клетки. Два основных процесса эволюции - это:

1. случайные изменения генетической информации, передаваемой от организма к его потомкам;

2. отбор генетической информации, способствующей выживанию и размножению своих носителей.

Эволюционная теория является центральным принципом биологии, позволяющим нам осмыслить ошеломляющее разнообразие живого мира.

Естественно, в эволюционном подходе есть свои опасности: большие пробелы в наших знаниях мы заполняем рассуждениями, детали которых могут быть ошибочными.

Но, что еще более важно, каждый современный организм содержит информацию о признаках живых организмов в прошлом. В частности, существующие ныне биологические молекулы позволяют судить об эволюционном пути, демонстрируя фундаментальное сходство между наиболее далекими живыми организмами и выявляя некоторые различия между ними.

История изучения клетки.

История изучения клетки неразрывно связана с развитием методов исследования, в первую очередь с развитием микроскопической техники.

Оптический прибор приобрел значение ценного научного инструмента благодаря усовершенствованиям знаменитого голландского исследователя Антонии Ван Левенгука. Его микроскоп позволил увидеть живые клетки при увеличении в 270 раз.

Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов.

Клеточная теория — основополагающая для общей биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Матиас Шлейден и Теодор Шванн сформулировали клеточную теорию , основываясь на множестве исследований о клетке (1838). Рудольф Вирхов позднее (1858) дополнил её важнейшим положением (всякая клетка из клетки).

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.

Основные положения клеточной теории:

1) Клетка - элементарная единица живого, основная единица строения, функционирования, размножения и развития всех живых организмов.

1.1) О вирусах (1898г.): вне клетки жизни нет.

2) Клетки всех одноклеточных и многоклеточных организмов имеют общее происхождение и сходны по своему строению и химическому составу, основным проявлениям жизнедеятельности и обмену веществ.

3) Размножение клеток происходит путём их деления. Новые клетки всегда возникают из предшествующих клеток.

4) Клетка - это единица развития живого организма.

Современная клеточная теория

Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов. Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.

Строение клетки. Все клетки, за исключением бактериальных, построены по общему плану. Они имеют шаровидное ядро и разделены на многочисленные отсеки мембранными перегородками. Такие клетки называют эукариотическими , а организмы состоящие из них, - эукариотами. Бактериальные клетки ядра не имеют, их внутренняя организация проще, чем у эукариот, их называют прокариотическими ( доядерными ) или прокариотами. Средняя эукариотическая клетка имеет диаметр 25мкм (микрометров). Большинство прокариот имеет размеры 1-5 мкм. В одну эукариотическую клетку могло бы поместиться более 10 тыс. бактерий.

Несмотря на многообразие форм, организация клеток всех живых организмов подчинена единым структурным принципам.

Живое содержимое клетки — протопласт — отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Прокариоты (от лат. pro — перед, до и греч. κάρ ῠ ον — ядро, орех) — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи.

Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды.

Эукариоты (эвкариоты) (от греч. ευ — хорошо, полностью и κάρ ῠ ον — ядро, орех) — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты - прокариоты — митохондрии, а у водорослей и растений — также и пластиды.

Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.

Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.

Все живые существа состоят из клеток - маленьких, окруженных мембраной полостей, заполненных концентрированным водным раствором химических веществ. Клетка — элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. Считается, что все организмы и все составляющие их клетки произошли эволюционным путем от общей преДНКовой клетки. Два основных процесса эволюции - это:

1. случайные изменения генетической информации, передаваемой от организма к его потомкам;

2. отбор генетической информации, способствующей выживанию и размножению своих носителей.

Эволюционная теория является центральным принципом биологии, позволяющим нам осмыслить ошеломляющее разнообразие живого мира.

Естественно, в эволюционном подходе есть свои опасности: большие пробелы в наших знаниях мы заполняем рассуждениями, детали которых могут быть ошибочными.

Но, что еще более важно, каждый современный организм содержит информацию о признаках живых организмов в прошлом. В частности, существующие ныне биологические молекулы позволяют судить об эволюционном пути, демонстрируя фундаментальное сходство между наиболее далекими живыми организмами и выявляя некоторые различия между ними.

Примерная история клетки

Вначале под действием различных природных факторов (тепло, ультрафиолетовое излучение, электрические разряды) появились первые органические соединения, которые послужили материалом для построения живых клеток.

Ключевым моментом в истории развития жизни видимо стало появление первых молекул-репликаторов. Репликатор – это своеобразная молекула, которая является катализатором для синтеза своих собственных копий или матриц, что является примитивным аналогом размножения в животном мире. Из наиболее распространённых в настоящее время молекул, репликаторами являются ДНК и РНК. Например, молекула ДНК, помещённая в стакан с необходимыми компонентами, самопроизвольно начинает создавать свои собственные копии (хотя и значительно медленнее, чем в клетке под действием специальных ферментов).

Появление молекул-репликаторов запустило механизм химической (добиологической) эволюции. Первым субъектом эволюции были скорее всего примитивные, состоящие всего из нескольких нуклеотидов, молекулы РНК. Для этой стадии характерны (хотя и в очень примитивизированном виде) все основные черты биологической эволюции: размножение, мутации, смерть, борьба за выживание и естественный отбор.

Химической эволюции способствовал тот факт, что РНК является универсальной молекулой. Кроме того, что она является репликатором (т.е. носителем наследственной информации), она может выполнять функции ферментов (например, ферментов, ускоряющих репликацию, или ферментов, разлагающих конкурирующие молекулы).

В какой-то момент эволюции возникли РНК-ферменты, катализирующие синтез молекул липидов (т.е. жиров). Молекулы липидов обладают одним замечательным свойством: они полярные и имеют линейную структуру, причём толщина одного из концов молекулы больше, чем у другого. Поэтому молекулы липидов во взвеси самопроизвольно собираются в оболочки, близкие по форме к сферическим. Так что РНК, синтезирующие липиды, получили возможность окружать себя липидной оболочкой, значительно улучшившую устойчивость РНК к внешним факторам.

Постепенное увеличение длины РНК приводило к появлению многофункциональных РНК, отдельные фрагменты которых выполняли различные функции.

Первые деления клеток происходили, видимо, под действием внешних факторов. Синтез липидов внутри клетки приводил к увеличению её размеров и к потере прочности, так что большая аморфная оболочка разделялась на части под действием механических воздействий. В дальнейшем возник фермент, регулирующий этот процесс.

Строение клеток

Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток — прокариоты (доядерные) и эукариоты (ядерные). Прокариотические клетки — более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки — более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Несмотря на многообразие форм, организация клеток всех живых организмов подчинена единым структурным принципам.

Живое содержимое клетки — протопласт — отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Прокариотическая клетка


Строение типичной клетки прокариот: капсула, клеточная стенка, плазмалемма, цитоплазма, рибосомы, плазмида, пили, жгутик, нуклеоид.

Прокариоты (от лат. pro — перед, до и греч. κάρῠον — ядро, орех) — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды.

Эукариоты (эвкариоты) (от греч. ευ — хорошо, полностью и κάρῠον — ядро, орех) — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты - прокариоты — митохондрии, а у водорослей и растений — также и пластиды.

Животная клетка


Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов.

Общие сведения

Клеточная теория — основополагающая для общей биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Матиас Шлейден и Теодор Шванн сформулировали клеточную теорию , основываясь на множестве исследований о клетке (1838). Рудольф Вирхов позднее (1858) дополнил её важнейшим положением (всякая клетка из клетки).

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.

Основные положения клеточной теории:

1) Клетка - элементарная единица живого, основная единица строения, функционирования, размножения и развития всех живых организмов.

1.1) О вирусах (1898г.): вне клетки жизни нет.

2) Клетки всех одноклеточных и многоклеточных организмов имеют общее происхождение и сходны по своему строению и химическому составу, основным проявлениям жизнедеятельности и обмену веществ.

3) Размножение клеток происходит путём их деления. Новые клетки всегда возникают из предшествующих клеток.

4) Клетка - это единица развития живого организма.

Дополнительные положения клеточной теории

Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список её положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен.

1. Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу.

2. В основе деления клетки и размножения организмов лежит копирование наследственной информации - молекул нуклеиновых кислот ("каждая молекула из молекулы"). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из её более мелких компонентов — к митохондриям, хлоропластам, генам и хромосомам.

3. Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединённых и интегрированных в системе тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).

4. Клетки многоклеточных обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной работой различных генов, что приводит к их морфологическому и функциональному разнообразию - к дифференцировке.

История развития понятий о клетке

В первую четверть XIX века происходит значительное углубление представлений о клеточном строении растений, что связано с существенными улучшениями в конструкции микроскопа (в частности, созданием ахроматических линз).

Линк и Молднхоуэр устанавливают наличие у растительных клеток самостоятельных стенок. Выясняется, что клетка есть некая морфологически обособленная структура. В 1831 году Моль доказывает, что даже такие, казалось бы, неклеточные структуры растений, как водоносные трубки, развиваются из клеток.

В 1831 году Роберт Броун описывает ядро и высказывает предположение, что оно является постоянной составной частью растительной клетки.

Школа Пуркинье

Школа Мюллера и работа Шванна

Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Иоганнеса Мюллера в Берлине. Мюллер изучал микроскопическое строение спинной струны (хорды); его ученик Генле опубликовал исследование о кишечном эпителии, в котором дал описание различных его видов и их клеточного строения.

Здесь были выполнены классические исследования Теодора Шванна, заложившие основание клеточной теории. На работу Шванна оказала сильное влияние школа Пуркинье и Генле. Шванн нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Шванн смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных.

Развитие клеточной теории во второй половине XIX века

С 1840-х века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки — цитологию. Для дальнейшего развития клеточной теории существенное значение имело её распространение на простейших, которые были признаны свободно живущими клетками (Сибольд, 1848). В это время изменяется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки, и выдвигается на первый план значение протоплазмы (цитоплазмы) и ядра клеток, что нашло своё выражение в определении клетки, данном М. Шульце в 1861 г.:

Клетка - это комочек протоплазмы с содержащимся внутри ядром.

Деление тканевых клеток у животных было открыто в 1841 г. Ремарком. Выяснилось, что дробление бластомеров есть серия последовательных делений. Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Р. Вирховом в виде афоризма: Каждая клетка из клетки .

Современная клеточная теория

Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов. Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.

Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.

Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.


Организмы живой природы в основном имеют клеточное строение. В этой статье мы подробнее расскажем об особенностях строения и жизнедеятельности клеток, познакомим с их химическим составом и разновидностями.

Особенности строения

Клетка единица строения и жизнедеятельности всего живого на нашей планете. Они могут иметь различные размеры (от 3 до 100 мкм) и формы (цилиндрические, шаровидные, овальные), выполнять разнообразные функции, участвовать во всевозможных обменных процессах.

Из общих признаков можно обозначить химический состав и строение.

Основными элементами химического состава являются углерод, кислород, азот и водород. Эти макроэлементы составляют основную массовую долю всех компонентов. Среди неорганических веществ особое значение имеют вода и минеральные соли, которые представлены в виде ионов. К ним относятся железо, йод, калий, кальций, фосфор, хлор и др.

Также составными элементами являются органические вещества: углеводы, белки, нуклеиновые кислоты, липиды. Разобраться с функциями каждого из них поможет следующая таблица:

которые читают вместе с этой


Органические вещества

Функции

Нуклеиновые кислоты (ДНК, РНК)

Передача наследственной информации, регуляция жизненно важных процессов в клетке, синтезирование белка.

Транспортная, строительная, защитная, энергетическая, регуляторная, сократительная функции.

Углеводы и жиры (липиды)

Энергетическая и строительная функции, а также запас питательных веществ.

Являясь катализаторами всех процессов в организме, ускоряют и регулируют их.

Структурными элементами клетки являются клеточная мембрана, ядро и цитоплазма с органоидами. Каждый из составных элементов имеют свои особенности и функции. Например:

  • ядро содержит генетический код и регулирует все происходящие процессы внутри клеточного организма;
  • клеточная мембрана защищает от воздействия окружающей среды, придаёт форму;

Клеточная мембрана у растений намного плотнее, чем у животного. Это возможно за счёт наличия в составе целлюлозы.

  • цитоплазмаобеспечивает взаимосвязь всех органоидов внутри клетки.

Среди органоидов во всех клетках можно обнаружить рибосомы, лизосомы, аппарат Гольджи, митохондрии, эндоплазматическую сеть.

Растительные и животные клетки отличаются друг от друга. Так растительный организм имеет вакуоли и пластиды, которых нет у животных. А животный организм содержит клеточные центриоли, которые участвуют в процессах деления.

Особенности жизнедеятельности

Основные проявления жизнедеятельности клетки – это обменные процессы и превращение энергии.

Образование органических веществ, которое сопровождается потреблением энергии, называется ассимиляцией.

Расщепление или распад органических веществ, в результате которых выделяется энергия, называются диссимиляцией.


Рис. 3. Жизнедеятельность клетки

Солнце является главным источником энергии на Земле. Растения под действием солнечных лучей вырабатывают молекулы АТФ. Аденозинтрифосфат (АТФ) является органическим веществом, которое выступает своеобразным аккумулятором в живых организмах.

Фотосинтез, который происходит в растительных клетках, даёт атмосфере кислород. Благодаря ему возможно дыхание, а значит и существование всего живого на планете.

Внутри растений под действием Солнца образуются органические вещества, которые употребляют в пищу другие особи живой природы (грибы, животные, бактерии).

Благодаря растениям все живые организмы обеспечиваются не только кислородом, но и питательными веществами.

Что мы узнали?

Клетка, как и все живые организмы, имеет свои особенности в строении и жизнедеятельности. Каждый клеточный организм имеет оболочку, ядро и цитоплазму с органоидами. Химический состав у всех клеток одинаковый. Основную долю составляют углерод, кислород, водород и азот. Основными проявлениями жизнедеятельности клетки являются процессы ассимиляции и диссимиляции.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Клетка. Её строение, состав и жизнедеятельность"

Все живые организмы состоят из клеток. Некоторые – всего лишь из одной клетки, например бактерии и протисты.


Другие организмы (растения, животные, грибы и человек) являются многоклеточными.


Клетка – элементарная структурная и функциональная единица живого организма. Клетки обладают всеми признаками живого. Они способны размножаться, расти, обмениваться веществами и энергией с окружающей средой, реагировать на изменения, происходящие в этой среде.

Изучением строения клетки и принципов её жизнедеятельности занимается наука цитология.

Тело человека состоит из огромного количества клеток. Они подразделяются на соматические (нервные, костные, мышечные клетки) и половые клетки, служащие для размножения.


В многоклеточном организме клетки взаимодействуют между собой.


Сходные клетки объединяются в ткани, это позволяет организму успешно работать в тех ситуациях, в которых одиночные клетки обречены на гибель.

Заслуга открытия клетки принадлежит выдающемуся английскому учёному Роберту Гуку. Гук переконструировал первый микроскоп Галилея, усовершенствовал его и применил к изучению различных мелких предметов, в том числе и частей растений.

Большинство клеток имеют очень маленькие размеры, поэтому их нельзя рассмотреть невооружённым глазом.

Если поместить под микроскоп тонкие срезы органов человеческого тела (сердца, кожи, печени, крови или мышц), то мы увидим множество разнообразных по форме и размерам клеток, из которых состоят органы. Клетки могут быть плоскими, веретенообразными, шаровидными, иметь отростки. Как правило, их форма зависит от выполняемой функции и положения в организме.

Несмотря на внешнее многообразие, все клетки организма человека имеют единый принцип организации.

Снаружи клетка покрыта цитоплазматической мембраной, под которой находится цитоплазма, ядро и органоиды.

Органоиды – постоянные структуры цитоплазмы, имеющие разное строение и выполняющие различные функции.

К ним относятся комплекс Гольджи, митохондрии, рибосомы, эндоплазматическая сеть, клеточный центр и лизосомы.

Цитоплазматическая мембрана, или плазмалемма, состоит из белков, липидов и углеводов. Она ограничивает цитоплазму и защищает её от внешних воздействий, а также обеспечивает восприятие и передачу информационных сигналов внутрь клетки, осуществляет перенос одних веществ в клетку, других – из неё.


Цитоплазматическая мембрана обладает свойством избирательной проницаемости: одни вещества она пропускает внутрь клетки, а другие – нет, обеспечивая обмен веществ.

Пройдя через плазматическую мембрану, вещества оказываются в цитоплазме.

Цитоплазма – полужидкая внутренняя среда клетки. Она заполняет всю клетку. В цитоплазме размещаются органоиды и протекают все жизненные процессы клетки и обмен веществ. Она находится в постоянном движении.

Центральное место в цитоплазме занимает плотное округлое тельце — ядро. Ядро – это важнейшая клеточная структура, оно управляет всеми процессами жизнедеятельности клетки. Ядро регулирует процессы, протекающие при размножении, обеспечивает передачу наследственных признаков дочерним клеткам, образующимся при делении.

В ядре находятся хромосомы – носители наследственных признаков и свойств человека.

Все клетки человеческого тела имеют по 46 хромосом. Половые клеткисперматозоиды и яйцеклетки – содержат по 23 хромосомы.

Внутри ядра выявляется ядрышко – плотное тельце, которое участвует в образовании рибосом.


Эндоплазматическая сеть состоит из канальцев и полостей. Она делит клеточное содержимое на отдельные отсеки, что позволяет разделить различные химические процессы, которые одновременно протекают в цитоплазме. На эндоплазматической сети происходит синтез и последующий транспорт белков, углеводов и липидов.

Комплекс Гольджи представляет собой единый комплекс густо сплетённых трубочек. Сюда по каналам эндоплазматической сети поступают органические вещества. Здесь они накапливаются, упаковываются в пузырьки и в таком виде покидают клетку.

В клетках всех живых организмов содержится множество округлых телец — рибосом. Это мелкие сферические частицы, состоящие из РНК (рибонуклеиновая кислота) и белков. Рибосомы могут находиться свободно в цитоплазме или быть прикреплены к эндоплазматической сети. В них происходит образование белков, и по каналам эндоплазматической сети они транспортируются в разные части клетки.

Митохондрии ─ вытянутые, овальные тельца с многочисленными внутренними перегородками. Они обеспечивают клетку энергией.

Лизосомы — это небольшие округлые тельца, которые содержат пищеварительные ферменты, расщепляющие белки, жиры и углеводы. Лизосомы принимают участие в расщеплении органоидов.

Клеточный центр расположен вблизи ядра и образован двумя полыми цилиндрами – центриолями. Они располагаются перпендикулярно друг к другу. Центриоли участвуют в делении клетки.


Клетки всех живых организмов состоят из одних и тех же химических элементов. В живых организмах обнаружено более 70 химических элементов. Все элементы классифицируют на макроэлементы (содержание которых в живых организмах составляет больше 0,01 %; к ним относят углерод, водород, кислород, хлор, азот, калий, кальций, натрий) и микроэлементы (содержание менее 0,001 %; к ним относят, например, железо, медь, цинк, йод, бром, никель). Основу клетки составляют углерод, водород, кислород и азот – это органогенные элементы. Они занимают примерно 98% клетки.

Большинство элементов в клетке находится в виде соединений – веществ. Различают органические и неорганические вещества. К неорганическим веществам относят воду и минеральные соли. Вода – самое распространённое неорганическое вещество в организме. Её содержание в разных клетках колеблется от 10% в эмали зуба до 85% в нервных клетках. В клетках молодого организма воды содержится значительно больше, чем в клетках стареющего организма. Вода определяет объём и упругость клетки. В водных растворах происходит взаимодействие веществ и их транспорт.

Минеральные соли присутствуют в клетке в малых количествах, но они необходимы для нормальной её жизнедеятельности. Например, азот и сера входят в состав молекул белков, фосфор – в ДНК, РНК и АТФ, железо – в гемоглобин, йод – в гормоны щитовидной железы.

К органическим веществам относятся белки, жиры, углеводы и нуклеиновые кислоты. Белки, жиры и углеводы – основной строительный материал цитоплазмы, ядра и органоидов.

Белки занимают в клетке первое место среди органических веществ. Это очень сложные соединения. Например, к белкам относится гемоглобин, он переносит по нашей крови кислород и придаёт ей красный цвет.

Важную роль в организме играют и углеводы. Это хорошо известные всем глюкоза, сахароза и крахмал. Основная функция углеводов – энергетическая. При распаде глюкозы внутри нашего организма образуется энергия, которая необходима нам для жизни.

Жиры выполняют в нашем организме различные функции:

o дают нам энергию;

o накапливаются и защищают от потери тепла;

o при распаде жиров образуется большое количество воды.

Нуклеиновые кислоты образуются в ядре. Нуклеиновые кислоты бывают двух видов: ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Они входят в состав хромосом и участвуют в хранении и передаче наследственных свойств и функций организма.

Клетка – это сложнейшая химическая лаборатория. В ней происходит много превращений, которые осуществляют белки-катализаторы, или ферменты.

Катализатор – вещество, которое во много раз ускоряет скорость протекания реакции, но само в ней не расходуется. Каждый фермент способен ускорять лишь определённые превращения. Например, в клетках ротовой полости есть фермент каталаза. Он разлагает пероксид водорода на воду и кислород. В клетке находится множество самых разных ферментов.

Одним из обязательных свойств живого является размножение.

Размножение клеток – это увеличение их количества. Клетки размножаются делением надвое. В настоящее время доказано, что ни одна клетка не может возникнуть заново из неживых составляющих. Все новые клетки образуются из уже существующих. Внутри ядра располагаются тонкие нитевидные хромосомы.

1. Перед делением клетки в ядре происходит удвоение числа хромосом. При этом образуются два набора хромосом, несущие одинаковую информацию о жизненных процессах.

2. Происходит удвоение центриолей и их расхождение к разным полюсам клетки. От каждой из них отходят нити веретена деления.

3. Затем все хромосомы укорачиваются, уплотняются. Они превращаются в похожие на палочки структуры. В этот момент хромосомы становятся видны в световой микроскоп.

4. Ядерная мембрана растворяется, и хромосомы оказываются в цитоплазме клетки. Они располагаются в центре клетки.

5. А все другие органоиды отодвигаются к цитоплазматической мембране.

6.Затем хромосомы разделяются на две группы. К парным хромосомам подходят нити веретена деления, соединяя каждую хромосому пары со своей центриолью.

7. Каждая из двух групп хромосом перемещается от центра клетки к одному из её полюсов.

8. После этого начинается разделение клетки надвое. Вокруг каждой группы находящихся у полюсов хромосом формируется новая ядерная мембрана.

9. Затем хромосомы превращаются из палочковидных в нитевидные.

10. Одновременно с образованием ядерной мембраны начинается построение перегородки от середины центральной части клетки. Она растёт во все стороны, пока не достигнет наружной цитоплазматической мембраны.

11. В этот момент из одной клетки образуются две дочерние.

На этом процесс деления клетки заканчивается. В результате деления из одной материнской образуются две дочерние клетки, являющиеся копиями друг друга и исходной материнской клетки. Дочерние клетки начинают собственную жизнь.

Читайте также: